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Abstract: The article presents a research in the field of complex sensing, detection, and recovery of
communications networks applications and hardware, in case of failures, maloperations, or unau-
thorized intrusions. A case study, based on Davis AI engine operation versus human maintenance
operation is performed on the efficiency of artificial intelligence agents in detecting faulty operation,
in the context of growing complexity of communications networks, and the perspective of future
development of internet of things, big data, smart cities, and connected vehicles. (*). In the second
part of the article, a new solution is proposed for the detection of applications faults or unauthorized
intrusions in traffic of communications networks. The first objective of the proposed method is
to propose an approach for predicting time series. This approach is based on a multi-resolution
decomposition of the signals employing the undecimate wavelet transform (UWT). The second
approach for assessing traffic flow is based on the analysis of long-range dependence (LRD) (for this
case, a long-term dependence). Estimating the degree of long-range dependence is performed by
estimating the Hurst parameter of the analyzed time series. This is a relatively new statistical concept
in communications traffic analysis and can be implemented using UWT. This property has important
implications for network performance, design, and sizing. The presence of long-range dependency in
network traffic is assumed to have a significant impact on network performance, and the occurrence
of LRD can be the result of faults that occur during certain periods. The strategy chosen for this
purpose is based on long-term dependence on traffic, and for the prediction of faults occurrence, a
predictive control model (MPC) is proposed, combined with a neural network with radial function
(RBF). It is demonstrated via simulations that, in the case of communications traffic, time location is
the most important feature of the proposed algorithm.

Keywords: software sensing; preventive failure maintenance; Apdex performance index; intelligent
agent; wavelet decomposition; undecimate wavelet transform; Hurst exponent

1. Introduction

With the rapid growth of the communications networks and their large involvement
in applications such as internet of things, big data, smart cities, and connected vehicles,
the importance of these functional components becomes critical, and the need of their
resilience also increases rapidly. Traditionally, faults in the communications networks are
approached manually as a large part of network management activities, but the continuous
increase in networks’ complexity consequently leads to more demanding and intensive
network management activities; thus, the human component needs to be assisted or sup-
ported by automated processes of detection and fault management. Expert systems have
been implemented in many applications, including fault management, but sometimes the
complexity of applications prevents an effective use of these solutions. Moreover, in a
predictive maintenance policy, there is also an increased need of automated processes to
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detect applications overloads, which does not represent a fault but may trigger malfunc-
tions of different components of a network or specific service, or lower response times.
In large geographically deployed systems including communications networks, such as
smart cities, or connected vehicles, several services are critical, involving zero tolerance
in delayed messaging. According to these reasons, we believe that a flexible solution
for application monitoring in a complex network, by using software detection and being
capable of learning behavior of the different components may address the specific problems
of resilience required by the preventive maintenance. Automation of such activities shall
be assisted by machine learning or other artificial intelligence technologies. The benefit
will be the ability to produce records of faults and solutions evolution over time, helping
designers to enhance the network structure, modules, and applications. Below are several
envisaged tasks regarding new solutions performed:

• ability to operate with large amounts of new and dynamic data;
• ability to enhance performance by learning from experience;
• ability to accept scalability with respect to information types, domains, and structures;
• ability to be friendly with modularity, both in hardware and software, requiring

minimal maintenance activities when the domain knowledge changes;
• ability to use new information when performing correlation between faults and remote

application monitoring;
• ability to produce intelligent alerting for the on-call administrator.

Considering the above-mentioned directions, the objectives of this work include the
following:

• to assess the basic elements that are to be taken into consideration when develop-
ing a more complex structure for the fault maintenance system (FMS), based on a
hierarchical structure of intelligent agents;

• to analyze a typical case study, taken from a real mobile communications network
operation, in order to estimate the efficiency of AI engines in a constantly monitoring
level of service of applications and abnormal behavior;

• to propose a new approach in developing and structuring the AI engines (or agents)
for the FMS of a communications network in order to cope with continuous growth of
complexity and variety of functional components and applications, easing the work of
human operators.

Our proposal for the detection of applications faults (or unauthorized intrusions)
in the traffic of communications networks is based on the analysis of traffic long-range
dependence. The estimation of the long-term degree of dependence is performed by
estimating the Hurst parameter of the time series analyzed by decomposing undecimate
wavelet multiresolution.

Unlike the discrete wavelet transform (DWT), which reduces the sampling of approx-
imation coefficients and detail coefficients at each decomposition level, the undecimate
wavelet transform does not incorporate downward sampling operations. Thus, the ap-
proximation coefficients and the detail coefficients at each level have the same length
as the original signal. UWT also exemplifies the coefficients of low-pass and high-pass
filters at each level. The sampling operation is equivalent to the expansion of the waves.
The resolution of the UWT coefficients decreases with increasing level of decomposition.
This association between the UWT and the Hurst parameter is a relatively new statistical
concept in communications traffic analysis. To achieve the algorithm, we started from the
following hypothesis: an observed time series is generally considered to be decomposed
into a signal, corresponding to the state of a process that describes the system of interest
and noise. For time series dominated by stochastic properties, the Hurst parameter is
a simple means to characterize the dependence of observations separated in time, and
as a reference we associate the signal corresponding to the traffic of a communications
network as white noise. The presence of LRD in network traffic has a significant impact on
network performance, and the occurrence of LRD may be the result of anomalies that occur
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during certain periods. To control the proper functioning of a communications network,
a predictive control model is proposed, based on a neural network of a radial function
type (MPC-RBF), which employs the results obtained by decomposing an undecimated
wavelet and calculating the Hurst parameter. For training the RBF network, the random
input-output signals of the MPC are used, because an important problem in building the
neural network is to obtain an optimal training, which must improve the generalization
and reduce the necessary number of training samples. The MPC-RBF model is used to
estimate the future behavior of the communications network. Table 1 presents applications
of the wavelet transform for the analysis of traffic communications.

Table 1. Applications of the wavelet transform for the analysis of traffic in the communications
networks.

Crt.no. Monitored Application Wavelet Transform Ref.

1 Network traffic anomaly detection DWT [1]

2 Packet length detection DWT [2]

3 Network intrusion detection DWT [3]

4 Cellular metric smoothing DoM, Wavelet [4]

5 Degradation identification FFT [5]

6 Traffic identification Wavelet [6]

7 Level prediction FFT [7]

As shown in Table 1, there are no references in the literature on the use of the undeci-
mated wavelet transform in the analysis of network communications traffic. The correlation
of the UWT decomposition with Hurst parameter also represent a novelty in this field.

It has been demonstrated via simulations that, in the case of communications traffic,
time location is the most important feature of the proposed algorithm.

All the continuously evolving requirements of the communications networks induce
the idea that a human-operated maintenance service tends to become more difficult, there-
fore there is a need of involvement of an automated, artificial intelligence-based process.
The remaining part of this paper is structured as follows: Next, Section 2 is dedicated
to a study on similar state-of-art work, Section 3 performs an evaluation on the existing
instruments for online applications and faults management, Section 4 is dedicated to a case
study on the efficiency of FMS automation in a mobile communications network, Section 5
is a proposed solution, and finally, conclusions.

2. Related Work

Studies in the domain of preventive maintenance came into actuality when the com-
plexity of communications networks increased significantly, and the transition to digital,
static switching replaced the traditional, relay-dependency public switched telephone
networks. Presently, with the growing pressure put by the rapid deployment of IoT, 5G,
and big data technologies, an increased number of applications need specific requirements
for communications, including connected vehicles, smart cities, green energy applications,
e-services, etc. There are many studies in this area, and numerous solutions have been pro-
posed, developed, and tested. However, the research is still open in this direction and there
are difficult requirements, sometimes contradictory, that must be satisfied. In dense urban
areas, many devices need permanent, high-responsive wireless connection to the internet
as there are many sensors. Access points and the communications channels are in high
demand, in terms of link reliability, speed, latency and bandwidth. The communications
infrastructure is required to be highly available, with similar requirements for robustness,
and resilience. The research in this direction is promising and growing, having the pur-
pose of increasing overall experiences in network fault management. The authors of [8]
propose a dedicated flow of fault management consisting of alarm detection, customer
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satisfaction data collection (regarding the immediate action on the alarm), alarm filtering
and correlation (classification into physical or software), fault diagnosis via analysis and
testing, correction plan elaboration, alarm recovery verification, and recording features
(timestamp for detection, recovery, or other). They propose the classification of alarms
into two groups, physical and logical. They offer solutions such as neural networks or
bayesian belief networks filtering and other artificial intelligence-based solutions to handle
the detection of faults. A condition monitoring subsystem combined with structural health
solutions succeeded by averaging techniques and the Daubechies wavelet for eliminating
HF disturbances are evaluated in [9] for preventive maintenance, followed by denoising
and compression based on discrete wavelet transform (DWT). The process of locating
a network fault is a difficult task and several solutions are also shown in this direction
in [10]: definition and storage of fault isolation specific rules, layered stack of rules, network
configuration database for reconfiguring alternate routes with level of service monitoring,
followed by decisions regarding the healing methods. The same attention is given in [11] on
the faults of a system, signals’ analysis, and artificial neural networks (ANNs) based meth-
ods by employing transient data extracted from the fault voltage and current waveforms
for recovering a faulty energy supplying system. Chang C-W et Co. [12] consider a study
on the artificial intelligence algorithms used in smart machine tools’ fault management
classifying and presenting conclusions of over 160 scientific works in this domain. An
interesting solution related to a centralized fault management system for 6LoWPAN WSN
(IPv6 over low-power wireless personal area network) is presented in [13], based on a two
fault detection levels approach: a local level, based on sensors mounted in the network and
employing statistical methods, and a second level, processed by the base station with the
help of multi-layer perceptron-type artificial neural networks (ANN) classifiers. These are
presented in a comparative manner, both centralized and decentralized approaches for fault
management. Fault management of cellular communications networks is considered by R.
Shaffin et al. [14], the authors present their opinion on the difficulty of the introduction of
artificial intelligence in 5G and next generation networks, with the purpose of solving major
technical barriers in terms of performance, robustness, and growing complexity. They
propose the use of specific KPIs (key performance indicators) consisting of performance
management (PM) counters sent periodically, for monitoring-specific processes. In the
field of image processing, which becomes more attractive for different domains, work [15]
proposes a DWC—mixed hardware and software replica (duplication) with comparison
and triple modular redundancy (TMR) to obtain higher degrees of fault detection and fault
tolerance. Ref. [16] describes the usage of ANNs for early detection of failures in power
systems. Two types of ANNs are employed: back propagation (BP) and genetic algorithm
(GA) for early fault detection (EFD). An interesting work has been found in [17], in which
T. Chalermarrewong, S. See, and T. Achalakul propose a combination of two concepts,
prediction and migration, as a more efficient solution for emphasizing the system’s degree
of availability, based on a prediction of a node failure and possibility to migrate its job to
another node, applicable for large networks of computers. The authors present the concept
of ARMA, a prediction with an autoregressive-moving-average-model. The paper focuses
on the possibility to predict a failure of a datacenter with monitoring on hardware faults.
For other industrial applications, such as electrical machinery, [18] evaluates different
applications of expert systems (ES), artificial neural networks (ANN), fuzzy logic systems
(FLS), and genetic algorithm (CA) techniques. The authors write that these systems can be
integrated together and with other similar techniques. They focus mainly on four of these
diagnostic tools, artificial neural networks, knowledge-based systems, fuzzy logic sys-
tems, and genetic algorithms designed to work with fault management systems of electric
machinery. In [19], the authors consider the importance of active fault management in au-
tonomous systems. The proposed solution tries to optimize the fault diagnosis procedures
employing sensitivity analysis. It has proven its efficiency in both fault excitation and fault
mitigation in an autonomous system, such as the electrical power train of an autonomous
vehicle. In the same area of interest, connected vehicles represent the future of automotive,
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and work [20] proposes a fault-tolerant cooperative motion planning method for a cloud of
connected vehicles designed to a more flexible driving, thereby promoting the throughput
to reducing congestions. The solution relies on a parallel computation framework, which
enables to keep solving the original goals as much as possible when faults have partially
degraded the vehicle cloud’s work capability. A preliminary fault tolerant distributed
state estimation scheme for complex networks is developed by F. Tedesco, G. Franze, and
A. Cassavola in [21]. A distributed sensors architecture is proposed for network-based
systems with distinct groups of nodes, such as plants, sensors, and computational agents.
The solution is based on the trust that agents form on the quality of the measurements to
select the most appropriate sensors for state estimation. A comparison between different
types of wireless communication technologies suitable for IoT and smart cities is presented
in [22], with emphasis on advantages and disadvantages, including lifespan analysis and
reliability. In work [23] a failure processing algorithm of a power backbone communica-
tions network is proposed, based on state perception and artificial intelligence. The authors
deliver a fault recovery algorithm based on reinforcement learning for a power backbone
communications network service. Cyntia S. Hood and C. Ji [24] focus on the proactive fault
detection processes and conclude that it is possible to use adaptive statistical methods to
detect network faults without using models of specific faults. In the same direction, [25]
describes a dedicated, intelligent, and general fault management service designated for
heterogeneous networks. Here, a centralized fault management system is proposed for
the administration of heterogeneous networks. A tutorial and a best practice study on
solutions for fault and performance management is described in [26] in the domain of
virtual network services running on multiple clouds. Based on a study of over 80 reference
papers, the work introduces the issue of managing the availability and performance of
carrier services using NFV (network function virtualization) spread over a multi-cloud
architecture. Network faults are diagnosticated via data mining procedures in [27], where
a method of automated fault diagnosis is described based on decision trees, rules, and
bayesian classifiers for visualization of network faults. The faults management in complex
transport interacting systems that compose the underground metro infrastructure, based on
machine learning, is evaluated in [28] and in [29], in which the authors present a distributed
intelligent fault management (DIFM) system for communications networks. The solution
is based on a distributed cooperative multi-agent system, with probabilistic networks as
the framework for knowledge representation and evidence inferencing. A solution for
supporting intelligent fault management, and performance operations for communications
networks is described in [30]. Fault management automation via intelligent mobile agents
is analyzed in the paperwork of [31–33], and deep Q-learning for self-organizing networks’
fault management and radio performance improvement is considered in [34]. Similarly, an
online failure diagnosis for cellular networks, based on contextualized indicators is pro-
posed in [35]. Authors of [36] created a survey based on over 100 reference papers on fault
localization techniques for networks of computers and concluded that fault localization has
a high degree of difficulty, resulting from complexity, unreliability, and non-determinism of
communication systems. Fault localization in complex communication systems remains an
open research problem. Similar analysis and solutions are presented in papers [37] to [36],
with focus on cellular networks and wireless sensor networks. The difficult problem of
discovering rules for fault management is addressed by R. Sterritt in [38]. Several authors
propose a layered scheme for the fault management in complex networks, such as those
for IoT [39] and a test scheduling with risk-sensitive criteria for triggering alarms [40].
Finally, for software-defined networking of the fault management is overviewed in [41,42]
and general fault management techniques employing artificial intelligence are considered
in [43,44]. As it can be observed, there is a wide palette of research and direction in this
area, and the field is still open to new approaches, due to its vastity and complexity.

Table 2 summarizes the methods used in the literature for anomaly detection.
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Table 2. A summary of the methods used for fault/anomaly detection.

Application Techniques Short description Ref.

Manual thresholding Entropy
State Machine

Identification degradation
interval using manually

thresholding
[13]

Statistical
thresholding

Average
Probability

Using statistical thresholding
or average of the samples [17,18]

Patterns comparation Clustering
Correlation

Analysis of time-series with
normal/faults patterns [8]

Predictor
ARMA
ARIMA
LSTM

Using predicted metrics and
observed degradation score [19–21]

ML SVM, ANN
Clustering

Training data with
normal/fault patterns and
classification using ANN

[8,12,18]

3. Existing Instruments for Online Applications and Faults Management
3.1. Overview

Management of large networks comprising many elements comes with difficulty,
growing with the extension and diversification of the network. There are both hardware
and software functional components that must be periodically checked for health and work-
load. In a preventive maintenance scenario, algorithms and analyses are to be performed
with the use of key performance indicators, such as level of service, customer satisfac-
tion etc. for software components, or monitoring for temperatures, fan RPM counting,
energy consumption or other health indicators for hardware functional components. As the
structure of the network complicates, due to redundant components (needed to increase
reliability), the procedures also become increasingly sophisticated, rendering manual ad-
ministration a challenging task, potentially impossible, without the benefits of automation.
Several directions of research are opened in the field of artificial intelligence and machine
learning involvement in this direction. Presently, there are several industrial applications
available for economic usage. In the following, a brief survey on these applications and
their advantages and drawbacks:

• WaitListCheck is an effective solution for online application management dedicated
to public housing authorities, that allows:

# online checking of duplicate applications;
# direct communication with applicants;
# timestamping of received information.

• SALESmanago CDP with AI—an application for the management of commercial
activities involving teams:

# contacts management (CRM);
# command center;
# web push notifications;
# anonymous marketing automation;
# machine learning and artificial intelligence marketing;
# additional advanced marketing automation extensions etc.

• Dynatrace—represents a software platform based on components of artificial intelli-
gence, designed to supervise, and optimize applications’ performances and develop-
ment, the infrastructure for information technology, and to monitor and record users
experience for large companies and service providers:

# infrastructure monitoring (hybrid cloud observability, fault domain isolation,
serverless, container, pod, and network);
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# applications and microservices (hybrid cloud distributed tracing, automatic
code-level root-cause and profiling, front and back-end availability and perfor-
mance);

# applications security (run-time vulnerability detection, impact analysis, De-
vSecOps automation);

# business analytics (real-time business insights, impact and conversion, BizDe-
vOps integration and automation;

# cloud automation (ecosystem integration, API programmability);
# Davis AI—automatic mapping of digital ecosystem to create a topology. Col-

lection of information and automatic error recognition and analysis, online
monitoring of data transactions, detection of fault causes and contextual analy-
sis, quantification of business impact.

Such types of applications are meant to ease the maintenance work of a complex
network of mixed hardware and software modules but require an initial training in which
complexity is directly proportional with the complexity of the system and applications.

3.2. Instruments to Determine Efficiency, Availability, and Level of Service (LoS)

The preventive maintenance is a difficult task to be performed by manual operation,
mostly for extensive networks and systems with mixed hardware and software. If there is
a public service, the user satisfaction should be considered regarding the response time of
the requested service. This feature importance increases when critical aspects in messaging
or internet data delivery processes are involved. However, presently several of these
assessments may beneficiate from different types of instruments developed.

From the hardware point of view, in a remote-controlled system, different functional
components may be managed via internet or other communication means, and their
functionality can be checked via dedicated sensors, dedicated software sequences or simply
by answer and response. The service availability in such an extended system is always a
concern of the responsible owning authority, and an agreed measure for it is often a key
performance indicator (KPI), as part of the IT service management. From the hardware
point of view, a component’s availability for a definite period is determined by:

A =
τu

Tm
·100, (1)

Tm = τu + τd (2)

where A represents availability in percents, τu is the period when the hardware component
functioned at full parameters, τd is the period when the component was functioning in
degraded state or not at all, and Tm—interval of interest.

From a service point of view, there is a slight difference in calculation:

A =
Tm − τd

Tm
·100 (3)

where Tm represents an agreed service time. However, a service cannot be categorized as
“not available” if it can still be accessed by someone. It must also be taken into consideration
the satisfaction degree that the user feels when accessing a service in terms of delay, in
which the service is able to respond. From the literature, a tolerated formula for this
quantification is:

A =
τp − τo

τp
·100 (4)

where τp stands for potential interval of time with user satisfaction and τo is total time with
user outages.
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A more raffinate instrument in defining mixed hardware and service availability is the
Application Performance Index (or Apdex (The Apdex Alliance is a group of companies
that collaborated in establishing the Apdex standard)), which is expressed by:

IA =
ns + 0.5·nt + 0·nu

N
, (5)

N = ns + nt + nu. (6)

In the above equations, IA represents the Application Performance Index, which
ranges from 0 to 1, ns is the number of satisfactory service level counts, nt the number of
tolerable service level counts, and nu the number of unsatisfactory service level counts. N
is the total number of samples.

From the applications availability point of view, for determining the impact it has on
the other functional components, we propose a derived formula:

NS =
∑m

i=1 τci + α ∑n
j=1 τnj

T
(7)

T =
m

∑
i=1

τci +
n

∑
j=1

τnj + τc (8)

where NS represents the Index of Non-Satisfactory Performance, m the total number of
failures that produced total loss of service, τci the duration of ith total failure of the service,
n the total number of failures that produced partial loss of service features, τnj the duration
of the jth order failure that produced partial loss of performance, τc total time when
services were 100% available, α a weighting factor, and T the total interval of measure. The
weighting coefficient α is chosen according to the importance of the functional component
or sub-service that has not been functional for the given period of interest.

Considering the level of service (LoS), several criteria are defined for evaluating this
important feature to preventive maintenance in communications [45]: availability, response
time, capacity, capability indicators, support, and reversibility. With the communications
networks involved in smart cities, connected vehicles, and other IoT applications, an
important issue is security. For this sector, the most important KPIs are reliability, authen-
tication, cryptography, security, logging, auditing, vulnerability, and service changing.
Consequently, we consider that the development of an automated process for monitoring
several, if not all these aspects is extremely important for the flawless operation of complex
communications networks involved in IoT. In relationship with equation describing NS,
the weighting coefficient α may be adjusted according to the service it refers to and its
importance in the flow of network functionalities. In Figure 1 is shown the process for
determining Apdex Index.

There are certain applications that make this evaluation process in an automated
manner, presenting graphically the evolution of the application/component service level.
While still widely employed, the Apdex represents a static methodology to determine the
application or system’s level of service. With the extensive grow of complexity, however,
it is expected that this solution may prove insufficient in the near future. Therefore, we
propose to develop this methodology by adding a dynamic feature to it. When analyzing
the reliability of a large system, such as a communications network providing different
types of services, a statistical filtering of failures may help determining main causes
provoking chain failures of different functional components [46–49]. An in-depth analysis
of the triggering event that caused a chain failure of several elements finally inducing a
serious level of service degradation should be useful in preventing such future events.
However, determining correlations between those events may be difficult for manual
processing in extended equipment structures. Therefore, making use of machine learning
in this domain is recommended. The proposed solution comes in line with other, similar
initiatives, presented in the first part of this work.
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4. Case Study—Efficiency of FMS Automation for a Mobile Communications and
Services Provider
4.1. Overview

For this case study, a mobile communications service provider was chosen to evaluate
the efficiency of its FMS and perform some level of service tests. The service provider is
equipped with a specific current Apdex value for each monitored application, a specific
target for the Apdex value, and a specific availability threshold. The availability index is
automatically established according to the time the respective application is up, compared
to the measuring interval. Dynatrace Davis employs AI to monitor logs of applications (by
specific keywords). The following is a list of the correspondent tests performed by Davis
AI:

• analyzing a specific function up to code level:

# Response time (ms),
# Failure rate (%), as shown in Figure 2,
# CPU response time (ms/req), as shown in Figure 3; req: request,
# Throughput (req/min).

• performing database calls;
• outgoing requesting to other applications;
• monitoring the response times across requests during the selected period, including

processors and memory loads;
• performing business impact analysis based on counted dependencies (e.g., impacted

users by a failure, and affected service calls), displaying percentage of functions and
applications requests affected;

• possibility of setting specific tests according to user preferences (by employing auto-
mated bots to perform tasks);

• suggesting failure root cause for the monitored applications, based on time correlations
and analysis of all transactions that consider the impacted components.
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behavior, showing Apdex index, used browser type, errors encountered, and availability
of resources [50–52].
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The availability index is displayed based on Davis AI data and a specific application
is monitored in terms of number of events, unavailability time, availability percentage, and
associated events shown in a synthetic monitoring window (Figure 5). Here it is shown
that a specific application has encountered 10 events in the monitored period, totaling
114 min of unavailability. The availability percentage has variations between 100% and
95.5% (lowest level), with variable durations at the recorded moments of failures. The AI
engine records start and end times of each failure (right side of the figure). The amplitude
of failures is also shown (number of simultaneous events)—the vertical light blue bars.
Thus, the advantage here is that the Davis AI engine monitors both time position and
gravity of the fault (by the number of simultaneous events).
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The processes’ recovery activity, in case of a major failure detection, consists now
in manually checking all possible causes shown in Davis AI information that fed the ap-
plication availability index. This represents a time-consuming process, involving human
resources and several investigations to determine the real cause of the failure. Occasion-
ally, the process can be shortened if the maintenance personnel is instructed with specific
procedures, or there are specific alerts configured on the most known servers holding the
applications. For example, in the case study, based on Davis AI measurements and opera-
tions for four months (from February to May), it resulted in a 99.94% availability (mean
time between failures MTBF = 0.99941550) for a single specific application. However, in the
administration of a complex communications network, there are over 1000 inter-related
applications, and the overall MTBF may suffer from different causalities. Table 3 below
shows availability percentages recorded for top-ten critical applications (as importance) in
the case study by Davis AI, performed for a local communications operator.

For long-term network preventive maintenance purposes, or for improving its reliabil-
ity and resilience, it will be useful to develop an over-imposed AI application to monitor
all failures causes and perform correlations between causes and effects, in order to keep
record of major connections between failures and their effects in network services operation.
Another added value will also be for the understanding of causes that produced a low
availability and Apdex indexes over longer periods of time (at least a week, for example).
This may be an important argument for reporting activities and future improvement of
network resilience.
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Table 3. Analysis of availability as shown by intelligent agent Davis AI.

Crt.no. Monitored Application Availability Index (%)

Total Minutes of
Application’s

Unavailability out of
172,800 (min)

1 A1 99.97 49

2 A2 99.82 313

3 A3 99.15 765

4 A4 99.45 558

5 A5 99.87 228

6 A6 99.91 135

7 A7 99.73 393

8 A8 99.25 731

9 A9 99.42 585

10 A10 99.77 367

4.2. Specific Failure Case Analysis

This case is analyzed for a specific communications’ services provider from Romania.
The diagram in the figure below represents the number of requests per minute recorded for
the specific application. The service is also monitored from the point of view of successful
and failed requests. Figure 6 presents a period with usual service levels (within normal
range). The application is sampled every minute and the number of requests (successful
and unsuccessful, if any) are recorded per minute. The period for which the service levels in
Figure 6 are analyzed is one week, with two cases of failure, which usually fit in the normal
operation threshold. Figure 7 shows a similar period with a major failure, which after the
analysis of the cause that produced it, it appeared that was caused by a planned upgrading
of a hardware component. However, as it can be observed in Figure 7, manually recovering
the failure was time-consuming. In a normal situation, the user-defined monitoring alerts
would have been automatically triggered and consequently sending SMS notifications
to alert the on-call administrator. The administrator would then immediately engage in
solving the issue. However, in the specific case shown in this example, the monitoring alert
was manually configured too high, considering an old customer behavior; the application
monitor was continuously displaying false positive alarms and causing spam. Due to
this specific setting, the alert was acknowledged and disabled from notifications, leaving
an open possibility for an incident to occur and pass unnoticed. This is exactly what
happened (as shown in Figure 7), in which for an entire night the incident was active,
but unacknowledged by the application administrator, causing a much longer period for
service unavailability.
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For determining the loss of service level caused by the incident in this specific case, let
us consider the following equation:

LoSA =
∑m

i ϕi·Nsi −∑n
j ϕj·Nuj

∑t
k ϕk · Nk

(9)

where: LoSA is the level of service for a specific application, ϕi frequency of requests for
the i sample (requests/min), Nsi the number of successful requests that had the frequency,
ϕi, ϕj represents the frequency of requests for unsuccessful sample j (requests/min), Nuj
the number of unsuccessful requests that had the frequency, ϕj, ϕk is the requests number
per observation, and Nk the sample number.

Considering the cases shown above in Figures 6 and 7, the following levels of service
were reached:

• normal operating case: LoSa = 0.957295;
• degraded operating case: LoSa = 0.462295.

The low value of LoS in the second case is due mainly to the high frequency of
unsatisfactory requests over a longer period, caused by disregarding the above-mentioned
alarm. Also, considering a quality factor of services defined by:

Qa =
Ns

Nu
, (10)

we obtain:

• normal operating case: Qa= 0.972973;
• degraded operating case: Qa= 0.823529.

5. The Proposed Approach
5.1. Initial Considerations

To be protected from similar cases, a definition of a new Apdex index is proposed,
taking into consideration the succession of applications that may consequently fail after a
specific application detection of a malfunction has occurred.

We also propose employing an automated self-testing algorithm enabled to perform:

• correlations between failures and applications that have influenced each other by
failures and determining chains of events. This is a process proposed to be performed
by a dedicated, or over-imposed AI feature of the application monitoring. The AI
should observe and learn rule for the evolution of two elements:

# User requests frequency, for selected applications—this event has specific
patterns during night, and other values during daytime. Detection of an
unusual event should occur when this frequency exhibits certain dynamic
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threshold. This dynamic threshold shall be established by the AI via a machine
learning process;

# Threshold of successful user requests versus unsuccessful ones (rate of success);
# Monitoring the number of retries of the same user (frequency of retries).

• at the occurrence of an application failure, tracking the succession of secondary appli-
cations decrease in LoS, if any, and recording;

• automatically issuing of alarms, based on LoS thresholds detection of known ap-
plications, and suggesting possible effects of an eventual failure of the respective
application.

In general, diagnostic methods use the concept of redundancy, which can be of two
types (Figure 8): hardware redundancy and software redundancy.
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Hardware redundancy refers to the ability to compare duplicate signals, generated
by various hardware sources, such as the result of measurements of the same signal
obtained from two or more sensors. The techniques used in this approach are: signal
processing methods (e.g., wavelet transform), limit testing (measurements compared to
various thresholds indicating the presence of an anomaly), use of special sensors (limiting,
designed to measure only certain parameters), and sensors placed in parallel for measuring
the same parameter or using expert systems (based on “IF”- “THEN” rules for detecting an
anomaly). Software (analytical) redundancy, proposed in this research, uses a mathematical
model of the system along with other estimation techniques. In general, this approach does
not require additional hardware resources and is usually more cost-effective compared to
hardware redundancy. Conversely, analytical redundancy is more difficult to implement
because it must ensure a certain degree of robustness in the presence of noise, perturbations
or approximation errors introduced by the mathematical model. If these conditions are
not considered, false alarms may be signaled in the presence of variations in input sizes
or noise. By comparing the estimated values of the analytical model with those of the
measurements obtained from the sensors, it is possible to detect and isolate the failures
that appear in the process. The goal is to notice the difference between the model and the
actual faulty system. The difference between the actual measured output of the process
and the estimated output of the analytical model is called the residue. The residue value is
compared with a threshold that can be either fixed or variable (e.g., adaptive threshold)
after which it is determined whether a failure has occurred in the process.

5.2. Data Processing and Analysis

The goal of this research was to find a solution to the following requirement: Is it pos-
sible to determine the anomalies of functional components exhibiting abnormal operation
in a data network and to estimate their health status, by analyzing the data traffic? This an-



Sensors 2021, 21, 5036 15 of 32

swer to that requirement is important for the design, operation, and failure maintenance of
a network, and it can represent an explanation of why the network performance, measured
in real time, is usually lower than the estimated performance in the design phase.

This concern has guided research toward the use of time series estimation algorithms.
Estimating time series is currently a widespread method in research environments.

One of the major difficulties of the analysis of time series with long lengths (corre-
sponding to a large volume of data) is the great complexity of the calculation. Complexity
of calculations can be reduced by representation using multiresolution decomposition.

Such a representation may be obtained using the wavelet algorithm. The wavelet
transform is used in the analysis of temporal events and involves a low computational
complexity. In recent years, the wavelet transform has been used in many papers to
analyze time series [53–57]. One of the main features of wavelet algorithms is the good
determination of signals in time and space, especially for non-stationary signals, which
have a high dynamic.

This method is based on transformed undecimated wavelet decomposition (UWT)
and statistical time series analysis techniques by calculating the Hurst exponent. Based on
the results obtained, a predictive control model (MPC) structure has been developed, which
is based on a radial function neural network (RBFNN) used for modeling transfer functions
and used for predicting the future behavior of the data network. The model proposed in
this article is considered superior to the classic MPC variant because the RBFNN model is
dynamically performing the real-time update for MPC.

5.2.1. Analyzing Failure Detection with Undecimated Wavelet Transform (UWT)

The wavelet transforms of any signal f (t) defined for any moment of time t ≥ 0 is
defined as [46]:

WTf (σ, τ) =
1√
|σ|

∞∫
−∞

f (t)ψ(σ,τ)(t)dt (11)

where ψ(σ,τ)(t) = 1√
|σ|

ψ
( t−τ

σ

)
with Cψ =

∫ |ψ(u)|
|u| du < +∞. The term σ represents a

scaling factor, while τ is a translation factor. Common ψ(σ,τ)(·) wavelet basis functions are
the Haar wavelet, Symlets wavelet, Daubechies wavelet, and Mexican Hat wavelet [46].
The wavelet analysis algorithm uses threshold after the wavelet decomposition of the data
into high and low frequencies to eliminate the high frequency signal. Anything above the
threshold is eliminated. The final step of wavelet method denoising and multiresolution
decomposition is the reconstruction of the signal. A discrete wavelet transform can be
obtained by discretization of the scaling and translation factors.

Various studies have shown that a discrete wavelet transforms is an efficient math-
ematical method for analyzing network traffic flow signals experiencing transient and
non-stationary phenomena for scale and resolution [58]. However, a decimated wavelet
transforms down-samples the wavelet coefficients by discarding half of the data after each
filtering stage. Furthermore, the decimated wavelet transforms coefficients do not have
the shift insensitivity property down-sampling of signals may possibly lead to the loss of
essential information. By employing the use of an undecimated wavelet transform, the
shift insensitivity property of the coefficients is ensured, and the distortion induced by the
down-sampler is eliminated [59].

The undecimated wavelet transform (UWT) W, using the filter bank of a 1-D signal x0,
leads to a set W =

{
d1, . . . dJ , cJ

}
where dj are the wavelet coefficients at scale and j and

cJ are the scaling coefficient. The transition from one decomposition level to another is
accomplished by [60]:

cj+1[n] =
(

h
(j) ∗ cj

)
[n] = ∑

k
h[k]cj

[
n + 2jk

]
(12)
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dj+1[n] =
(

g(j) ∗ cj

)
[n] = ∑

k
g[k]cj

[
n + 2jk

]
(13)

where (h, g) represents the filter bank, * represents the convolution operation and h(j)[n] =
h[n] if n/2j is an integer, and 0, otherwise. If we use a discrete filter in real-time it will have
the impulse response h[n], h[n] = h[−n], n ∈ Z is its inverse version.

The undecimated wavelet transform is dyadic-orthonormal and provides the multires-
olution analysis. Multiresolution decomposition is based on the multiscale approximation
function.

At each scale level, the scaling function uses translation factors such as:

φj,k(t) = 2−
j
2 φ
(

2−jt− k
)

(14)

The scaling function φj,k(t) is related to the scaling/approximation coefficients cj,k,
while the wavelet function ψj,k(t) given by:

ψj,k(t) = 2−
j
2 ψ
(

2−jt− k
)

(15)

is related to the wavelet/detailed coefficients. The approximation function is defined by
the low-pass filters, and the wavelet function is defined by the high-pass filters.

The decomposition process of network flow traffic signals based on UWT-based MRA
develops as follows: MRA analysis evaluates the signal concerning transient and non-
stationary phenomena, decomposing it into sub-bands. For this research, we have tested
several wavelet functions to determine the function that best approximates communications
traffic for network anomaly detection.

This procedure is presented in Figure 9. The method was implemented in the MATLAB
software environment.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 32 
 

 

stationary phenomena for scale and resolution [58]. However, a decimated wavelet trans-
forms down-samples the wavelet coefficients by discarding half of the data after each fil-
tering stage. Furthermore, the decimated wavelet transforms coefficients do not have the 
shift insensitivity property down-sampling of signals may possibly lead to the loss of es-
sential information. By employing the use of an undecimated wavelet transform, the shift 
insensitivity property of the coefficients is ensured, and the distortion induced by the 
down-sampler is eliminated [59]. 

The undecimated wavelet transform (UWT) 𝑊, using the filter bank of a 1-D signal 𝑥 , leads to a set 𝑊 = {𝑑 , . . . 𝑑 , 𝑐 } where 𝑑  are the wavelet coefficients at scale and 𝑗 
and 𝑐  are the scaling coefficient. The transition from one decomposition level to another 
is accomplished by [60]: 𝑐 [𝑛] = ℎ( ) ∗ 𝑐 [𝑛] = ℎ[𝑘]𝑐 [𝑛 + 2 𝑘] (12)

𝑑 [𝑛] = �̅�( ) ∗ 𝑐 [𝑛] = 𝑔[𝑘] 𝑐 [𝑛 + 2 𝑘] (13)

where (ℎ, 𝑔)  represents the filter bank, * represents the convolution operation and ℎ( )[𝑛] = ℎ[𝑛] if 𝑛/2  is an integer, and 0, otherwise. If we use a discrete filter in real-
time it will have the impulse response ℎ[𝑛],  ℎ[𝑛] = ℎ[−𝑛], 𝑛 ∈ ℤ is its inverse version. 

The undecimated wavelet transform is dyadic-orthonormal and provides the multi-
resolution analysis. Multiresolution decomposition is based on the multiscale approxima-
tion function. 

At each scale level, the scaling function uses translation factors such as: 𝜙 , (𝑡) = 2 𝜙(2 𝑡 − 𝑘)  (14)

The scaling function 𝜙 , (𝑡) is related to the scaling/approximation coefficients 𝑐 , , 
while the wavelet function 𝜓 , (𝑡) given by: 𝜓 , (𝑡) = 2 𝜓(2 𝑡 − 𝑘) (15)

is related to the wavelet/detailed coefficients. The approximation function is defined 
by the low-pass filters, and the wavelet function is defined by the high-pass filters. 

The decomposition process of network flow traffic signals based on UWT-based 
MRA develops as follows: MRA analysis evaluates the signal concerning transient and 
non-stationary phenomena, decomposing it into sub-bands. For this research, we have 
tested several wavelet functions to determine the function that best approximates com-
munications traffic for network anomaly detection. 

This procedure is presented in Figure 9. The method was implemented in the 
MATLAB software environment. 

 
Figure 9. Decomposition multiresolution on four levels. 

The advantage of using UWT 

Figure 9. Decomposition multiresolution on four levels.

The Advantage of Using UWT

The resolution of the UWT coefficients decreases with increasing level of decomposi-
tion, for this reason a maximum of four levels of decomposition was chosen. For example,
if we want to detect discontinuities by locating peaks in coefficients in a signal using level
one decompositions using DWT and UWT, we find that all DWT detail coefficients on
the first level are small, but by applying UWT, we find that the signal discontinuities
on the first level are represented well due to the translation-invariant property. Another
benefit of this transform is improved directional resolution. The near shift invariance and
improved directional selectivity have facilitated excellent results in denoising, fusion, and
other processing applications.

5.2.2. Statistical Time Series Analysis Technique Employing the Hurst Exponent

The Hurst exponent is used in mathematics, especially in the analysis of chaos theory
and in the spectral analysis of signals. Hurst exponent estimation, initially developed
in hydrology, has been applied in fields ranging from biophysics to computer networks.
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However, the modern techniques used for estimation come from mathematics. The Hurst
coefficient and the fractal size are in turn linked by the formula:

D = 2− H (16)

The fractal size indicates the roughness of a surface. A low value Hurst exponent has
a large fractal size and a rough surface while a small Hurst value has a small fractal size
and a smoother surface. The Higuchi method calculates the fractal size of the samples
Hurst exponent. To calculate the fractal size D, the Higuchi method requires a finite set of
observations, using the interval x(1), x(2), . . . , x(N).

This consists in the formation of new waveforms by the interactive selection of dif-
ferent samples with the point starting m and delay factor k and a new one xk

m defined
as follows:

xk
m =

{
x(m), x(m + k), . . . , x

(
m +

[
N −m

k

]
k
)}

(17)

With m and k representing the reference time and the interval time used for the analy-
sis, m = 1, 2, 3, . . . , k, and both k and m being integers. For a temporal interval equal to k,
one gets k sets of a new time series. In our case, the surface is represented by the signal
distribution, and a high value of the Hurst exponent indicates desynchronization. There
are several methods that may be used to estimate the Hurst coefficient: the method of dif-
ferential dispersion, the total dispersion method and the rescaled domain statistics method,
the Higuchi method, the aggregate variance method, and the absolute moment method.

5.2.3. The Method Proposed for Highlighting the Characteristics of Traffic Flow Employing
Hurst Exponent and Multi-Resolution Wavelet Analysis

The proposed approach consists in combining the calculation methods of the Hurst
exponent with the multi-resolution wave analysis. The algorithm follows these steps:

• a recording made during training is imported into the successive MATLAB program;
• the network traffic corresponding signals are extracted;
• the signals corresponding to the channels of interest are selected;
• the decomposition of the waves with multiple resolution is performed for the signals

on each channel, successively using the Daubechies 2, Coiflet 4, and Symlet6 waves,
• for the signals decomposed into sub-components, the Hurst exponent is computed

using Higuchi methods, with the 4th order detail coefficient and the 3rd order
detail coefficient;

• the obtained values of the Hurst exponents are mediated on the number of test
attempts;

• finally, the obtained values of the Hurst exponents are mediated on all records.

5.2.4. Classification Using Radial Basis Function Neuronal Network (RBFNN) Based
Model Predictive Control

For the specific classification in this research, the neural network with basic radial
functions (RBF) predictive control-based model has been employed. Radial function-based
neural networks (RBFs) have received increasing attention lately, due to their advantages.
Compared to the MLP network, which tries to determine the minimum gradient of the
error function, the process of the RBF network involves the approximation of an area in
a multidimensional space that resembles that described by the input data. Considering
this, the performance of neural networks based on radial functions is closely related to
the ability to interpolate test data with data learned in the training stage. An artificial
RBF neural network can respond better to a set of test data if it initially has multiple
training vectors.

The RBF neural network has the following architecture:
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• an input layer (sensory layer) composed of L virtual neurons (i = 0, . . . , L − 1), which
does not perform a signal processing, but only a multiplexing, the actual processing
taking place only in the intermediate layer, and output;

• an intermediate layer with M neurons (j = 0, . . . , M − 1), which implements the
Gaussian activation function:

zj = e−(||X−mj ||2/2σj
2) (18)

• an output layer with N neurons (k = 0 . . . N − 1), which realizes the weighted sum of
the outputs on the intermediate layer

yk = ∑ M−1
j=0 wkjzj + θk (19)

where:

• σj (dispersion) and mj (average) describe centroid (prototypes of inputs);
• X = [x0, x1, . . . , xi, . . . , xL−1], the input vector;
• xi is the value assigned to the neuron i in the input layer, i = 0 . . . L − 1;
• zj is the exit of the neuron j from the hidden layer (intermediate), j = 0 . . . M − 1;
• yk is the output of the neuron k from the output layer, k = 0 . . . N − 1;
• wkj is the share of the connection between the neuron k in the output layer and the

neuron j in the hidden layer (intermediate).

The partitioning of the input space into groups described by dispersion and average
takes place in the hidden layer, while in the output layer the decision of belonging of the
input vector to one of the classes is made. The number of neurons in the input layer is
equal to the size of the input vector. The number of neurons in this layer may be less than
or equal to the number of vectors in the training set. The optimal number of centroid
(hidden layer neurons) is determined experimentally. The number of classes in which the
classification is made sets the number of neurons in the output layer.

The vectors in the training set will designate the averages. It is desirable that the error
on the drive lot is zero. Thus, a system of MxN equations with MxN unknown weights will
be obtained, from which the weights will be determined.

The method of fixed centers (chosen at random) will be employed for the training of
the RBF neural network. The positions of the centers of the functions are chosen randomly
from the set of vectors in the training stage.

RBF Design for Our Proposal

A radial basis function arises naturally in problems of hyper-surface interpolation
and approximation and in problems of learning input and output mappings from given
sets of data. RBF networks usually have only one hidden layer, for which the combination
function is based on the Euclidean distance between the input vector and the weight vector.

The RBF network (Figure 10) having Gaussian function in the hidden layer has the abil-
ity to approximate any non-linear continuous function to an arbitrary degree of exactness.
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The RBF neural network used in the methodology will have three layers (input, hidden,
and output) and four nodes corresponding to the four levels of UWT decomposition.

5.2.5. Design of the Predictive Control Model

The model-based predictive regulation methodology, known as MPC (model predic-
tive control) has the following main characteristics:

(a) contains knowledge as accurate as possible of discretized regulated process (with
sampling period T) dynamic model, which allows the estimation (prediction) of the re-
sponse of the regulated process over a certain time horizon, called output prediction
horizon. This is obtained by knowing the previous values adjusted, as well as past and
future values (on the prediction horizon) of the control quantity and the disturbing quantity
(if possible);

(b) allows development, on the time horizon of the output, of a “scale” control signal
(constant over each sampling interval). This output signal is characterized by the sequence
of N future commands. This ensures the optimal evolution of the process adjusted to the
time horizon considered (e.g., obtaining a deviation as small as possible for the size adjusted
to the reference conditions). At the same time, it is obtained a low power consumption,
including for certain restrictions imposed on the control signal (input) and the regulation
dimension (output);

(c) the effective implementation of only the first element of the calculated optimal
sequence of commands, with the resumption of the whole process at the next sampling
time (sliding horizon adjustment);

(d) the adoption of the “blocking” procedure, for blocking the hypothetical control
on the last part of the prediction horizon, in order to simplify the predictive adjustment
algorithm.

In the “blocking” procedure, the hypothetical command is kept free for the first M
sampling periods from the N of the prediction horizon and is locked for the other N −M
sampling periods at the last free value. Therefore, the number of distinct values of the
command on the output prediction horizon is M. The interval [0, M] in which the command
is free is called the free command horizon.

When building an MPC controller, the following information must be provided:

• prediction horizon (Np)—represents the totality of future samples based on which the
MPC system predicts the output values;

• control horizon (Nc)—represents the totality of the prediction states based on which
the MPC can influence the control.

Figure 11 shows these horizons.
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In Figure 11, the mode of action of the prediction is presented as follows: for the
sample k, at the time k + Np, the MPC controller predicts the output; at the next time k + 1,
the MPC calculates the new output prediction value.

Figure 12 shows the evolution over time of the control, reference, and output quantities.
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When adjusting the proportional physical processes, a value approximately equal to
the duration of the index response of the process is recommended for the output prediction
horizon. By choosing a significantly lower value of the prediction horizon, the control
system becomes damped oscillator or ascending (unstable) oscillator.

Occasionally, to avoid the effect of large and sudden variations (step type) of the
reference, a delay filter, of the first order, is used.

Next, we will consider the sampling period T = 1, when the length of the prediction
horizon is equal to N.

Determining the optimal control on the output prediction horizon is performed by
minimizing a square shape criterion (cost function) J(k):

J(k) =
Np

∑
i=Nw

[ŷ(k +i|k) ]TQ[ŷ(k + ibk)− r(k + i|k) ]

+
Nc−1

∑
i=0

[
∆uT(k + i|k)R∆u(k = i|k)

]
+

Np

∑
i=Nw

[u(k + i|k)− s(k + ibk) ]T N[u(k + i|k)− s(k + ibk) ]

(20)

where:

• k—units of discretized time;
• I—the index the prediction horizon (no. of counts);
• Np—output prediction horizon;
• Nw—the start points of the prediction horizon;
• Nc—control horizon;
• Q—weight matrix output error;
• R—rate of change in control action weight matrix;
• N—the control action error weight matrix;
• ŷ(k + i|k)—the sequence of future hypothetical values of the process output,
• estimated on the output prediction horizon based on the process model, previous

output values and previous and future command values;
• r(k + i|k)—the sequence of future values of the set size reference;
• ∆u(k = i|k)—the sequence of future values of the set size reference;
• u(k + i|k)—is the sequence of free, applied incremental commands hypothetically on

the horizon of free order;
• s(k + ibk)—the input setpoint.
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The optimization method for the minimum and maximum predictions imposed as
operating limits are used to determine the mode of operation in real conditions that
are imposed by the process monitoring parameters. In this situation, the MPC control
algorithm considers the minimum and maximum predictions imposed to the detriment
of the determined output prediction. Under these conditions, the MPC controller adjusts
the required minimum and maximum operating predictions such that these limits are
not exceeded.

Figure 13 shows the standard MPC architecture.
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5.3. Proposed Framework
5.3.1. Simulation and Experimental Verification of the Model

In this research, a new radial basic function model is presented, a predictive control
model (RBFNN-MPC) for traffic flow and intrusions in data networks and for analyzing the
proper functioning of servers using sensor systems (temperature and energy fluctuations).
A novelty presented here is that the Hurst exponent is used to obtain local data traffic
patterns on different network load modes.

Using the Hurst parameter, it is demonstrated that long-term dependence can be
reduced by dividing the time series corresponding to each base station into series with a
certain duration (e.g., one day). It can also be proven that daily traffic through a base station
will not show the presence of long-term addiction. In a first stage, the Hurst exponent
based on the wavelet, which is suitable for stationary time series, is determined. A strategy
to select the mother wavelet functions is used based on their time-frequency location,
because for communications traffic, location in time is the most important feature. Finally,
for modeling the observations, an MPC algorithm is proposed based on a neural network
with local radial base function (RBFNN), with self-organizing mechanism, and used for
modeling local transfer functions to estimate the future behavior of the data network. This
new algorithm was chosen because the data traffic management system in the network
works online, and RBFNN follows the dynamics of the data traffic, while the use of the
traditional MPC algorithm always uses a constant mathematical model.

The architecture of the proposed algorithm (system) is presented in Figure 14.
For long-term network preventive maintenance purposes, or for improving its reli-

ability and resilience, it is useful to develop an over-imposed AI application to monitor
all failures causes and perform correlations between causes and effects, in order to keep
record of major connections between failures and their effects in network services operation.
Another added value will also be for the understanding of causes that produced a low
availability/Apdex indexes over longer periods of time (at least a week, for example).
This may be an important argument for reporting activities and future improvements of
network resilience.
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Algorithm’s Flow

Figure 15 presents the calculation steps of the proposed algorithm. The process
develops as follows:
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• Reading of data.

In this step, the data files associated with the network data traffic are read from
different monitored applications or hardware components.

• Evaluation of estimates.

Data set estimates are evaluated using MPC with RBF. Each data set is passed by esti-
mation. RBFNN has three layers (input, hidden, and output) and four nodes corresponding
to the four levels of UWT decomposition.

• Multi-resolution analysis.

The data is multi-resolution decomposed using UWT, and level 4 analysis

• Calculation of the Hurst index.

For each level of the UWT decomposition, the variation of the Hurst index is calculated.

• Long-Term Dependence assessment.

The absolute distance between the points is calculated to determine the short, medium,
and long-term dependencies. This distance is plotted based on the analyzed period and
the Hurst index.

The threshold is marked based on most occurrences of absolute distance differences.
In most columns, this distance is less than 1 and 0.5. Based on the absolute distance, the
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decision criterion is taken. If the distance is less than or equal to the threshold value, the
values of that window are classified as nominal and if the distance is greater than the
threshold, we classify the values in those windows as anomaly or intrusion.

5.3.2. Results Obtained for the Hurst Exponent and Multi-Resolution Wavelet Analysis

A high value of the Hurst exponent indicates desynchronization, thus, it must be
ensured that the values obtained are higher for the signal corresponding to data networks
with malfunctions and intrusions than for the signal corresponding to the normal operation
of data traffic for C3 and CP3 networks and for the corresponding signal. The data network
with malfunctions and intrusions is compared to the signal corresponding to a monitoring
operation on the C4 and CP4 networks, in order to have a good discrimination of the
transition elements, in which C3, C4, CP3, and CP4 are the indicators of the data networks
for which we performed the tests using files obtained from the monitoring process.

Figure 16 shows the level 3 decomposition using the wavelet symlet6 function. The
figure shows the decomposition details highlighted on the three levels of analysis.
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Figure 16. UWT analysis of the data network signal, using level 3 decomposition and ym6 function.

Such values are obtained with the Higuchi method, for both types of testing.
Figure 17 shows the results of the Hurst exponent for signal samples related to a data

network that highlights its proper functioning (the value of the Hurst exponent is small or
close to zero), but also the occurrence of possible unauthorized faults or intrusions in the
network when the value of the Hurst exponent is high, approaching the value of 0.5.



Sensors 2021, 21, 5036 24 of 32

Sensors 2021, 21, x FOR PEER REVIEW 24 of 32 
 

 

 
Figure 16. UWT analysis of the data network signal, using level 3 decomposition and ym6 function. 

Such values are obtained with the Higuchi method, for both types of testing. 
Figure 17 shows the results of the Hurst exponent for signal samples related to a data 

network that highlights its proper functioning (the value of the Hurst exponent is small 
or close to zero), but also the occurrence of possible unauthorized faults or intrusions in 
the network when the value of the Hurst exponent is high, approaching the value of 0.5. 

 
(a) 

Sensors 2021, 21, x FOR PEER REVIEW 25 of 32 
 

 

 
(b) 

 
(c) 

 
(d) 

Figure 17. Representation and analysis of network traffic on the signal obtained from the decompo-
sition on level 3, using the function sym6: (a) H = 0.39, (b) H = 0.46, (c) H = 0.29, and (d) H = 0.15. 

The results are represented graphically in Figure 18 for the wavelet methods and 
functions employed, separately for the normal mode of operation, and for the mode of 
operation with the occurrence of certain malfunctions and intrusions at the level of data 
networks. 

The color code to be followed is the blue columns (corresponding to the malfunction-
ing network) which must be larger than the red (corresponding to the normally function-
ing network), and the yellow columns (corresponding to the malfunctioning and intrusion 
network) which must be larger than the green (corresponding to the normal operation of 
the network). In both figures, it is observed that all the blue columns, in all situations, are 
larger than the red ones. 

Thus, we can conclude that the networks tested in the study for different families of 
wavelet functions (yellow columns) are larger mostly for the Hurst exponent determined 
with the Higuchi method, which proves to be the best method for calculating the Hurst 
exponent. 

Figure 17. Representation and analysis of network traffic on the signal obtained from the decomposi-
tion on level 3, using the function sym6: (a) H = 0.39, (b) H = 0.46, (c) H = 0.29, and (d) H = 0.15.



Sensors 2021, 21, 5036 25 of 32

The results are represented graphically in Figure 18 for the wavelet methods and
functions employed, separately for the normal mode of operation, and for the mode
of operation with the occurrence of certain malfunctions and intrusions at the level of
data networks.
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to normal operations: (a) C3 and CP3 networks and (b) C4 and CP4 networks.

The color code to be followed is the blue columns (corresponding to the malfunctioning
network) which must be larger than the red (corresponding to the normally functioning
network), and the yellow columns (corresponding to the malfunctioning and intrusion
network) which must be larger than the green (corresponding to the normal operation of
the network). In both figures, it is observed that all the blue columns, in all situations, are
larger than the red ones.

Thus, we can conclude that the networks tested in the study for different families
of wavelet functions (yellow columns) are larger mostly for the Hurst exponent deter-
mined with the Higuchi method, which proves to be the best method for calculating the
Hurst exponent.

Figure 19 shows the results of simulating an intrusion attack inside a data network
based on UWT multiresolution analysis and the Hurst exponent.
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In conclusion, extracting characteristics using the Hurst exponent is a method that
should be considered when working with signals from data traffic during its use. However,
it seems that the best method used to calculate the Hurst exponent is Higuchi. The use of
the Hurst exponent calculated with the three methods of multi-resolution wavelet analysis,
to highlight the characteristics of the recorded network traffic signals, is considered a
significant contribution of this research. These methods have not been used thus far in
determining the failures or intrusions in data traffic, for highlighting the proper functioning
or malfunctioning of data networks.

To determine the time efficiency of the proposed method, the concept of long-range
dependence (LRD) has been employed. Long-range dependence is also called long-term
memory, being used in the analysis of spatial data and time series. LRD is based on the
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rate of decomposition of the statistical dependence between two points, over an increasing
time interval (spatial distance between points). An event is considered to have long-range
dependence if the dependence decomposes more slowly than exponential decomposition.
LRD is used in financial predictions (econometrics), hydrology, and linguistics, but can be
successfully applied for modeling traffic in data networks. For the LRD analysis, the Hurst
parameter is calculated on the UWT multi-resolution decompositions applied to the signal
corresponding to the data traffic in a network.

Given a stationary LRD sequence, the partial sum, if viewed as a process indexed
by the number of terms after proper scaling, is a process similar to asymptotic stationary
increases.

The Hurst parameter can be called the dependency index or the long-range depen-
dency index. This parameter quantifies the tendency of a time series associated with a
process to either regress steeply to the mean or to group in a predictive direction. Thus,
the value of the Hurst parameter (Hurst index) in the range 0.5–1 indicates a time series
with long-term positive autocorrelation, possibly a high value to be followed by another
high value, thus indicating a desynchronization of data traffic. If the Hurst index has the
value 0.5 then the series is completely uncorrelated, thus establishing the comparison value.
A value in the range of 0–0.5 indicates a time series with long-term switching between
the highest and lowest values between adjacent pairs, which means that a single high
value is likely to be followed by a low value and that the value after that it will tend to
be high, with this tendency to switch between high values and low values that last a long
time in the future. H values in the range of 0–0.5 are interpreted as a series of average
(anti-persistent) recovery. The closer the value is to 0, the stronger the average reversal
process. In practice, the value of H in the range of 0–0.5 corresponds to a normal operation
of traffic in data networks. The results of applying the LRD concept with the proposed
method are presented in Figures 20–22.
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Next, achieving the proposed MPC based on neural network is compared with radial
function with optimization, performed with wavelet functions and the Hurst exponent,
with conventional MPC. Following the simulations and tests performed on data traffic
records and the proposed method employing RBF neural networks, better results were
obtained in reducing uncertainty than by the traditional method. Figure 20 shows the
control of data network traffic by the proposed method (MPC based on RBFNN) and the
classical MPC method without uncertainties.

For a better presentation, Figure 21 shows the detection of a defect or intrusion
(blue graph), compared to the interpretation of data traffic with the classic MPC method
(red line).

Comparing Figures 20 and 21, the results indicate that the proposed method is superior
to the classical MPC method.
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method (blue line) compared to the classic MPC method (red line). The green line represents
the reference.
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The results shown in Figure 21 suggest that for the classical MPC method, the range of
the Hurst exponent is 0–0.15, while in the case of the proposed method the range is 0–0.5,
which demonstrates that the classical MPC method cannot detect faults or intrusions in the
comparative network. With the proposed method it is possible to highlight defects and
intrusions in the network and return it to a normal operation.

From Figures 20 and 21, it can be concluded that the higher the data network traffic
load, the better the results obtained with the proposed MPC method with the RBF neural
network compared to the classical MPC method.

Figure 22 shows the analysis of samples recorded for three data networks using the
proposed method.

The interpretation of Figure 22 shows the malfunction of network 1 (blue graph), with
malfunctions or possible unauthorized intrusions into the network, the normal operation
of network 2 (green graph), and the partially normal operation of network 3 (red graph).
By interpreting these three graphs we can conclude that the use of intelligent computa-
tional algorithms together with a predictive control model that employs multiresolution
and Hurst exponent decompositions for time series analysis is a useful system control
solution. Data network traffic and its ability to load workstations with tasks represents a
nonlinear system with uncertain parameters. As it is shown in the results obtained from
the simulations, a real monitoring of a data network traffic cannot be approximated with a
fixed model and with fixed parameters.

Instead, by combining the classical MPC method with intelligent analysis algorithms,
as in the proposed method, network changes (failures, anomalies, and intrusions) can
be detected in real time. Neural networks with radial function, if they are driven with
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correct data, can approximate a function and can estimate future moments according to the
horizon prediction and control model, and this aspect is useful in controlling systems.

6. Discussion and Conclusions

Based on a case study of practical management of applications monitoring in highly
responsive networks, in this work a solution for improving communications network’s
fault maintenance and resilience has been proposed. With the actual growth in services
demand and data communications, it is considered that maintenance process importance
will increase significantly. Maintaining high levels of quality for communications will also
become a critical task. The case study was performed for specific applications monitoring,
employing a Davis AI engine with a combination of artificial intelligence and human oper-
ations. The case showed that, when using classical AI-based instruments for monitoring
applications, there still may occur situations when the recovery process takes longer than
usual, due to chain events that cannot be monitored by causality. Therefore, in the second
part of this paperwork an over-imposed solution is proposed for tracking and storing
knowledge about such types of events, a solution also based on machine-learning, meant
to further improve the performances of fault management and recovery operations.

For defining a methodology able to detect abnormal functioning of different compo-
nents of a communications network, a combination of computational intelligence with
model predictive control was used to analyze network data traffic. The proposed solution
uses online traffic modeling employing a neural network with a radial base function. In
the first step, several local transfer functions were created for the network traffic using
wavelet multiresolution analysis together with the Hurst exponent calculation; then, an
RBF neural network was used to approximate these models. RBFNN can estimate future
moments for the predictive method of the model and can be used to accurately control
the proper functioning of the data network. It is also able to highlight the occurrence
of network defects, or unauthorized intrusions. The simulation results reveal that the
proposed method using the predictive control of the neural network-based model works
better than the classical predictive control, especially when the uncertainty is high. All
numerical values of parameters and their mathematical relationships are based on the
real-time operation of a data network, using real signal samples. As a result, the method
proposed in this research prove to have the ability to implement hardware and software
for quasi-real-time data traffic sensing and monitoring.

The following are contributions in this research:

• a specific case study was performed for a mobile communications network failure,
considering conditions, environment, and comparative recovery time;

• an analysis of existing AI efficiency in discovering and analyzing network applications
failures, with comparative availability indexes, level of service, and quality factors;

• a proposal for a new approach to determine network applications and hardware
failures, based on extended AI, and associated machine learning techniques;

• a comparative analysis of the fourth order decomposition of the wavelet coefficients,
determining for each decomposition the estimation of the Hurst parameter based on
the wavelet, a useful method for the analysis of the time series;

• a strategy for selecting mother wavelet functions, based on their location and frequency
has been developed;

• a demonstration through simulations that, in the situation of communications traffic,
the location in time is important to choose the mother wavelet functions;

• demonstrating that the best results are obtained with the help of the sym8 wavelet
wave (eighth order symlet); this is due to the invariance of its wavelet functions
against translations;

• demonstrating, through simulations, that the multi-resolution wavelet decomposition
is able to predict data traffic for data radio communications (Wi-Fi, WiMAX, GSM).
This is due to its invariance in translations;
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• based on the Hurst exponent, it has been shown that long-term dependence is reduced
by dividing the time series corresponding to each base station into one-day series;

• the increase in value of the Hurst exponent is the result of the appearance of certain
unauthorized network anomalies or intrusions that may occur during certain periods;

• Using the concept of long-range dependence based on the Hurst exponent and UWT
decomposition, with reference to time (or long-term reference).

The algorithm proposed in this paper was tested off-line on files with data collected
from four data networks, and not tested in real conditions. However, real-time intrusions
into data networks were simulated, and the analysis of these traffic files using the proposed
algorithm highlighted the intrusions and the predictability of their occurrence.

Using the proposed method, we estimate that it is possible to efficiently locate signals
related to time-frequency failures and intrusions, also when if the signal is not predominant
and persistent. For a more efficient localization of failures and intrusions we will continue
the development of the proposed algorithms by creating a detection methodology for
imposed structures, with applicability in the time-frequency domain. It is also envisaged
to test the proposed algorithm in real time, with the support of a cybersecurity company.
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