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Abstract: Dinucleoside 5′,5′-polyphosphates (DNPs) are endogenous substances that play
important intra- and extracellular roles in various biological processes, such as cell proliferation,
regulation of enzymes, neurotransmission, platelet disaggregation and modulation of vascular tone.
Various methodologies have been developed over the past fifty years to access these compounds,
involving enzymatic processes or chemical procedures based either on P(III) or P(V) chemistry.
Both solution-phase and solid-support strategies have been developed and are reported here.
Recently, green chemistry approaches have emerged, offering attracting alternatives. This review
outlines the main synthetic pathways for the preparation of dinucleoside 5′,5′-polyphosphates,
focusing on pharmacologically relevant compounds, and highlighting recent advances.

Keywords: phosphorylation; dinucleotides; organophosphorus chemistry; mechanochemistry; dry
eye syndrome; diquafosol; denufosol

1. Introduction

Dinucleoside 5′,5′-polyphosphates (DNPs), commonly abbreviated as NpnNs, are essential to
human biological systems [1,2]. They contain two ribonucleosides, which are linked at the 5′-position
of their sugar moiety through n phosphate groups (Figure 1).
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Figure 1. General structure of natural dinucleoside 5′,5-polyphosphates and canonical nucleobases. Figure 1. General structure of natural dinucleoside 5′,5-polyphosphates and canonical nucleobases.
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Historically, dinucleoside 5′,5′-polyphosphates (i.e., Ap2A and Up2U) were first isolated
by chemists [3]. In 1976, E. Rapaport and P.C. Zamecnik brought to light the presence of
P1,P4-diadenosine-5′-tetraphosphate (Ap4A) in mammals [4]. The authors assumed that this
dinucleotide could have a role in cellular communication as a “signal nucleotide”. Later, Up4A
was the first endogenous dinucleotide, possessing both purine and pyrimidine moieties, to be identified
in living organisms [5,6]. Currently, 17 symmetrical or mixed NpnNs have been isolated from human
tissues and characterized [2]. DNPs are released into the extracellular space from different types
of cells, such as platelets and endothelial cells, where they stimulate several cell-surface purinergic
receptors. They have a strong physiological and pathophysiological impact on the cardiovascular
system [2,7], and may also interact with enzymes, acting as inhibitors (e.g., kinases) or substrates [8–11].
Three classes of enzymes are known to catalyze the degradation of dinucleotides [10–12]: symmetrically
cleaving dinucleoside polyphosphate hydrolases, asymmetrically cleaving dinucleoside polyphosphate
hydrolases, and dinucleoside polyphosphate phosphorylases. Over the years, DNPs have gained
increased attention and their therapeutic potential has been revealed. Likewise, structural analogues
have been developed and some of them are drug candidates.

Herein, we first describe purinergic signalling, i.e., the role of nucleotides as extracellular signal
molecules, with a focus on the P2Y receptor subtypes that interact with dinucleotides. Then, we present
the synthetic strategies to obtain dinucleotides. Pyrophosphate bond formation has been addressed in
some recent reviews and book chapters [1,13–15]. The current review focuses on methods reported for
the synthesis of dinucleoside 5′,5′-polyphosphates, especially those of biological and pharmacological
interest. We also highlight recent advances in the field, such as green chemistry approaches. It should
be noted that methods for preparing cyclic dinucleotides [16] are beyond the scope of this review.
Furthermore, the synthesis of nicotinamide adenine dinucleotides [17] and mRNA cap analogues such
m7GpnN (see reviews [18–20]) are not presented.

2. Interaction of DNPs with Purine and Pyrimidine Receptors

Purinergic receptors are extracellular receptors, currently consisting of four subtypes of P1 (or
adenosine) receptors, seven subtypes of P2X ion channel receptors, and eight subtypes of P2Y receptors
(Figure 2). Specifically, P2Y receptors (P2YRs) are G-protein-coupled receptors (GPCRs) activated by
extracellular nucleotides, which are divided into two groups on the basis of sequence homology and
the type of G protein they are primarily coupled to [21–23].
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Purinergic receptors are expressed in nearly all cell types, and have been found to play crucial
roles in many biological processes, e.g., neurotransmission, neuroprotection in hypoxia and ischemia,
regulation of cardiovascular function, platelet aggregation, smooth muscle contraction, secretion of
hormones, modulation of immune response, control of cell proliferation, differentiation, and apoptosis.
In this regard, different aspects of purinergic signaling such as the pathophysiology and the therapeutic
potential have been extensively reviewed [21–28]. Several purinergic compounds are already on
the market to treat thrombosis and stroke, and one dinucleotide is used to treat dry eye disease
(see Section 2.1).

DNPs are strong endogenous agonists of the purinergic system [2]. In particular, they interact
with the P2YRs, a family of high therapeutic relevance [2,23,29,30]. The P2Y1, P2Y11, P2Y12, and P2Y13

receptors are activated by adenosine 5′-di- or triphosphates (ADP and ATP), while uracil nucleotides
(UDP and UTP) are the endogenous agonists for the P2Y4, P2Y6, and P2Y14 receptors. On the other
hand, the P2Y2 receptor responds to both ATP and UTP. Natural dinucleoside tetraphosphates Ap4A
and Up4U have agonist potencies comparable to those of ATP and UTP at P2Y2 receptors [31–34].
It should be noted that dinucleotides are more resistant to hydrolysis than their parent mononucleotides,
but are generally less potent, and lack selectivity in many cases [9,23]. Ligand development for the class
of uracil nucleotide-activated P2Y receptors has been extensively reviewed by Rahefi and Müller in
2018 [23]. They have compiled existing data on, inter alia, dinucleotides such as ApnA (n = 2–6), UpnU
(n = 3–4) and structural analogues, as agonists for the uracil-activated P2YRs. Given the significant
clinical potential of the P2YRs, substantial research efforts directed towards developing P2YR ligands
for use as pharmacological tools and drugs have led to the discovery and development of a significant
number of agonists but, so far, only a moderate number of antagonists. Two relevant dinucleotides,
namely Up4U and Up4dC, have undergone clinical development to cure several diseases involving the
P2Y2 receptor (Figure 3).
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2.1. Up4U for the Treatment of Dry Eye Disease (DED)

Diquafosol tetrasodium (P1, P4-diuridine 5′,5′-tetraphosphate, Up4U, NS365, Diquas®) is the first
agonist of the P2Y2 receptor subtype that has been approved in Japan as 3% ophthalmic solution
(Santen Pharmaceutical Co, Ltd., Osaka, Japan) for the management of dry eye disease (see reviews
by Lau et al. [35], and Keating [36]). This pathology commonly causes symptoms including dryness,
irritation, itching, and light sensitivity. It is associated with tear film instability, increased tear film
osmolarity, and ocular surface inflammation. It impacts the daily life of patients and has a prevalence
that varies from 5% to 35%. DED results from either decreased aqueous tear production (aqueous
tear-deficient dry eye) or increased tear evaporation (evaporative dry eye), or both. Several studies
demonstrated the presence of P2X and P2Y receptors in ocular tissues (retina, ciliary body, and lens),
and indicated that P2Y2 receptors may be the main subtype of purinergic receptor located at the ocular
surface [33]. Clinical data show that diquafosol tetrasodium improves ocular surface staining and may
improve tear film volume and stability.
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2.2. Up4dC for the Treatment of Cystic Fibrosis

Denufosol tetrasodium (P1-uridine-P4-2′-deoxycytidine 5′,5′-tetraphosphate, Up4dC, dCp4U,
INS37217) is a mixed dinucleoside tetraphosphate. Along with Ap4A and Up4U, dCp4U acts as a
P2Y2 agonist [29,37]. It has been developed by Inspire Pharmaceuticals (now part of Merck) as an
inhaled drug for the treatment of cystic fibrosis [38]. This recessive genetic disease is characterized
by pulmonary and reproductive tract dysfunctions, involving abnormal ion transport and defective
mucociliary clearance. Denufosol acts on P2Y receptors expressed on the surface of airway epithelia
to stimulate chloride secretion independent of the chloride channel, which is dysfunctional in cystic
fibrosis. It was shown to significantly enhance tracheal mucus transport in an animal model [39,40].
The first clinical trials established a good safety profile. It was evaluated in two phase 3 clinical trials,
TIGER-1 and TIGER-2, as a therapy for cystic fibrosis patients [41,42]. In the first trial (TIGER-1), it
was found to significantly improve lung function in cystic fibrosis patients with normal to mildly
impaired lung function. Unfortunately, less than 3 weeks after publication of the TIGER-1 data, Inspire
Pharmaceuticals announced that the 466-patients, 48-week placebo-controlled phase 3 TIGER-2 clinical
trial, had failed to demonstrate any benefit [41,42].

3. Synthesis Based on P(V) Chemistry

To date, the most widely used methods to access dinucleotides involve P(V) chemistry. They are
based on the activation of a 5′-nucleotide (i.e., nucleoside 5′-mono, 5′-di and 5′-triphosphate) and the
reaction of the corresponding intermediate with a second 5′-nucleotide or inorganic pyrophosphate to
form dinucleotides containing up to six bridging phosphate groups. These steps are usually performed
in dry, aprotic solvents (mostly N,N-dimethylformamide, DMF), and, therefore, require the use of
nucleotides, as well as inorganic phosphate or pyrophosphate, in their tri- or tetra-n-butylammonium
forms due to solubility issues. Divalent cations, especially Mg2+ and Zn2+, are sometimes added as
catalysts for anhydride bond formation. It is assumed that the metal ion could serve two roles, namely,
the activation of the electrophilic P(V) center and templating the incoming phosphate nucleophile and
the P(V) electrophilic center [13].

3.1. Synthesis via a Phosphoromorpholidate Intermediate

The first description of a chemical synthesis of dinucleotides was reported in the mid-60s by
Moffatt and Khorana [43,44]. This strategy relies on the conversion of nucleoside 5′-monophosphates
(NMPs) into their phosphoromorpholidate derivatives, followed by reaction with a phosphate salt,
i.e., orthophosphate or pyrophosphate (Scheme 1). Briefly, the acidic form of the nucleotides were
activated with N,N’-dicyclohexylcarbodiimide (DCC) in the presence of morpholine, leading to the
nucleoside 5′-phosphoromorpholidates as 4-morpholine N,N’-dicyclohexylcarboxamide salts 1–3
(Scheme 1) [45]. In the second step, addition of pyrophosphate afforded the symmetrical dinucleoside
tetraphosphates. Similarly, dinucleoside triphosphates were obtained when pyrophosphate was
replaced by orthophosphate.
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Since then, this approach has been adapted by several research groups to access Np2N,
Np3N, as well as some analogues. For example, Ap2A was obtained in 90% yield,
through the condensation of the bis-(tri-n-butylammonium) salt of AMP and the adenosine-5′-
phosphoromorpholidate-4-morpholine-N,N’-dicyclohexylcarboxamide salt in anhydrous pyridine [46].
Mixed dinucleoside triphosphates were obtained in 10–30% yields, by reacting nucleoside
5′-phosphoromorpholidates with nucleoside 5′-diphosphates (NDPs), possibly in the presence of
tetrazole [31,47,48]. However, due to long reaction times and generally low yields, this method has
lost its relevance.

3.2. Synthesis via a Phosphorimidazolide Intermediate

Phosphorimidazolide derivatives exhibit high reactivity toward various nucleophiles. Therefore,
they have been extensively used as intermediates for pyrophosphate bond formation. Typically,
activation of a 5′-nucleotide (NMP, NDP or NTP) with N,N’-carbonyldiimidazole (CDI) in DMF,
followed by the in situ condensation with a second 5′-nucleotide or pyrophosphate, affords
dinucleotides containing two to four bridging phosphate groups in 10–60% yields [47–50]. Accordingly,
the tri-n-butylammonium salt of UMP was activated with CDI to form a phosphorimidazolide
intermediate 4, which reacted with the remaining nucleotide to form Up2U (Scheme 2) [47,49].
Slight modifications of this protocol allowed access to mixed dinucleotides [50]. First, activation of
the bis(tri-n-butylammonium) salt of CMP was performed using ≈ 2 equiv of CDI in DMF for 2 h
at rt, followed by the addition of dry methanol to quench the remaining CDI. Treatment with the
bis(tri-n-butylammonium) salt of GMP for 2 h at rt afforded Gp2C in 54% yield. Addition of GDP
instead of GMP in the second step afforded Gp3C, albeit in only 3% yield. Similarly, activation of NDPs
with CDI followed by reaction with a NMP allowed the isolation of dinucleoside triphosphates in low
yields [48].
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Alternatively, symmetrical dinucleoside tetraphosphate Up4U was obtained, either by activation
of UMP with CDI followed by coupling with bis(tri-n-butylammmonium) pyrophosphate [47,49] or
dimerization of UDP in the presence of CDI [51] (Scheme 3).
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Activation of ribonucleotides in the presence of an excess of CDI usually results in the
carbonation of the ribose moiety (Scheme 4). In 1H-decoupled 31P NMR spectroscopy, adenosine
5′-phosphorimidazolide is characterized by a singlet at −7.56 ppm, whereas phosphorimidazolide 5
exhibits a singlet at −7.76 ppm [52]. However, in some of the above-mentioned publications [47,49],
carbonation was not observed, and may be due to the experimental conditions (number of equivalents
of CDI, reaction time, temperature, adventitious presence of water). Nonetheless, the removal of the
2′,3′-carbonate protecting group can be easily performed under basic conditions [52,53].Molecules 2019, 24, x 6 of 27 
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In 2011, a variant of the CDI method was developed by Yanachkov and co-workers [54], where
the activation of pyrophosphate by CDI gave rise to P1,P2-di(1-imidazolyl)pyrophosphate (Scheme 5).
Using 13C-labeled CDI and monitoring the reaction by 31P NMR (13C-31P and 1H-31P couplings), the
authors proposed a reaction mechanism involving the fast formation of mixed anhydrides, which
react slowly with imidazole to give diimidazolyl pyrophosphate. This activated pyrophosphate was
isolated as its disodium salt 6 by precipitation with sodium perchlorate in acetone, and then reacted
with AMP or UMP to afford the symmetrical 5′,5′-dinucleoside tetraphosphates Ap4A and Up4U in
good yields (Scheme 5). Noteworthy, the use of 1H-tetrazole or zinc chloride during the second step
allowed the reaction time to be shortened from 24–48 h to 3–16 h.
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Interestingly, this approach allows the preparation of dinucleotide analogues, starting from
modified pyrophosphate (the central oxygen being replaced with monofluoro, monochloro or
dichloromethylene). These DNPs analogues were obtained in 70–80% yields.

While these methods involving phosphoromidazolides are straightforward and rapid, they all
require dry conditions to prevent side-product formation and most often, use trialkylammonium salts.
To avoid this drawback, our research group has recently developed a one-pot synthesis of dinucleotides,
either in aqueous solution or mechanochemically, through the use of phosphorimidazolides
intermediates [55,56]. These strategies will be detailed in Section 5 and are related to green
chemistry approaches.

3.3. Synthesis via a Cyclic Trimetaphosphate Intermediate

The initial synthesis of trimetaphosphate esters from ATP was described by Khorana [57].
Later, Ng and Orgel reported that adenosine 5′-polyphosphates can react with 1-ethyl-3-(3-dim
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ethylaminopropyl)carbodidimide (EDC) in water to form diadenosine 5′,5′-polyphosphates as the
main products [58]. Yields were improved by performing the reaction in organic solvents such as
DMF or DMSO, in the presence of DCC and using the tris or tetrakis(tri-n-butylammonium) salts
of nucleotides [31,47]. The activation of nucleoside 5′-triphosphates (NTPs) with DCC proceeds via
a cyclic nucleoside 5′-trimetaphosphate intermediates (7–8), which can further react with another
NMP to produce the corresponding dinucleoside tetraphosphates (Scheme 6). Accordingly, Up4U and
Up4A were obtained in low yields starting from UTP and ATP, respectively. One should note that
N,N’-dicyclohexylurea (DCU) may be removed as a precipitate either after the first or the second step
of the reaction.Molecules 2019, 24, x 7 of 27 
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Similarly, the activation of UTP or ATP with DCC in anhydrous DMF, followed by the addition
of the tris(tri-n-butylammonium) salt of UDP or ADP in the second step of the reaction, afforded
Up5U and Ap5A, in 10–60% yields [8,49,50]. Reactions must be performed under strictly anhydrous
conditions and long reaction times are required.

In 2013, the Taylor research group reported a high-yielding synthesis of dinucleoside
pentaphosphates (Np5N) using the tri(tetra-n-butylammonium) salt of cyclic trimetaphosphate 9
as a phosphorylating agent [59]. The latter was prepared in almost quantitative yield by conversion of
the trisodium salt of trimetaphosphate 10 into its pyridinium form, and then by titration of the solution
to pH 7.0 with a dilute solution of tetrabutylammonium hydroxide and freeze-drying (Scheme 7).
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Scheme 7. Preparation of the cyclic trimetaphosphate 9 [59].

Then, the electrophilic reagent 9 was functionalized by a sulfonyl leaving group (LG)
using N-methylimidazole (NMI) in the presence of either 2-mesitylenesulfonyl chloride 11 or
1-benzenesulfonyl-3-methyl-imidazolium triflate 12 in DMF (Scheme 8). Compound 11 was
commercially available, whereas 12 was prepared in two steps starting from benzenesulfonyl chloride
and imidazole [60]. Based on 31P NMR monitoring of the reaction, the authors proposed that the
activation proceeds via a mixed anhydride 13, which reacts with NMI to give rise to intermediate 14.

Addition of sub-stœchiometric amounts of NMPs to the activated cyclic trimetaphosphate 9
allowed their conversion to intermediates 15–18, as suggested by 31P NMR (Scheme 9). Addition of
slight excess of the second NMP and anhydrous MgCl2 gave rise to the corresponding dinucleoside
pentaphosphates. In the absence of Mg2+ ions, the reaction was extremely slow.
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This method constitutes an interesting approach as it allows formation of symmetric as well
as mixed Np5Ns in high yields, and uses inexpensive reagents (sodium cyclic trimetaphosphate,
mesitylene chloride, NMI). It has recently been applied for the synthesis of dicaptides, used as
substrates for polymerases [61]. However, it requires the preparation of the tetra-n-butylammonium
salts of the cyclic trimetaphosphate and those of the nucleotides, reaction times are long (> 3 days),
and must be performed under strictly anhydrous conditions.

3.4. Synthesis via a Phosphoromethylimidazolium Intermediate

Reacting the free acids of canonical nucleoside 5′-monophosphates with a large excess of NMI
in the presence of triphenylphosphine/2,2′-dipyridyl sulfide as coupling agents and triethylamine in
DMF or DMSO allowed dimerization to Np2N in about 85% yields [62]. Unsymmetrical dinucleotides
could also be obtained, albeit in much lower yields, by using a equimolar amount of the two NMPs to
be coupled.

Another methodology to provide symmetrical and mixed dinucleoside polyphosphates
NpnN (n = 2–4) was inspired by the Bogachev procedure for the synthesis of
deoxynucleoside 5′-triphosphates (dNTPs) [63]. It involves the reaction of nucleoside
5′-monophosphates-N-methylimidazolium as donors with an NMP, NDP or NTP to obtain
dinucleoside di, tri and tetraphosphates (Scheme 10) [64]. These donors were prepared by treatment
of the NMPs (disodium salts dihydrate or free acid hydrate) with a 16-fold excess of trifluoroacetic
anhydride (TFAA) in acetonitrile (ACN) in the presence of excess triethylamine. This step resulted
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in the temporary protection of the hydroxyl and the amino (if present) groups and formation of a
mixed anhydride, as shown by 31P NMR (δ = 2 ppm for the mixed anhydride formed within a few
minutes). It offered the additional benefit of drying the starting materials without deleterious effects
on the reaction outcome. However, in the case of GMP, these conditions resulted in the complete
decomposition of the starting material. This limitation could be circumvented by using GMP in its
tri-n-butylammonium form, together with reducing the number of equivalent of TFAA.Molecules 2019, 24, x 9 of 27 
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After removal of unreacted TFAA, the mixed anhydride was reacted with excess NMI in the
presence of triethylamine to quantatively afford the highly reactive N-methylimidazolium salt donors
19–22 within 10 min. Formation of the N-methylimidazolium salts could also be easily followed
by 31P NMR spectroscopy as these species exhibit chemical shifts of approximately −9 to −10 ppm.
The crude acetonitrile solutions were used directly in the next step. Thus, addition of the donors
solutions to the bis(tri-n-butylammonium) salts of the nucleotide acceptors in DMF (in acetonitrile
precipitation of the acceptors was observed) led to partially protected products. The latter were treated
with aqueous ammonium acetate to remove the protecting groups, providing the desired compounds.
For dinucleotides involving guanine nucleotides, N,N-dimethylaniline was found to be beneficial.
Using this procedure, up to nine dinucleotides were obtained in yields of 51–68%. It should be noted
that this method cannot be used to activate nucleoside 5′-di- or triphosphates. While the reactions
were performed under argon, the authors pointed out that vigorous drying of the donor precursors
was not always necessary when preparing the dinucleoside di- and triphosphates. Advantages of this
one-pot method are short reaction time and good yields.

The same group also reported the synthesis of symmetrical di- and tetraphosphates by
dimerization of nucleotides, using sulfonyl imidazolium salt 12 as a reagent (Scheme 11) [60,65].
The tetra-n-butylammonium salts of nucleoside 5′-mono or 5′-diphosphates were activated in DMF
with 0.6–0.75 equiv of 12 in presence of 1–3 equiv of NMI and MgCl2 (Scheme 11). Dimerization of the
nucleotides led to Np2N and Np4N in high yields.

31P NMR analyses showed that the reaction proceeds via the formation of the N-methylimidazolium
salt intermediates 23–27 (Figure 4, 31P δ = −9.2 ppm), which are able to react with the remaining
nucleotide to form the corresponding dimer.

Mixed dinucleotides could also be obtained in high yields, by introducing minor modifications
into the protocol. Accordingly, activation was performed in the presence of a small excess of sulfonyl
imidazolium salt 12, and NMI was replaced by diisopropylethylamine (DIPEA) to prevent dimerization
(Scheme 12). Moreover, the time of reaction of the first step was reduced to 1 min. Cp2A and Ap3U
were obtained in similar yields starting from AMP and UMP, respectively.
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Finally, mixed adenine dinucleotides were obtained in high yields by activating the
tetra-n-butylammonium salt of ATP with sulfonyl imidazolium salt 28, followed by reaction with a
second nucleotide (Scheme 13). Investigation of the first step by 31P NMR revealed that the reaction
proceeds via a cyclic adenosine trimetaphosphate intermediate 8.
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must be paid to maintain anhydrous conditions.
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3.5. Synthesis via a Phosphoropiperidate Intermediate

In 2014, the Sun research group developed an approach based on the activation of nucleoside
5′-phosphoropiperidates with 4,5-dicyanoimidazole (DCI) as activator. The phosphoropiperidates
29–32 were obtained beforehand from unprotected NMPs via a redox condensation involving
triphenylphosphine and 2,2′-dithiodianiline (Scheme 14) [66].Molecules 2019, 24, x 11 of 27 
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to Np4N. This methodology was also adapted to the synthesis of nucleotides with a higher number 
of phosphate groups (such as Np5N), using inorganic triphosphate instead of pyrophosphate.  
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As shown in Scheme 15, the reaction of nucleoside 5′-phosphoropiperidates with the
tri-n-butylammonium salts of nucleotides (NMPs, NDPs, NTPs) in the presence of 2.5–3 equiv of DCI, led
to the formation of more than 20 symmetrical or mixed dinucleoside di-, tri- and tetraphosphates [67,68].
Yields of NpnN’s dropped significantly along with the increase of the polyphosphate chain.
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Among the polar aprotic solvents, N-methylpyrrolidone exhibited the best solvency for the
tri-n-butylammonium salts of both NDPs and NTPs, while DMF was preferred for NMPs. Considering
the cost of nucleoside 5′-polyphosphates and their similar chromatography properties with the
products, only 0.5 equiv of NDPs or NTPs were used. This P(V) method is an efficient one, allowing
access to a large range of NpnNs (n = 2–4) in short reaction times and good to high isolated yields.

Symmetrical NpnN (n = 3–5) could also be obtained by reacting nucleoside 5′-phosphorop
iperidates with sub-stœchiometric amounts (0.35–0.4 equiv) of inorganic phosphorylating agents in
the presence of excess DCI [69]. In this alternative protocol, bis(tetra-n-butylammonium) hydrogen
phosphate, tris(tetra-n-butylammonium) hydrogen pyrophosphate or tris(tetra-n-butyl-ammonium)
dihydrogen triphosphate were used instead of a nucleotide (Scheme 16). 31P NMR tracking experiments
showed that pyrophosphate reacts first with the starting phosphoropiperidate to form an NTP, and
then, with the remaining phosphoropiperidate to give rise to Np4N. This methodology was also
adapted to the synthesis of nucleotides with a higher number of phosphate groups (such as Np5N),
using inorganic triphosphate instead of pyrophosphate.
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Interestingly, this strategy can be adapted to the synthesis of nucleotide analogues such
as dinucleoside P2,P3-(dihalo)methylene tetraphosphates, by replacing pyrophosphate with
bisphosphonate reagents.

4. Synthesis Based on P(III) Chemistry

Several methods involve P(III) reagents to provide phosphite or phosphoramidite intermediates,
which are further oxidized to P(V). Initially developped for the synthesis of oligonucleotides, they
have been adapted to dinucleotides by introducing minor modifications in the last steps of the reaction
sequences. Because of the high reactivity of P(III) species, most of these approaches require the use of
N-, and O-protecting groups on the starting nucleos(t)ides and strictly anhydrous conditions.

4.1. Synthesis via a Salicylphosphite Intermediate

This strategy is based on the well-known Ludwig–Eckstein procedure for NTP synthesis [70],
and allows the one-pot preparation of symmetric dinucleoside tetra- and pentaphosphates
starting from protected nucleosides [71]. Phosphitylation of triacetyl adenosine 33 with
2-chloro-4H-l,3,2-benzo-dioxaphosphorin-4-one (salicylchlorophosphite) led to intermediate 34, then
addition of bis(tri-n-butylammonium) pyrophosphate gave rise to the cyclic intermediate P(III)–P(V)
35 (Scheme 17). Oxidation to the cyclic trimetaphosphate, intermediate 36, followed by reaction with
adenosine 5′-monophosphate (AMP) or adenosine 5′-diphosphate (ADP) in dry DMF in the presence of
ZnCl2 as catalyst, afforded 37 and 38, respectively. Removal of the acetyl groups under basic conditions,
ion exchange to remove the Zn2+ cations and purification led to Ap4A and Ap5A as ammonium salts.
It should be noted that symmetrical Ap4A was obtained in much better yield than Ap5A.
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The guanosine derivatives Gp4G and Ap4G were prepared in a similar manner, starting from
2′,3′-O-2-N-triacetylguanosine 39 (Scheme 18).
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4.2. Synthesis via a Cyclosaligenyl Phosphite Intermediate

This strategy initially developed by Meier and co-workers for the synthesis of prodrugs of
nucleotides, called cycloSal (for cyclosaligenyl) pronucleotides [72,73], has been applied to the synthesis
of nucleoside 5′-polyphosphates, sugar nucleotides and mixed dinucleotides [74,75]. Phosphochloridite
40 was prepared from the corresponding salicyl alcohol and phosphorus trichloride (Scheme 19).
Reaction with 3′-O-acetylthymidine followed by oxidation with oxone (2 KHSO5.KHSO4.K2SO4)
afforded 5-nitro-cycloSal-3′-O-acetylthymidine phosphotriester 41.
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This phosphotriester was too sensitive to moisture to be purified by chromatography. Therefore,
the crude material (obtained after liquid-liquid extraction) was directly engaged in the next step, i.e.,
reaction with rigorously dried tetra-n-butylammonium UMP and tris(tetra-n-butylammonium) ATP in
DMF (Scheme 20). After removal of the acetyl group and ion-exchange (n-NBu4

+ to NH4
+), Up2T and

Ap4T were obtained in their ammonium form.
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Scheme 20. Synthesis of the dinucleotides Up2T and Ap4T [74].

This approach has been adapted to solid phase [76]. The key intermediates of the synthesis are
the 5′-substituted cycloSal nucleotides linked to a polystyrene support through the 3′-OH group and a
succinyl linker (42–44, Figure 5).
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4.3. Synthesis via a Supported Phosphite Intermediate 

Another P(III) strategy combined with a solid-phase approach was reported by Ahmadibeni and 
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Figure 5. Structure of the supported nucleoside phosphotriesters [76].

Preparation of these intermediates started with the anchoring of the succinyl linker
to the 5′-O-(4,4′-dimethoxytrityl)-protected nucleosides, and removal of the protecting group
with trifluoroacetic acid (TFA). The 3′-O-succinylnucleosides were then treated with the
appropriate chlorophosphites, followed by oxidation with oxone, to give rise to compounds
45–47 (Scheme 21). Coupling with the aminomethyl polystyrene support was achieved using
1-hydroxybenzotriazole (HOBt) and N,N’-diisopropylcarbodiimide (DIC) as coupling agents.
Alternatively, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) and
4-ethylmorpholine may be used. Conversion to Up2T and Up2dA was carried out by adding a large
excess of tetra-n-butylammonium UMP, and then cleavage under basic conditions (70–78% purity, no
overall yield was given). Compared to the solution phase synthesis, this supported approach is less
straightforward and involves multiple steps.
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4.3. Synthesis via a Supported Phosphite Intermediate

Another P(III) strategy combined with a solid-phase approach was reported by Ahmadibeni and
Parang [77]. Using these polymer-bound phosphitylating reagents, symmetrical 5‘,5‘-dinucleoside
mono, di, tri, and tetraphosphates were prepared. Compounds 48–51 were obtained in 2 to 5 steps
starting from phosphorus trichloride (Figure 6). Coupling with aminomethyl polystyrene resin-bound
p-acetoxybenzyl alcohol yielded four classes of supported-phosphitylating reagents 52–55 (Figure 6).
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These supported reagents were reacted with unprotected nucleosides (e.g., thymidine,
adenosine, cytidine, inosine or the analogue 3′-azido-3′-deoxythymidine) in the presence of
5-(ethylthio)-1H-tetrazole to afford compounds 56–59 (Scheme 22). Polymer-bound nucleotides
underwent oxidation with tert-butyl hydroperoxide to 60–63, then removal of the cyanoethoxy groups
with 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) was performed. Acidic treatment of 60 and 64–66 gave
rise to the corresponding symmetrical dinucleotides in 59–78% yields starting from the supported
reagents 52–55.
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This strategy allowed the synthesis of symmetrical dinucleotides starting from unprotected
nucleosides without the need to purify the intermediates. It also offers the advantage of facile recovery
of final products by filtration (trapped linkers on the resins). However, it requires the multistep
synthesis of the supported polyphosphite reagents. It should be highlighted that part of this work
could not be reproduced by others [78].

4.4. Synthesis via a 5′-H-Phosphonate Intermediate

This one-pot strategy developed by Sun et al. [79], and based on their previous work on the synthesis
of nucleoside triphosphates [80], involves the formation of a pyridinium phosphoramidate intermediate
starting from a nucleoside 5′-H-phosphonate monoester. Nucleoside 5′-H-phosphonate monoesters
67–70 were obtained from 2′,3′-O-isopropylidene ribonucleosides 71–74 using diphenylphosphite
as a reagent (Scheme 23). Then, removal of the isopropylidene group with aqueous TFA afforded
5′-H-phosphonate monoesters 75–78 in yields ranging from 68% to 82% over two steps.
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H-phosphonates were silylated with trimethylsilyl chloride (TMSCl) in pyridine, and in situ
oxidized with iodine to generate the highly reactive zwitterionic pyridinium phosphoramidate
intermediates 79–82 (Scheme 24). Indeed, even trace amounts of water may result in the formation of
polyphosphate by-products. The authors hypothesized that if 50% of the phosphoramidate intermediate
could be hydrolyzed with precise control, NMP generated in situ would react with the remaining
phosphoramidate to afford Np2N as a major product. Accordingly, hydrolysis and coupling steps
were optimized using 31P NMR tracking experiments and accomplished by two sequential additions
of H2O in DMF. After purification and ion exchange, symmetrical dinucleoside diphosphates sodium
salts were obtained in 68–91% yields starting from the nucleoside 5′-H-phosphonates. Advantages of
this method are the short reaction time, simple purification procedure and high yields. However, it
requires the preliminary synthesis of the H-phosphonate starting materials.
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4.5. Synthesis via a Phosphoramidite Intermediate

In 2015, the Jessen research group developed a very efficient strategy based on an iterative
phosphoramidite approach to access nucleoside 5′-polyphosphates [81,82] and some derivatives [83].
The phosphoanhydride bond is formed by coupling a phosphoramidite (the donor) to a phosphate (the
acceptor). In contrast to the other P(III) methods, all steps were performed under ambient conditions,
i.e., in open flasks and using non-dried solvents. Regarding of the synthesis of dinucleotides,
2′,3′-O-diacetyl uridine 83 was treated with phosphorodiamidite 84 in the presence of 1H-tetrazole to
afford phosphoramidite 85 (Scheme 25). Addition of the tetra-n-butylammonium salt of UMP and
DCI, followed by oxidation with mCPBA, treatment with piperidine, and cleavage of the acetyl groups
under basic conditions, gave rise to Up2U as a mixed piperidinium/tetra-n-butylammonium salt. The
mixed dinucleotide Ap4U was also obtained by using the tetra-n-butylammonium salt of ATP and
5-ethylthio-1H-tetrazole (ETT) as an activator in the second step of the reaction (Scheme 25). It should
be noted that these experiments were performed on a small scale (10 mg).
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Symmetrical NpnNs (n = 3, 5, 7) could also be accessed via chemoselective homologative
dimerization of two phosphate monoesters with phosphorodiamidites [84]. The general strategy for
the synthesis of dinucleoside triphosphates is shown in Figure 7. First, phosphordiamidites 86 and 87
(donors) were coupled with a NMP (the acceptor), affording terminal mixed phosphoric anhydride
phosphoramidites 88–89 as unstable intermediates. Reaction with another phosphate monoester
resulted in the formation of 90 containing a PV–PIII–PV bridge, which was then oxidized to yield 91.
The corresponding Np3N was obtained after a final deprotection step.
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The tetra-n-butylammonium salts of the canonical nucleoside 5′-monophosphates were treated
in DMF with 9-fluorenylmethyl-N,N,N’,N’-tetraalkyl phosphorodiamidites 86–87 in the presence of
ETT, followed by oxidation with mCPBA (Scheme 26). Progress of the reaction was monitored by 31P
NMR. The Fm-protected intermediates were isolated by precipitation with Et2O/hexane, treated with
piperidine, and purified by anion exchange chromatography to isolate the symmetrical dinucleoside
triphosphates as ammonium salts in good yields.
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This methodology was applied to the synthesis of symmetrical dinucleoside penta- and
heptaphosphates by using as acceptor a NDP or a NTP, respectively. However, due to the water-sensivity
of the intermediates, reactions had to be performed under anhydrous conditions, with a shorter reaction
time and low temperature (coupling with ETT 30 s at 0 ◦C, oxidation 5 min at 0 ◦C). Accordingly,
Ap5A and Ap7A were obtained in 50% and 18% yields, respectively. The chemoselective aspect of this
method is a great advantage as it allows to prevent the use of nucleoside protecting groups. Compared
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to other procedures using P(III) chemistry, it offers attractive features, notably these rapid reactions can
be run under ambient conditions.

5. Green Chemistry Approaches

Most of the reported methods present drawbacks, such as the use of non-volatile and toxic solvents
(DMF, pyridine, N-methylpyrrolidone), high sensitivity to moisture, preparation of substrates or
phosphorus reagents with lipophilic counterions due to solubility issues in organic media, anhydrous
conditions (i.e., dry reagents and solvents), fastidious purification and possibly prior synthesis of
the activated nucleotide substrates. An ideal procedure would meet the following requirements:
Applicable to a wide range of substrates where protecting groups are not necessary, and giving rise to
the products in short time and high yields.

In 2017, our research group reported a one-pot synthesis, in water medium, of nucleoside
5′-polyphosphates and dinucleotides starting from the corresponding NMPs [55,56]. This method uses
2-chloro-1,3-dimethylimidazolinium hexafluorophosphate (DMP) and imidazole as coupling reagents
to activate the NMP into their phosphorimidazolides. Dinucleoside diphosphates were obtained by
self-dimerization of the NMPs (Scheme 27).
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Our work originated from the small-scale synthesis of NDP-sugars described by Tanaka et
al. [85]. The authors performed the coupling of a sugar-1-phosphate with a nucleotide in D2O, using
2-chloro-1,3-dimethylimidazolinium chloride (DMC) and imidazole (Scheme 28). Based on 1H and 31P
NMR spectroscopies, the reaction was shown to proceed via a 2-imidazolyl-1,3-dimethylimidazolinium
chloride intermediate 92, formed in situ by reaction of DMC and imidazole (Scheme 28). This
key intermediate was able to activate an NMP into its corresponding phosphorimidazolide 93 (via
intermediate 94), which then reacted with a sugar-1-phosphate salt to form a sugar nucleotide.
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The main advantage of these reactions, which occur in D2O [85] or in H2O/CH3CN [55,56]
instead of the usual organic solvents, is that the NMPs are used in their commercially available and
water-soluble forms, i.e., sodium and potassium salts. This greatly simplifies the handling of the
reaction. Moreover, protecting groups on the nucleotide are not required and no carbonation of
ribonucleotides are observed, in contrast to the use of CDI.

Alternatively, mechanochemistry has emerged in the field of nucleosides and, to a lesser extent,
nucleotides [86]. This technique enables solid/solid reactions through mechanical grinding under
solvent-free conditions [87–91]. In 2011, Ravalico et al. reported the mechanosynthesis of dinucleotides,
namely ApnA (with n = 2–4), Ap2dT and nicotinamide adenine dinucleotide (NAD+), starting from
adenosine 5′-phosphoromorpholidate 2, in the presence of magnesium chloride, 1H-tetrazole as the
acidic promoter and water (Scheme 29) [92]. Although advantageous, this methodology requires the
use of costly reagents, namely tetrazole and the phosphoromorpholidate substrate, the latter may be
prepared beforehand in solution using conventional solution synthesis [45].
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In the course of our investigations on new strategies for phosphoanhydride bond formation, we
also investigated the ball-milling technique [93]. To begin with, activation of UMP was performed
according to the conditions previously reported in water medium (DMP/imidazole) [55,56], without
adding any solvent in a vibratory ball-mill (vbm) at 30 Hz. A complete conversion to Up2U was
obtained within 30 min, suggesting that UMP was activated to its phosphorimidazolide and reacted
promptly with the remaining UMP to form the dimer. Alternatively, we tested the use of CDI, which
has recently gained interest in the field of mechanosynthesis due to the safety of its by-products (i.e.,
imidazole and carbon dioxide), its efficacy in N-acylation reactions and relatively low cost [94–97].
Activation of UMP (acidic form) to the corresponding 5′-phosphorimidazolide 2′,3-carbonate 95 was
complete by grinding, for 1 h at 30 Hz, in the presence of 4 equiv. of CDI and acetonitrile (0.3 µL.mg−1)
as a liquid assistant (Scheme 30). The absence of reactivity observed using the disodium salt of UMP
suggests that the acid form is required to protonate the imidazole of CDI and to facilitate its substitution
by the phosphate monoester. This activation step was applied successfully to several ribonucleotides
and a 2′-deoxyribonucleotide (dTMP).

In the second step, a nucleoside mono, di or triphosphate was added onto the activated NMP
95–96 in order to form the desired DNPs (Scheme 30). Thus, the mixed dinucleoside 5′,5′-diphosphates
were successfully obtained by adding a slight excess of a NMP and a small amount of acetonitrile
(0.6–0.95µL/mg) in the jar, and then ball-milling for 2 h at 30 Hz. Remarkably, the second grinding
step also removed the carbonate protection. The reaction was less efficient with GMP, UDP and ATP,
and, thus, required a larger excess of reagent to form the corresponding dinucleotides Gp2U, Up3U
and Ap4U, respectively. This user-friendly mechanochemical approach only requires a slight excess of
reagents and limits the formation of side products. While isolated yields of symmetrical and mixed
dinucleoside polyphosphates are similar to other approaches, the set-up of the experiments and the
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workup are greatly simplified, saving a considerable amount of time. In addition, compared to the
previously reported mechanochemical synthesis [92], this one-pot two steps reaction starts from NMPs,
which are readily available.
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In addition to their simplicity, the mechanochemical approaches alleviate issues associated with
the low solubility of reagents in solution phase synthesis. Therefore, nucleotides and inorganic salts
can be used in their commercially available sodium or potassium forms.

6. Purification and Characterization

6.1. Purification

In this section, we provide a brief overview of the purification procedures for dinucleotides. Due
to their high polarity, they cannot be separated by normal-phase chromatography like most organic
compounds. In addition, the byproducts or side products formed during synthesis share similar
characteristics, resulting in a challenging separation from the desired compounds. The two main
purification methods, reported in Table 1, use ion-exchange or reverse-phase (RP) chromatography.

Table 1. Main methods to isolate dinucleotides.

Types of Chromatography Eluants References

Anion-exchange
DEAE-Sephadex® 0.02 M TEAB, pH 8; 10% ACN [54]

TOYOPEARL® DEAE-650M 0.2 M TEAB, pH 8; 10% ACN [54]
DEAE-Sephadex® Gradient of aq. NH4HCO3 [67,69]

Q Sepharose® Fast Flow Gradient of aq. NH4HCO3 [83,84]
DEAE Sepharose® Fast Flow Gradient of aq. NH4HCO3 [83,84]

C-18 reverse-phase
HPLC 0.01 M NH4HCO2, pH 4, 50% MeOH [46]

Semi-preparative HPLC TEAAc pH 7 or 9; 6–12% ACN [59,60,64]
Preparative HPLC 0.1 M NH4HCO3; ACN [71]
Preparative HPLC TEAB pH 7.8; 65% ACN [92]

RP-18 silica gel column Water [74]
RP-18 silica gel column 0.1 M TEAB, pH 7.5; 20% ACN [55,56]
RP-18 silica gel column 0.1 M TEAAc, pH 7; 5–10% ACN [93]

Gel filtration
Sephadex® LH-20 Deionized water [79]

The first type of ion-exchange support is positively charged, such as diethylaminoethyl (DEAE)
Sephadex, and allows the chemical species to elute according to their number of charges. Elution is often
performed using a gradient of triethylammonium hydrogen carbonate (TEAB) or ammonium hydrogen
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carbonate (NH4HCO3) buffers. Regarding C18 reverse-phase chromatography, either preparative or
semi-preparative high pressure liquid chromatography (HPLC) or chromatography on RP-18 silica
gel may be used. Compounds are often eluted using a gradient from an aqueous buffered solution,
such as triethylammonium acetate (TEAAc) or TEAB, to acetonitrile or methanol. Alternatively, gel
filtration was described for the purification of symmetrical Np2N. Then, the samples are usually
freeze-dried and converted to their sodium form by ion exchange using a Dowex-50W-Na+ resin.
The fact that purification is a time-consuming step is one of the reasons that pushed some research
groups to develop solid phase strategies [76,77]. Indeed, those methods were designed in order to
simplify purification of the final products, which can be collected by simple filtration. However, the
recovered materials showed moderate purity and an additional purification step was required [76].
Consequently, solution-phase approaches are still predominant.

6.2. Physico-Chemical Properties

NMR, UV spectroscopy, and mass spectrometry (MS) are the main tools for the analysis of
dinucleotides. Since the sugar and the phosphate moieties have no significant absorption above 230 nm,
dinucleotides exhibit UV absorption profiles similar to those of their parent nucleosides with λmax
values close to 260 nm [1]. MS analysis of nucleotides and derivatives such as dinucleotides has been
extensively reviewed by Banoub et al. [98]. Alternatively, 31P NMR is a very convenient tool to monitor
reaction courses, characterize reaction intermediates, and study the conformation of dinucleotides
and final compounds [1,50]. The chemical shift (δ) for most endogenous dinucleotides covers −8 to
−24 ppm, and exhibits pH and counter ion dependence [1]. Table 2 summarizes the literature data
for representative NpN (n =1–7). In 1H-decoupled 31P NMR, the phosphorus atoms closest to the
nucleosides are characterized by a singlet at approximately −10 ppm, while the phosphorus atoms
inside the polyphosphate chain exhibit resonance signals around −22 ppm.

Table 2. 31P Chemical shift ranges of dinucleoside polyphosphates in D2O.

NpnN δ Ranges References

Np2N’ 1 singlet (P1 + P2) from −9.6 to −11.5 ppm [47,49,50,53,56,60,64,67,74,76,77,79,83,93]

Np3N 1 doublet (P1 + P3) from −9.2 to −11.7 ppm
1 triplet (P2) from −21.0 to −23.4 ppm

[47,49,50,54,60,64,67,69,84,93]

Np4N 1 multiplet or 1 broad singlet or 1 doublet
(P1 + P4) from −8.8 to −11.5 ppm [47,49,50,54,60,64,67,69,71,74,93]

1 multiplet or 1 br singlet or 1 doublet
(P2 + P3) from −20.6 to −23.1 ppm

Np5N 1 multiplet or 1 br singlet or 1 doublet
(P1 + P5) from −8.7 to −11.4 ppm [49,50,59,69,71,84]

1 multiplet or 1 br singlet or 1 doublet
(P2 + P3 + P4) from −20.2 to −22.5 ppm

Np6N 1 doublet at −10.1 ppm (P1 + P6)
1 multiplet at −21.7 ppm (P 2+ P3 + P4 + P5)

[49]

Np7N 1 broad singlet or 1 doublet from −10.1 to
−11.6 ppm (P1 + P7) [49,84]

1 multiplet from −21.7 to −23.5 ppm
(P2 + P3 + P4 + P5 + P6)

Interestingly, the study of dinucleotides using NMR techniques (1H, 13C and 31P) can determine the
conformation (syn/anti, sugar puckering), nucleobase properties (tautomerism, H-bonds and π-stacking
interactions), as well as the anomeric α/β configuration. Such data are crucial for understanding the
structure–activity relationship of either natural or synthetic dinucleotides as enzyme inhibitors and
receptor ligands, and the design of potent therapeutic agents based on a dinucleotide scaffold. In this
regard, Stern et al. have performed conformational studies on physiologically active NpnN′ sodium
salts (N = A, G, U, C; N′ = A, G, U, C; n = 2–5) in neutral aqueous solution, using NMR and computational
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techniques [50,98]. While no predominant conformation was observed for the ribose moiety in any
of the studied dinucleotides, natural dinucleoside polyphosphates were more frequently found in a
folded (stacked) rather than an extended conformation. Purine dinucleotides showed greater stacking
interactions than pyrimidine dinucleotides. In addition, dinucleotides with longer phosphate chains
were found to have weaker stacking interactions. Crystal structures of Ap4A sodium salt [99], and some
dinucleotides bound to kinases or hydrolases are available [100,101]. In protein-bound dinucleotides,
the polyphosphate chain adopts various conformations: extended [100–103], S-shaped [101] or
folded [100]. In some cases, the protein-bound dinucleotides coordinate with a Mg2+ ion.

Finally, Chen and Kohler investigated the dynamics of excited electronic states formed by UV
excitation of the several diadenosine polyphosphates by femtosecond transient absorption (TA)
spectroscopy [104]. They found that the excimer states seen in TA experiments on nucleobase dimers
are only observed in π-stacked conformations, but the lifetimes of these states are insensitive to how
the stacked bases are oriented.

7. Conclusions

Naturally occurring dinucleoside 5′,5′-polyphosphates are involved in a variety of cellular
processes. Among them, symmetrical purine-containing dinucleotides are the most known
representatives, whereas pyrimidine-containing and mixed derivatives are still intensively studied.
Therefore, the development of synthetic methods required to obtain these compounds in few steps,
good yields, high purity and comfortable amounts generated interest from the chemists and remains a
field of intensive research. Herein, we have focused our attention on the synthesis of dinucleoside
5′,5′-polyphosphates, either symmetrical or mixed, and including non-modified pyrophosphate bonds.
These methods may involve P(III) and/or P(V) intermediates and solution-phase or supported chemistry.
P(V) synthetic approaches are usually based on the activation of a 5′-nucleotide using inexpensive
reagents but require the conversion of the substrates, as well as the phosphate reactants, into the
corresponding tri- or tetra-alkyl salts due to solubility issues. P(III) synthetic approaches are often
effective processes. However, the presence of protecting groups on the nucleoside is often mandatory,
thus increasing the overall number of steps. In most cases, strictly anhydrous conditions are essential
and the length of the poly-phosphate chain affects the yields of the synthesis. Recently, environmental
friendly alternatives were investigated and may constitute an area of substantial and growing interest
for the preparation of these derivatives in the coming years.
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