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ABSTRACT We used three antitubulin antibodies to localize Dictyostelium tubulin subunits on 
two-dimensional polyacrylamide gels by Western blotting. All three antibodies, a polyclonal 
antibody against sea urchin or- and ~-tubulin and two monoclonal antibodies against yeast a- 
tubulin, recognize the same set of polypeptides with a molecular weight of 55,000 while 
focusing at a pH far more basic than all other tubulins. Each antibody specifically stains the 
microtubule system of slime mold amoebae by indirect immunofluorescence. The microtubule 
system can be isolated as a major component of the amoeba cytoskeleton, and these 
preparations are greatly enriched for the presumptive tubulin subunits. The microtubules of 
these cytoskeletons are resistant to being depolymerized by millimolar concentrations of 
calcium, while they retain their cold sensitivity. Comparison of peptide maps of slime mold 
and brain ,-tubulins indicates that the proteins are related but not identical. Possible expla- 
nations for these unusual characteristics are discussed. 

Tubulin is a highly conserved protein (23, 29, 40) that func- 
tions by assembling into the microtubule system of the cyto- 
plasm and the mitotic spindle (reviewed in reference 11). 
Cytoplasmic tubulin has been identified in a wide variety of 
organisms, ranging from its initial characterization in mam- 
malian brain (44) to its more recent identification in the fungi 
Aspergillus (33), Physarum (30), and yeast (16). All the tu- 
bulins so far identified consist of a- and/3-polypeptide chains, 
each of which is an acidic protein with an apparent molecular 
weight of 55,000 on SDS polyacrylamide gels. 

The life cycle of Dictyostelium offers an excellent system 
for studying the functions of microtubules during growth and 
development. Among the activities found during the Dictyos- 
telium life cycle that could be related to microtubule function 
are phagocytosis, pinocytosis, cell-cell recognition, motility, 
chemotaxis, cell polarity, and the differentiation process itself. 
Microtubules, both cytoplasmic and spindle, are known to 
exist in Dictyostelium amoebae (24, 39), and cytoplasmic 
microtubules have been identified in developing cells (8). Our 
lab has recently obtained mutants resistant to mitotic inhibi- 
tors (15, 48) and, as a complement to the genetic approach, 
we have set out to identify and characterize Dictyostelium 
tubulin. 

MATERIALS AND METHODS 

Chemicals: Dithiothreitol, leupeptin, and bovine serum albumin were 
obtained from Sigma Chemical Co. (St. Louis, MO). HEPES was purchased 
from Gibco Laboratories (Grand Island, NY), and cemulsol NPT-12 was 
generously provided by Melle-Bezons (Neuilly-s-Seine, France). Ultra-pure urea 
was supplied by Schwarz/Mann Inc. (Spring Valley, NY), Nonidet P-40 and 
specially pure SDS by BDH Chemicals, Ltd. (Poole, England), and bisacryl- 
amide by Bio-Rad Laboratories (Richmond, CA). Acrylamide (2 x crystalized) 
and ampholytes were obtained from Serva (Garden City Park, NY) and 
Coomassie Brilliant Blue R-250 from Eastman Kodak Co. 

Cell Culture: The axenic strain Ax-3 ofDictyostelium discoideum (22) 
used in this study was grown in suspension culture in HL-5 medium (42) which 
contained Oxoid proteose peptone and yeast extract (KC Biologieals, Lenexa, 
KA). Cells were labeled by placing them at 4 x 106/ml in 40 mM phosphate 
buffer (pH 6.8) with [3SS]methionine (sp act 1,400 Ci/mmol [Amersbam Corp. 
Arlington Heights, ILl) at a concentration of 200/~Ci/ml for 30 rain. After 
radiolabeling, cells were harvested, washed, and processed for electrophorcsis. 

Sample Preparation: For two-dimensional polyacrylamide gels, 5 x 
l06 to 1 x l0 T amoebae, harvested from suspension culture, were dissolved in 
60 ~l of 3% SDS, 0.1 M dithiothreitol, and, without delay, heated in a boiling 
waterbath for 45 s. When the sample cooled, it was treated with DNase and 
RNase, lyophilized to complete dryness, and dissolved in 180 #l of isoelectdc- 
focusing sample buffer (13). The resulting SDS concentration in the samples 
was less than or equal to 1%. Before electropho~sis, samples were clarified by 
centrifugation for 2 rain in an Eppendorff microfuge. 

Brain tubulin was purified from 12-14-day-old chick embryo brains by 
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cycles of assembly and disassembly (34). Samples for two-dimensional gels were 
prepared by the method described for Dictyostelium proteins. Samples for one- 
dimensional gels were prepared by the method originally described by Laemmli 
(20). 

Electrophoresis: Isoelectric-focusing gels (26) contained the following 
ampholytes: 3-10, 4-9, 2--4, 5-7, at a ratio of 35:35:12:1, respectively. Gels 
were prefocused by raising the voltage from 200 V to 600 V over ~2  h. After 
the pH gradient was established, samples 00-30 ul) were loaded, and electro- 
phoresis was carded out for 12,000 V-h. After equilibration, the first dimensions 
were loaded directly onto second-dimensional 10% acrylamide gels, 16 cm in 
height (13). With completion of the second dimension, gels were stained in 
50% trichloralacetic acid and 0. I% Coomassie Brilliant Blue for 20 min and 
destained in acetic acid: methanol: H20 (2:1:17) for several hours. Destaining 
was completed by soaking the gels in H20 overnight. 

Huorography (5) was carried out for [asS]methionine-labeled material. Dried 
gels were exposed to XAR-5 X-ray film (Eastman Kodak, Rochester, NY) for 
10 d at -70°C. One-dimensional slab gels were run using standard procedures 
(20), except that the heights of the separation and stacking gels were 13 cm and 
4 cm, respectively. Gels were calibrated with internal standards of known 
molecular weight and isoelectric point as described by Peters and Comings 
(28). The pH gradient of the isoelectric-focusing gels was also measured directly. 

Antibodies: The rabbit anti-sea urchin egg tubulin and preimmune 
serum was a generous gift of Dr. Keigi Fujiwara (Harvard Medical School). 
The monoclonal antibodies, YLI/2 and YOLl/34 directed against yeast a- 
tubulin, were produced in rats, and the purified IgG were a generous gift of Dr. 
John Kilmartin (Medical Research Council Laboratory for Molecular Biology, 
Cambridge). Both the fluorescein isothiocyanate conjugated goat anti-rabbit 
IgG and the rabbit anti-rat IgG were purchased from Miles-Yeda (Rehovot, 
Israel). 

Western Transfer Analysis: Aminobenzyloxymethyl paper was pur- 
chased from Schleicber and Schuell, Inc. (Keene, NH). Activation of the 
aminobenzyloxymethyl paper to the diazobenzyloxymcthyl form was carried 
out according to the method of Alwine et al. (2). Electrophoretic transfer of 
proteins from gels to the diazobenzyloxymethyl paper was the same as described 
by Symington et al. (37) with the following exceptions: the gel/diazo paper/ 
filter paper sandwich was supported on Scotch Brite pads and clamped very 
tightly between two stiff plastic grids (38). Electrophoresis was carried out at 30 
V (1.3 A) for 4 h at 4°C. Gels were stained after completion of the transfer to 
establish that each transfer was complete. For a 15 x 15 cm piece of diazo- 
paper, 20 ul of the anti-sea urchin tubulin antiserum, or 25 ug of the purified 
IgG of each of the monoclonal antibodies, was diluted in 22.5 ml of Tris/ 
EDTA/NaCI/Nonidct P-40 (37) and incubated in a Seal-a-Meal bag overnight 
at 37°C. Incubations with larger quantities of the YOL1/34 antibody gave a 
reaction with a very basic nontubulin Dictyostelium protein which co-migrates 
with brain a-tubulin on one-dimensional gels (E. White, unpublished experi- 
ments). Because YLI/2 did not react with protein A (see below), an incubation 
of the blot with rabbit-anti-rat antibody preceded the protein A step. 

Staphylococcus aureus protein A (Pharmacia Fine Chemicals, Upsala, Swe- 
den) was iodinated by the chloramine T method (14). Free t25I was separated 
from the labeled protein by gel filtration on G-25. Each diazo-transfer was 
incubated with l0 s cpm of the iodinated protein A in 22.5 Tris/EDTA/NaCI/ 
Nonidet P-40 (37). This amount of radioactivity gave a clean background and 
no reaction with any Dictyostelium proteins when used without a primary 
antibody. Transfers were autoradiographed at -70"C with Dupont Cronex 
Lightning-Plus intensifying screens (DuPont Instruments, Wilmington, DE), 
with exposures varying between 1 and 4 d. To reprobe a transfer, the diazo- 
paper was erased by removal of the immune complexes with phosphate-buffered 
SDS under reducing conditions at 60°C for 2 h. 

Indirect Immunofluorescence: Amoebae, at a density of 2 x 106/ 
ml in HL-5 medium, were attached to glass coverslips simply by spreading the 
slips with 200 ul of the culture and allowing the amoebae to settle onto the 
glass for 30 min in a humid chamber. Whole cells were processed for immu- 
nofluorescence as previously described (39) and as modified by S. Rubino 
(Institute of Microbiology, University of Sassari, Sassari, Italy, personal com- 
munieation). Briefly, amoebae were fixed with 10% formalin in HL-5 medium 
at room temperature for l0 min, washed for 30 min in four changes of PBS 
(150 mM NaCl: 20 mM Na/K phosphate, pH 7.4), fixed and permeabilized 
with methanol (9 rain) and acetone (6 rain) at -20°C, and air-dried. After 
rehydration in PBS, the coverslips were incubated with the antitubulin anti- 
bodies diluted 1:200-1:400. All antibodies for immunofluorescence were di- 
luted in PBS, 1% BSA, and antibody incubations were carried out for 1 h at 
37°C. The coverslips were washed for 20 rain with four changes of PBS, and 
then the second antibody was added: the fluorescein isothiocyanate-anti-rat 
IgG followed the monoclonals and the fluorescein isothiocyanate-anti-rabbit 
IgG followed the polyclonal antibody. Both second antibodies were used at a 
1:200 dilution. Finally, the coverslips were washed for 20 rain with four changes 
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of PBS, rinsed in distilled H:O, and mounted in Aquamount (Lerner Labora- 
tories, Stamford, CT). The best results were obtained with cells that were fixed 
and stained the same day. 

For indirect immunofluorescence of cytoskelctons, amoebae attached to 
coverslips were extracted with HEMS (50 mM HEPES, 2 mM EGTA, 5 mM 
Mg acetate, 10% sucrose, 50 #g/ml leupeptin, and 2% cremulsol NPT-12 
[Nonidct P-40 can be substituted], pH 7.4) buffer plus detergent (see below), 
rinsed with the same buffer without detergent, and fixed with methanol at 
-10°C for 6 min (27). After fixation, the coverslips were dipped in PBS for 
30 s and stained by the procedure described above. Fixation of cytoskeletons 
in suspension was done with 10% formalin in HEMS buffer for l0 min, after 
which they were harvested and washed four times with PBS in a tabletop 
centrifuge. The pellet was taken up in PBS, 1% BSA, spread on coverslips, and 
allowed to air-dry (3). The coverslips were then placed in cold methanol, then 
acetone, and stained by the method described above. 

Slides were examined with a Zeiss Photomicroseope III equipped with 
epifluoreseenee optics using a 100x oil immersion objective and a UG5 exciter 
filter (Carl Zeiss, Inc., Thomwood, NY). Black-and-white photographs were 
taken at ASA 1600 with Tri-X film, and the film was push-proeessed. 

Cytoskeleton Isolation: Coverslips with adhering amoebae were 
drained, placed in a 30 × 15 mm plastic petri dish, and extracted with l ml of 
HEMS buffer plus a nonionic detergent for 1 rain. The extraction buffer was 
then removed and replaced with 1 ml of HEMS buffer without detergent. The 
microtubule system is stable under these conditions for at least 30 min at room 
temperature. 

Cytoskeletons, isolated at room temperature, were incubated at -4"C by 
floating the petri dishes on the surface of a waterbath filled with a 1 M salt 
solution maintained at that temperature. For Ca ++ treatment, amoebae were 
extracted as described above, and the cytoskelctons were incubated in 1 ml of 
50 mM HEPES (pH 7.3), with and without 5 mM CaCl2, for 20 min. 

For electrophoresis, amoebae in log phase of growth were harvested at room 
temperature in an International Clinical tabletop centrifuge (300 x g for 1.5 
rain). A pellet of 5 x l07 cells was extracted for 1 min in 2.5 ml of HEMS 
buffer and detergent with gentle swirling, and the resulting cytoskelctons were 
harvested by centrifugation (900 g for l min) and processed for electrophoresis. 
Cytoskeletons were monitored by indirect immunofluo~,,ence, and it was 
determined that the microtubule network remains intact during the isolation 
procedure. 

Peptide Mapping: The a-tubulin subunits from chick brain and 
Dictyostelium were isolated by the following methods. The subunits of purified 
brain tubulin were resolved on 7.5% one-dimensional SDS gels, and the bands 
were visualized by staining the gels for 30 rain in 0.1% Coomassie Blue in H20 
and destaining in H20 for 1 h. Bands corresponding to the a-subunit were 
excised, and the a-tubulin was eluted from the gel slices by shaking in 0.05 M 
ammonium carbonate at pH 8.5, 0.190 SDS, at 37"C overnight. Dictyostelium 
a-tubulin, resolved on two-dimensional gels of cytoskeletons, was excised and 
eluted in the same way. The purified tubulins were iodinated using Iodobeads 
(Pierce Chemical Co., Rockford, IL) and ~25I. Labeled protein was separated 
from free iodine by gel filtration on Sephadex G-25. The labeled a-tubulins 
were gel-purified a second time (on 7.5% one-dimensional SDS gels), the gels 
were dried down directly onto filter paper, exposed to X-ray film, and the 
tubulin bands were cut out. After rehydration, the gel slices were removed from 
the paper and subjected to limited proteolysis in SDS gels by the method of 
Cleveland et al. (10). Each lane contained 2,000 clam of iodinated a-tubulin 
and 15 or 150 ng of the enzyme Staphylococcus aureus V8 protease (Miles 
Laboratories Inc., Elkhart, IN). 

RESULTS 

The Migration of Brain Tubulin and Dictyostelium 
Polypeptides on Two-Dimensional Gels 

As a structural protein, tubulin often represents a substan- 
tial percentage of  the total cellular proteins. In addition, all 
tubulins so far examined have been shown to migrate at, or 
very near, the position of  brain tubulin on two-dimensional 
gels. As a first approach, we were interested in determining 
whether any Dictyostelium polypeptides demonstrated these 
properties. 

In our gel system, brain tubulin migrates at the expected 
position (indicated by the brackets in Fig. l), migrating slightly 
more slowly and more acidic than actin (a). When slime mold 
proteins are run out on two-dimensional gels that either have 
been stained with Coomassie Blue (Fig. l a) or autoradi- 



FIGURE 1 Migration of brain tubulin and Dictyostelium 
polypeptides on two-dimensional polyacrylamide gels. 
Amoebae of strain AX-3 were harvested from axenic 
medium, and the amoeba proteins were resolved by two- 
dimensional polyacrylamide gel electrophoresis: (a)gel 
stained with Coomassie Blue, (b)as in a but with puri- 
fied brain tubulin added to intact amoebae before proc- 
essing, (c)autoradiograph of [3SS]methionine-labeled 
cells treated as in a. The large spot in the center marked 
with the arrow, and the large smear to the left, are actin 
(a). 

ographed (Fig. I c), it can be seen that none migrate at the 
position o f  brain tubulin. Those polypeptides that do migrate 
near brain tubulin are in minor quantities. Identical results 
are obtained using either the axenic strain AX-3 shown here 
or the nonaxenic strain NC-4 of  Dictyostelium discoideum. 
As an internal control for the gel system, purified chick brain 
tubulin can be mixed with intact amoebae, and together they 
can be processed and run on a gel (Fig. I b). Neither the 
position of  the brain tubulin nor any of  the Dictyostelium 
polypeptides is altered. These data suggest that Dictyostelium 
tubulin may have some unique properties. 

Western Blots of Dictyostelium Polypeptides with 
Antitubulin Antibodies 

To identify Dictyostelium tubulin on two-dimensional gels, 
we used antitubulin antibodies as probes. Because tubulin is 
highly conserved, antibodies directed against tubulin in one 
species often cross-react with tubulin from a heterologous 
source. We used three different antitubulin antibodies in these 
experiments, all of  which are well characterized, are mono- 
specific, and possess a wide range of  cross-reactivity. The first 
is a polyclonal antibody directed against both the a- and #- 
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subunits of sea urchin egg tubulin (12). Both the second and 
third are independent monoclonal antibodies directed against 
yeast a-tubulin (17). 

For Western blot analysis, a two-dimensional gel of unla- 
beled Dictyostelium polypeptides was transferred to a solid 
support that was then probed with an antitubulin antibody. 
Immune complexes were detected by autoradiography follow- 
ing an incubation of the blot with iodinated protein A. It can 

be seen in Fig. 2 that all three antitubulin antibodies recognize 
the same group of spots. The a- and f3-specific probe picks 
out two spots (Fig. 2 a), with the a-specific probes picking out 
the faster migrating spot (Fig. 2, b and c). Although the pre- 
sumptive tubulins were of the correct molecular weight, their 
migration is considerably more basic (isoelectric point: 
6.2-6.7) than that of brain tubulin (isoelectric point: 5.7-6.0). 
These results indicate that these spots are the tubulin subunits, 

FIGURE 2 Western blots of two-dimensional polyacrylamide gels of Dictyostelium polypeptides stained with antitubulin anti- 
bodies. Unlabeled slime mold proteins, resolved by two-dimensional polyacrylamide gel electrophoresis, were electrophoretically 
transferred to and covalently coupled to diazo-paper. The paper was then incubated with one of the following antitubulin 
antibodies: (a) anti-sea urchin ~- and ~-tubulin, (b) anti-yeast a-tubulin YL1/2, and (c) anti-yeast a-tubulin YOL1/34. (d) A stained 
gel similar to the one used in the Western blots, showing the position of the tubulins. The immune complexes were detected by 
iodinated protein A followed by autoradiography. As an internal control, brain tubulin was run in the second dimension only, on 
the left side of the gel. If present in both dimensions, brain tubulin would migrate at the position circled. For orientation, the 
position of actin (a) is indicated. 
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with the faster migrating spot being the a-tubulin and the 
slower migrating spot the fl-tubulin (Fig. 2 d). The fl-tubulin 
subunit is not well resolved under these electrophoresis con- 
ditions because of the large amount of actin focusing in the 
same region. With silver-stained two-dimensional gels, loaded 
with one-fourth to one-tenth the amount of protein, this 
problem is eliminated. In Physarum, the a-tubulin is also the 

FiGure 3 Western blots of one- 
dimensional polyacrylamide gels. 
Dictyostelium polypeptides and 
purified chick brain tubulin were 
resolved on a 7.5% one-dimen- 
sional gel, transferred, and blot- 
ted with an antitubulin antibody 
(sea urchin). Lanes a-c are total 
Dictyostelium polypeptides and 
lane d is the brain tubulin. 

faster migrating subunit (9). In brain, however, this situation 
is reversed with the fl-tubulin migrating faster. 

The similarity in molecular weight between presumptive 
slime mold and brain tubulin is better demonstrated in Fig. 
3, where a Western blot of a one-dimensional gel was probed 
with the anti-sea urchin tubulin antibody. In a Dictyostelium 
protein profile (Fig. 3, lanes a-c), two bands were recognized 
that comigrate with brain tubulin (Fig. 3, lane d). Although 
not apparent at this exposure, the brain tubulin subunits are 
well resolved in this gel system. There was no reaction of the 
preimmune serum of this antibody or the protein A when 
used alone with any brain or Dictyostelium proteins in a 
Western blot. 

Visualization of the Microtubule System by 
Indirect Immunofluorescence 

We used indirect immunofluorescence to demonstrate the 
specificity of these antitubulin antibodies for Dictyostelium 
microtubules. All three antibodies stained the cytoplasmic 
microtubule system (Fig. 4) as well as the spindle of mitotic 
cells. Treatment of amoebae with nocodazole (6.5 #g/ml) or 
cold (-4"C) caused a rapid depolymerization of the microtu- 
bules (data not shown). It can be seen that slime molds possess 
numerous microtubules which originate at microtubule-or- 
ganizing centers. No fluorescence was observed when amoe- 
bae were stained with either of the second antibodies alone or 
with the preimmune serum of the polyclonal antibody. 

FiGURe 4 Indirect immunofluorescence of Dictyostelium microtubules using antitubulin antibodies. Amoebae were attached to 
coverslips, fixed, and stained with the anti-yeast tubulin antibody YOL1/34 followed by the corresponding fluorescein-conjugated 
second antibody. All three of the antitubulin antibodies gave the identical staining pattern. Bar, 1 p.m. x 1,200. 
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Isolation of Dictyostelium Microtubule System 
Several laboratories, including our own, have attempted to 

purify tubulin from Dictyostelium by conventional proce- 
dures such as cycles of assembly and disassembly, but to date 
none has been successful. More recently, we have attempted 
to enrich for tubulin by isolating the polymerized microtu- 
bules present in amoebae. It is well known that microtubules 
represent an integral part of the cellular cytoskeleton and that 
an isolated cytoskeletal fraction is enriched for cytoskeletal 
components (4, 6). Osborn and Weber (27) demonstrated that 
when tissue culture ceils were lysed with a nonionic detergent 
in a buffer which stabilizes microtubules, a cytoskeleton con- 
taining microtubules was preserved. We have found, however, 
that the classic microtubule stabilization buffers used for 
preserving microtubules in cytoskeletons of tissue culture 
cells, such as the one used by Osborn and Weber (27), do not 
work well in Dictyostelium. Buffers of lower ionic strength 
and high detergent concentration, like the HEMS buffer used 
here (see Indirect Immunofiuorescence in Materials and 
Methods), are necessary. We have defined the optimum con- 
ditions of extraction in Dictyostelium that selectively remove 
most of the soluble cellular components while leaving behind 
almost all of the microtubule system in an intact form (Fig. 
5). The microtubules are in the same arrangement and abun- 
dance as in whole cells (Fig. 4). Electron microscopy of cellular 
slime molds has previously revealed that the microtubule- 
organizing center or nuclear-associated body is attached to 
the tapered end of the nucleus (19, 31). This can be seen in 
Fig. 5. 

When cytoskeletons are harvested by gentle centrifugation 
and run on a two-dimensional gel, the presumptive tubulin 
subunits appear to be enriched (Fig. 6 a). Other cytoskeletal 
proteins, such as actin, are also enriched, whereas noncyto- 
skeletal proteins are conspicuously diminished or absent. A 
more detailed description of the slime mold cytoskeleton will 

be presented elsewhere (E. White and E. R. Katz, manuscript 
in preparation). The identity of the presumptive tubulin spots 
can be confirmed by a Western blot of such a cytoskeletal 
preparation with an antitubulin antibody (Fig. 6 b). Unfortu- 
nately, because of the large amount of actin focusing in the 
same region, the B-subunit is often underrepresented. It 
should be noted that, although the cytoskeletal preparations 
can be shown by immunofluorescence to contain an abun- 
dance of microtubules, they still contain no Dictyostelium 
polypeptides that migrate with brain tubulin on two-dimen- 
sional gels. 

The Effect of Calcium on 
Dictyostelium Microtubules 

Since calcium ions were first shown to inhibit brain micro- 
tubule assembly (45) as well as to cause a destabilization and 
disruption of existing microtubules (l 8), the existence of Ca ÷÷- 
labile microtubules has been demonstrated to be widespread. 
Also, a high-affinity Ca÷÷-binding site on the tubulin molecule 
itself has been identified (35). Because of these properties, 
Ca ÷+ is thought to have some role, either directly or indirectly, 
in the regulation of assembly and disassembly of microtu- 
bules. In contrast to these observations, we found that treat- 
ment of cytoskeletons with millimolar concentrations of Ca ÷÷, 
sufficient to depolymerize the microtubules in cytoskeletons 
of tissue culture cells, had no effect on Dictyostelium micro- 
tubules (Fig. 7 a). Amoebae, extracted in the presence of Ca ÷÷, 
also retained their microtubules although this treatment did 
cause a disruption of the actomyosin contractile system (data 
not shown). Temperatures o f -4°C will depolymerize amoeba 
microtubules in vivo and the same is also true ifcytoskeletons 
are extracted in the cold or incubated in the cold after extrac- 
tion (Fig. 7 b). Cold-treated cytoskeletons depleted of micro- 
tubules are morphologically indistinguishable, by phase-con- 

FIGURE 5 Indirect immunofluorescence of isolated cytoskeletons. Amoebae attached to coverslips were extracted with a 
microtubule stabilization buffer plus a nonionic detergent (50 mM Hepes [pH 7.4], 2 mM EGTA, 5 mM Mg acetate, 10% sucrose, 
50 /~g/ml leupeptin, and 2% cemulsol). After fixation, the isolated cytoskeletons were stained with an antitubulin antibody. 
(a) View of cytoskeletons of a group of cells with phase contrast i l lumination, (b) indirect immunofluorescence v iew of the same 
field stained with YOL1/34. A nucleus (N) and a nuclear-associated body (NAB) are marked. Bar, 1 /zm. × 1,200. 
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FIGURE 6 Tubutin content of the cytoskeleton. Two-dimensional gels of (a) isolated cytoskeletons (stain) and (b) Western blot of 
a cytoskeleton gel with the anti-sea urchin tubulin antibody. Again, in the Western blot, the brain tubulin was run in the second 
dimension only, on the left side of the gel. 

trast illumination, from controls maintained at room temper- 
ature (as in Fig. 5 a). 

Peptide Maps of the ~-Tubulins from Brain and 
Slime Molds 

Similarities or differences in the primary structure of two 
proteins are often discernible by comparing the sizes of the 
cleavage products following enzymatic digestion with pro- 
teases. S. aureus V8 protease has been the most widely used 
in comparisons of tubulins. While peptide maps of #-tubulin 
from a variety of sources have been remarkably similar, the 
a-tubulins have shown some differences (9, 21, 25). Because 
of difficulties in getting enough slime mold #-tubulin, we have 
compared only the a-tubulin peptide maps of Dictyostelium 
and brain. Although clearly not identical, the peptide patterns 
show some similarity (Fig. 8). Partial cleavage of slime mold 
a-tubulin with V8 protease yields four tyrosine-labeled pep- 
tides, three of which comigrate on 15% gels with the brain a- 
tubulin (arrows in Fig. 8). In contrast, peptide maps of brain 
a-tubulin are completely different from those of brain /3- 
tubulin (data not shown). The slime mold a-tubulin has 
prominent higher molecular weight peptides characteristic of 
some other lower eucaryotic and flagellar a-tubulins (9, 21). 

DISCUSSION 

There are three possible explanations for the unusual isoelec- 
tric point of Dictyostelium tubulin: first, it is an artifact, 
second, it is the result of an unusual posttranslational modi- 
fication; or third, it reflects a difference in the primary amino 
acid sequence of the tubulin protein. 

There are a number of ways in which the charge on a 
protein can be artificially altered. Proteolysis is a particularly 
difficult problem in Dictyostelium, and we have sought to 

minimize it by denaturing the slime mold proteins by boiling 
in SDS prior to electrophoresis (see Materials and Methods). 
In fact, amoebae can be lysed with boiling SDS so that 
denaturation is virtually instantaneous. None of these treat- 
ments affects the migration of brain tubulin on gels. It is also 
possible that the slime mold tubulin is modified in some other 
way upon cell lysis. To address this point, we lysed amoebae 
in the presence of exogenous brain tubulin, and found that 
there are no detectable modifications of the migration of 
either slime mold proteins or brain tubulin on a two-dimen- 
sional gel. We have also used a number of different sample 
preparation and two-dimensional PAGE procedures to re- 
solve slime mold proteins and have not found any protein, 
with the isoelectric point and molecular weight of brain 
tubulin, that reacts with any of the antitubulin antibodies. 
Even when intact Dictyostelium microtubules are isolated in 
cytoskeletons, the tubulin does not behave like brain tubulin 
on two-dimensional gels. Finally, Dictyostelium extracts have 
been fractionated on DEAE sephadex columns, and proteins 
that elute with brain tubulin do not cross-react with the 
antitubulin antibodies in Western blots (data not shown). The 
antibodies do, however, recognize the proteins which flow 
through the column, indicating that native Dietyostelium 
tubulin, like the denatured form, is more basic than brain 
tubulin. Although it is difficult to rule out artifacts completely, 
we believe it unlikely that the charge difference in the tubulins 
is artificially induced. 

Tubulin is known to be posttranslationally modified (re- 
viewed in reference 11), and a number of these modifications 
could result in a more basic tubulin, though none have been 
reported to cause such a large shift in isoelectric point. We 
examined published (1) and unpublished (J. A. Cardelli and 
R. Diamond, personal communication) two-dimensional gels 
of in vitro translation products of Dictyostelium mRNA and 
find a paucity of spots in the brain tubulin region. 
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FIGURE 8 Peptide maps of brain 
and Dictyostelium a-tubulins. Au- 
toradiogram of S. aureus V8 pro- 
tease digestion products of iodi- 
hated Dictyostelium ~-tubulin 
(a) and chick brain a-tubulin (b) 
resolved on a 15% gel. The bars 
mark the position of the un- 
cleaved tubulins, and the arrows 
indicate the common peptides in 
the two. 

FIGURE 7 Treatment of the microtubule system with calcium and 
cold. Cytoskeletons of amoebae coverslips were prepared by ex- 
tracting them in HEMS buffer. After extraction, the cytoskeletons 
were incubated for 20 min in 50 mM HEPES and 5 mM calcium 
(a) or HEMS buffer at -4°C (b), then fixed, and stained with an 
antitubulin antibody. Controls incubated in 50 mM HEPES without 
calcium or HEMS buffer at room temperature displayed a normal 
microtubule pattern as in Fig. 5. Bar, 1 /~m. x 1,200. 

A difference in the primary structure of tubulin could easily 
account for a decrease in negative charge, and there is prece- 
dence for tubulin sequence heterogeneity. Amino acid analy- 
sis (23, 36) and sequence determination (23, 29, 40) have 
confirmed that primary structural differences among tubulins 
do exist. Based on the data from the Western blots of two- 
dimensional gels of Dictyostelium polypeptides using three 
antitubulin antibodies specific for slime mold microtubules, 
Dictyostelium tubulin appears to be more basic than other 
tubulins. Amino acid substitutions could easily explain the 
difference in charge. Peptide maps of brain and Dictyostelium 
a-tubulin are similar enough to suggest that there is not an 
overall sequence polymorphism, but rather that there exist 
local regions of variability. The absence of some of the nu- 
merous carboxy-terminal glutamic or aspartic acid residues 
in both ~- and/3-tubulins (29, 40) could account for this. A 
local alteration at the extremely acidic carboxy-terminus 
could result in a large basic shift in charge while retaining the 
conserved nature of the main body of the tubulin sequence. 
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The function of the carboxy-terminus is unknown, but be- 
cause of the concentration of negative charge and homology 
with troponin T sequences, it has been proposed by Ponstingl 
et al. (29) as a possible binding site for Ca +*. It has already 
been noted that Dictyostelium microtubules are relatively 
insensitive to the depolymerizing effects of Ca ++. 

In addition to the observations already described, Dictyos- 
telium tubulin appears to differ from brain tubulin in other 
respects. An antitubulin antibody with a broad spectrum of 
cross-reactivity, directed against Tetrahymena axonemal tu- 
bulin (41), does not recognize any slime mold proteins by 
Western blot analysis, nor does it stain the microtubule system 
by indirect immunofluorescence (unpublished experiments). 
Thus, slime mold tubulin is missing an antigenic determinant 
common to many tubulins. Slime mold microtubules are also 
more resistant to cold depolymerization in vivo (32) and in 
vitro (this study), and like other fungi, slime molds are sensi- 
tive to colchicine only at concentrations greater than 10 mg/ 
ml (49), yet they are sensitive to vg/ml quantities of benzim- 
idazoles (7, 46). 

Confirmation of these results and determination of the 
specific nature and functional significance of a more basic 
tubulin await the development of an in vitro asssembly sys- 
tem. Because of the low tubulin concentration in Dictyoste- 
lium amoebae (0.5-0.05%), endogenous proteases, and an 
amoeba protein which irreversibly poisons microtubule as- 
sembly (43), this has not yet been possible. These same factors 
have hampered attempts to copolymerize Dictyostelium tu- 
bulin with brain tubulin. We believe that having antibodies 
specific for slime mold tubulin and the ability to isolate 
microtubules from amoebae will greatly facilitate the purifi- 
cation of the tubulin. 
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