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Purpose: To develop a novel method based on biomechanical parameters calculated
from raw corneal dynamic deformation videos to quickly and accurately diagnose
keratoconus using machine learning.

Methods: The keratoconus group was included according to Rabinowitz’s criteria, and
the normal group included corneal refractive surgery candidates. Independent biome-
chanical parameters were calculated fromdynamic corneal deformation videos. A novel
neural network model was trained to diagnose keratoconus. Tenfold cross-validation
was performed, and the sample set was divided into a training set for training, a valida-
tion set for parameter validation, and a testing set for performance evaluation. External
validation was performed to evaluate the model’s generalizability.

Results: A novel intelligent diagnostic model for keratoconus based on a five-layer
feedforwardnetworkwas constructedby calculating four biomechanical characteristics,
including time of the first applanation, deformation amplitude at the highest concav-
ity, central corneal thickness, and radius at the highest concavity. The model was able
to diagnose keratoconus with 99.6% accuracy, 99.3% sensitivity, 100% specificity, and
100% precision in the sample set (n= 276), and it achieved an accuracy of 98.7%, sensi-
tivity of 97.4%, specificity of 100%, and precision of 100% in the external validation set
(n = 78).

Conclusions: In the absence of corneal topographic examination, rapid and accurate
diagnosis of keratoconus is possiblewith theaidofmachine learning.Our studyprovides
a newpotential approach and sheds light on the diagnosis of keratoconus from a purely
corneal biomechanical perspective.

TranslationalRelevance:Ourfindings couldhelp improve thediagnosis of keratoconus
based on corneal biomechanical properties.
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Introduction

Keratoconus (KC) is characterized by central and
paracentral corneal thinning that leads to irregular
astigmatism, causing deterioration of visual acuity and
even loss of vision, with negative consequences on the
quality of life.1 The etiology of KC is not fully under-
stood. Genetics, collagen disorders, endocrine and
cellular metabolism, allergies, and immune deficiencies
may be involved in its occurrence.2 KC is an absolute
contraindication for corneal refractive surgery. The risk
of corneal ectasia increases after refractive surgery,
probably because surgical ablation of the cornea stimu-
lates the progression of occult KC.3 Therefore, the
accurate identification of KC is necessary during
preoperative screening for corneal refractive surgery.

Machine learning (ML) can model the learning
behavior of humans and continuously refine its own
performance to specific requirements. ML is gaining
increasing attention in many fields of medicine,4
including ophthalmology.5 It has been applied in KC
detection,6 as well as in the analysis of corneal imags.7–9
Recently, the concepts of corneal biomechanics have
been employed for KC detection. Changes in biome-
chanical properties may precede alterations in corneal
morphology in KC.10 Therefore, focusing on corneal
biomechanics may be valuable in the diagnosis of KC.

Previous studies on ML were based solely on static
images or specific parameters generated from devices
without considering the potential influence of corre-
lation between parameters on the diagnostic model,
thereby limiting the reliability of the diagnosis.11–13
Moreover, previous studies have found correlations
only between KC and certain biomechanical indices,
and to date, no diagnostic model has been found to
directly diagnose KC based on corneal biomechanical
alterations.14,15 The current study, with the aid of ML
approaches, attempts to analyze the corneal dynamic
deformation process to diagnose KC solely from a
corneal biomechanical perspective.

Methods

Participants

A total of 177 KC eyes of 143 participants were
examined in the Refractive Surgery Centre at the
Tianjin Eye Hospital (Tianjin Medical University,
Tianjin, China). A total of 177 normal eyes of 118
participants were enrolled over the same period. All
participants underwent routine ophthalmic examina-
tions and provided informed consent after an expla-

nation of the nature and possible consequences of the
study. This study was approved by the China Clini-
cal Trial Centre (ChiCTR2000037484) and the Ethics
Review Committee of Tianjin Ophthalmic Hospital
(2021025). All study procedures followed the tenets of
the Declaration of Helsinki.

Inclusion and Exclusion Criteria

KC was defined by the presence of one of the
following clinical signs: stromal thinning, Fleischer’s
ring, Vogt’s striae, Munson’s sign, epithelial or subep-
ithelial scarring associated with a typical topographic
pattern (asymmetric bow tie with a skewed radial
axis), central K-value>47.00 diopters (D) and inferior-
superior asymmetry (I-S value) >3.0 D according to
Rabinowitz’s criteria,1 and a corrected distance visual
acuity<1.0. All participants had no history of wearing
contact lenses.

The inclusion criteria for the control group were
as follows: randomly selected candidates for corneal
refractive surgery with no history of ocular surgery
or trauma, no active ocular disease, and a corrected
distance visual acuity≥1.0. Contact lenses were discon-
tinued (soft contact lenses for at least 2 weeks, rigid
contact lenses for at least 4 weeks, and keratoplasty
lenses for at least 3months) before corneal assessments.

Data Acquisition

Demographic data, such as participants’ age and
gender, were recorded, and visual acuity, as well as
objective and manifest refraction, was measured.
Additionally, slit-lamp microscopy, noncontact
intraocular pressure, fundoscopy, corneal morphology,
and corneal biomechanics were performed.

Corneal biomechanics of all participants were
measured using Corvis ST (Corneal Visualization
Scheimpflug Technology; Oculus, Wetzlar, Germany).
Corvis ST applanates the cornea using a puff of air,
and the corneal deformation process is recorded by
a Scheimpflug high-speed camera at a shot speed of
4330 frames/s. During the examination, the participant
was seated in a stable position on a chinrest. They were
then asked to blink and then look at a fixed point to
expose the cornea. The examiner next adjusted the
joystick, and the machine automatically identified
the cornea and applied pressure by spraying pulsed
air to obtain dynamic corneal response parameters,
waveforms, and videos. During the measurements, air
pulse application of pressure onto the corneal surface
caused deformation, with downward depression reach-
ing first, then flattening, and then reaching the highest
concavity. This was immediately followed by a second
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flattening during the recovery process of deformation
and then a return to a natural state after brief fluctu-
ations. Measurements were recorded only when the
“Quality Control Score” displayed “OK.”

Learning Model

This study used a video that records the entire
dynamic process of the cornea undergoing deforma-
tion by force to calculate the parameters by which the
cornea is subjected to air pulses that reflect its biome-
chanical properties.

The first step was to sample and analyze the video,
which had a total time of 31.88ms and 139 total frames.
Every 0.23 ms (31.88 ms/139 = 0.23 ms), a frame was
obtained, and a total of 115,200 corneal contour data
points were extracted from each frame’s data on the
corneal contour. An image from the video is shown
in Figure 1. We used the least squares method to fit a
straight line near the corneal apex and calculated the
time to the first applanation. We obtained HC-DA by
calculating the distance between the initial position of
the corneal apex and the nadir at the highest concavity.
We used the curvature formula to calculate the radius
of curvature at the maximum concavity, HC-R. In the
normal state, the distance between the anterior and
the posterior surface is the central corneal thickness
(CCT). We then used the four corneal biomechanical
parameters calculated above to train the feedforward
neural network model, 5-FNN, to distinguish normal
corneas from KC.

The 5-FNN model is based on error backprop-
agation and is a parallel-distributed network with
three hidden layers containing 20 neurons each. This
enhances the expressiveness of the model and makes
it suitable for KC diagnosis. It is a supervised learning
algorithm that completes predictions through forward
propagation and training by backpropagation.

This study trained a 5-FNNmodel with 276 samples
(half with keratoconus and half with normal corneas)
to find the appropriate coefficient matrix Wl and
offset bl to construct a predictive model for KC. We
used the mean squared error as the loss function to
measure the output loss of the training samples; that
is, we expected to minimize the following equation:

min J (W, b, x, y)
W,b

= 1
2

∥
∥al − y

∥
∥2
2

= 1
2

∥∥σ
(
Wlal−1 + bl

) − y
∥∥2
2 .

We used the gradient descent method to iteratively
solve each layer for Wl and bl.

Figure 1. Corneal contour data. Corneal force deformation
processes recorded with Corvis ST. By segmenting the dynamic
video, the original corneal contour is extracted, and corneal
biomechanical parameters are calculated.
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Statistical Analysis

Tenfold cross-validation was performed. The
sample set was divided into 10 mutually exclusive
subsets, and each subset had a similar distribution.
Nine subsets were used to develop the parameters
(eight subsets composed the training set and were used
for training while one subset composed the valida-
tion set and was used for parameter validation); the
remaining subset was used as the test set to evaluate
performance. This process was randomly repeated
10 times, and the average value was used as the final
result. Moreover, an external validation set was used
to validate the model’s generalizability.

We defined the evaluation criteria for classifying
concordant and discordant results as follows:

• TP (true positive): Number of correctly classified
KC

• FP (false positive): Number of normal eyes
misclassified as KC
• TN (true negative): Number of correctly classified
normal eyes
• FN (false negative): Number of KC misclassified
as normal eyes

For each 10 repetitions, the accuracy, sensitivity,
specificity, and precision were calculated as follows:

• Accuracy = (TP + TN) / (TP + FP + TN + FN)
• Sensitivity = TP / (TP + FN)
• Specificity = TN / (TN + FP)
• Precision = TP / (TP + FP)

All statistical analyses were performed using Statis-
tical Package for the Social Sciences version 26.0
software (International Business Machines Corp.,
Armonk, NY, USA). Receiver operating characteristic

Figure 2. Visual analysis of the role of the parameters. Distribution of parameter values visualized to analyze differences between kerato-
conus and normal corneas. 1st A-time, the first applanation time; HC-DA, highest concavity deformation amplitude; HCR, highest concavity
radius.
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curve was used to analyze the ability of Corvis Biome-
chanical Index (CBI) to diagnose keratoconus and to
calculate the cutoff value for the best diagnostic ability.

Results

A total of 177 KC eyes of 143 patients (93 men
and 50 women; age range, 14–40 years; median age,
23.96 ± 5.02 years) and 177 normal eyes of 118 partic-
ipants (66 men and 52 women; age range, 18–43 years;
median age, 24.42 ± 5.93 years) were included in this
study; 354 corneal dynamic deformation videos (half
with keratoconus and half with normal corneas) were
analyzed, of which 276 were for training and testing
and 78 were for external validation. The first A-time,
HC-DA, CCT, andHC-Rwere calculated after extract-
ing corneal contours using the OTSU algorithm incor-
porating logistics with morphology, which were then
used for constructing the 5-FNN model.

We calculated the first A-time, HC-DA, CCT, and
HC-R on pixel-level data and then used these four
corneal biomechanical parameters to train the 5-FNN
model to distinguish normal corneas from KC without
corneal morphologic examination or clinical signs and
symptoms. The four corneal biomechanical character-
istics used in our 5-FNNmodel could effectively distin-
guish KC from normal eyes, and the effects of the four
corneal biomechanical parameters on KC occurrence
were further investigated by visual analysis, as shown
in Figure 2. There were significant differences in first
A-time, HC-DA, and HC-R between KC and normal
corneas.

We calculated novel neural network model predic-
tions using the standard statistics as described in the
methods, where 138 normal eyes were correctly classi-

Table 1. Comparative Results of Corneal Biomechanics

Characteristic Sensitivity, % Specificity, %

CRF 80.7 84.7
CH 85.5 89.1
5-FNN 99.3 100

CH, corneal hysteresis; CRF, corneal resistance factor.

Figure 3. Receiver operating characteristic curve.

fied as normal, and 137 KC were correctly classified
as KC. Of the latter, one case of KC was misclassi-
fied as a normal eye in the sample set. A comparison
of the different biomechanical properties is presented
in Table 1.

In the sample set (n = 276), we used CBI to separate
normal from keratoconic eyes, with a cutoff value of
0.329, with 96.4% accuracy, 92.7% sensitivity, 100%
specificity, and 100% precision. We found that our 5-
FNN model could detect KC with 99.6% accuracy,
99.3% sensitivity, 100% specificity, and 100% precision
compared to support vector machine and computer-
aided diagnosis (Table 2). The receiver operating
characteristic curve is shown inFigure 3. In the external
validation set (n = 78), the accuracy for the diagnosis
of keratoconus was 98.7%, sensitivity was 97.4%, speci-
ficity was 100%, and precision was 100%.

Discussion

In this study, corneal biomechanical parameters
were calculated using corneal dynamic deformation
videos; this was achieved to distinguish keratoconus
from normal corneas and has not been previously
reported. We applied quantified corneal biomechan-
ical properties in a 5-FNN model in the diagnosis
of KC from a pure corneal biomechanical perspec-

Table 2. Model Comparison Results

Characteristic Accuracy, % Sensitivity, % Specificity, % Precision, %

CAD 98.4 97.1 99.6 99.6
SVM 96.9 92.8 98.2 94.6
5-FNN 99.6 99.3 100 100

CAD, computer-aided design; SVM, support vector machine.
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tive without reliance on topography. The development
of ML theory has provided new opportunities for the
intelligent diagnosis of KC. A previous study using
an automated decision tree achieved good diagnos-
tic performance based on 55 morphologic features
obtained by Pentacam.7 A computer-aided design
model for the diagnosis of KC was constructed using
14 morphologic indices obtained by Pentacam with
a sensitivity of 96.0% and a specificity of 99.3%.16
Meanwhile, another study used ML algorithms to
construct a neural network model combining Penta-
cam and optical coherence tomography and captured
49 morphologic parameters for the diagnosis of early
stage KCwith a sensitivity and specificity of 98.5% and
94.7%, respectively.17 It is not hard to see that previ-
ous studies established intelligent diagnostic models
of KC mostly based on corneal morphologic charac-
teristics. However, in the early stages of KC, there
are no obvious changes in corneal morphology, which
means that there are no abnormalities on slit-lamp
examination and corneal topography, and there are
no obvious clinical signs of the disease. Roberts and
Dupps18 suggested that the underlying cause of KC
is an abnormality in the biomechanical properties of
the cornea, while morphologic changes in the cornea
are secondarymanifestations. Based on this hypothesis,
our study constructed an intelligent diagnostic model
from the perspective of pure biomechanical properties
to effectively distinguish KC from the normal cornea.

Corneal biomechanical properties show alterations
in the early stages of KC,19 and corneal rigidity
gradually declines with the progression of KC.20 The
keratoconusmatching index and keratoconusmatching
probability provided by the Ocular Response Analyzer
(Reichert Ophthalmic Instruments, Buffalo, NY, USA)
were shown to be reliable indicators for the diagno-
sis of KC with an accuracy of 97.7%, sensitivity of
91.18%, and specificity of 94.34%.14 Sedaghat et al.11
determined the role of corneal biomechanical proper-
ties and corneal morphologic characteristics in the
detection of KC using linear regression models and
found that certain parameters had good sensitivity and
specificity for the diagnosis of KC. Another corneal
biomechanical parameter, the Corneal Biomechanical
Index, was introduced in 2016 to distinguish KC from
normal eyes with a sensitivity of 94.1% and a speci-
ficity of 100%.21 Likewise, other studies reported good
KC detection ability using corneal dynamic response
parameters from the Corvis ST with linear regression
models and random forests.13,15 It is noteworthy that
these parameters are directly generated by the Ocular
Response Analyzer or Corvis ST, and the dependency
of the diagnostic model on the device may affect the
general applicability of the model. Furthermore, it has
also been demonstrated that, if there is a correlation

between parameters, both the accuracy and consis-
tency of the model predictions are compromised.20,22
The 115,200 contour points on the cornea in our
study were randomly selected for training. We used the
traditional OTSU algorithm combined with morphol-
ogy and logistics to extract corneal contours closer
to the actual state based on the most original corneal
dynamic deformation data to calculate parameters for
true biomechanical properties at specific locations in
the more adherent cornea. This allowed us to bring a
new perspective on the diagnosis of KC from a biome-
chanical perspective.

Further analysis found that the correlation between
the parameters we calculated was extremely weak;
therefore, we did not need to account for the issue
of limited model performance. We also investigated
the role of corneal biomechanical parameters in the
diagnosis of KC by visual analysis (Fig. 2). It was
observed that the first A-time, HC-DA, and HC-R
differed significantly between KC and normal corneas.
The difference in CCT was not significant. However,
previous studies have shown that CCT affects the
biomechanical properties of the cornea.23 Therefore,
after evaluating the correlation and cumulative effects
of these parameters, as well as the stability and repeata-
bility of the measurements, we selected first A-time,
HC-DA, HC-R, and CCT to train the 5-FNN model.
At the same time, we recommend that these proper-
ties be used as typical KC diagnostic and screening
indicators. In contrast to linear regression models, the
5-FNN model that our study uses is based on error
backpropagation, which has a strong nonlinear fitting
capability suitable for modeling complex nonlinear
relationships. The 5-FNN model can fit any variable
relationship with slightly better prediction accuracy.
Furthermore, accuracy and sensitivity analyses of the
model hyperparameters have been performed, and
the advantages of the 5-FNN model are expected to
increase as more corneal biomechanical features are
incorporated into our training set.

The diagnosis of KC is currently based on clini-
cal examination and corneal topography.24 The biome-
chanical parameters described in our study provide
a rationale for further quantitative analysis of KC
diagnosis from a new perspective. It is a novel attempt,
after which we will make gradual improvements, and
the increased sample size for validation makes it more
rigorous. A limitation of this study was its cross-
sectional design. In future studies, we plan to also
conduct fundamental research to explore the true
biomechanical properties with the hope of achiev-
ing differentiation between the different severities of
keratoconus. Furthermore, due to the complexity of
viscoelastic biomechanical behavior as well as the influ-
ence of confounding factors, accurate assessment of
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biomechanical properties in vivo is very difficult, and
the real reaction in in vivo corneal biomechanics needs
to be explored in the future.

In conclusion, this study enables automatic classi-
fication based solely on biomechanical parameters,
calculated from pixel data during dynamic deforma-
tion of the cornea. This model provides a definitive
diagnostic conclusion for KC from a purely corneal
biomechanical perspective and demonstrates the feasi-
bility and superiority of biomechanical properties in
diagnosing KC. External validation was performed
for the model’s generalizability, and better validation
results could be obtained with a larger sample data
set. It is worth noting that this study analyzes corneal
biomechanical properties using dynamic videos, but
the acquisition of the videos is not limited to certain
devices, meaning that our diagnostic model is valid as
long as there is a video of corneal force deformation
and interchangeable testing.
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