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Abstract
We consider a mathematical model describing the maturation process of stem cells
up to fully mature cells. The model is formulated as a differential equation with state-
dependent delay, where maturity is described as a continuous variable. The maturation
rate of cells may be regulated by the amount of mature cells and, moreover, it may
depend on cell maturity: we investigate how the stability of equilibria is affected by the
choice of thematuration rate.We show that the principle of linearised stability holds for
this model, and develop some analytical methods for the investigation of characteristic
equations for fixeddelays. For a generalmaturation ratewe resort to numericalmethods
and we extend the pseudospectral discretisation technique to approximate the state-
dependent delay equation with a system of ordinary differential equations. This is the
first application of the technique to nonlinear state-dependent delay equations, and
currently the only method available for studying the stability of equilibria by means
of established software packages for bifurcation analysis. The numerical method is
validated on some cases when the maturation rate is independent of maturity and the
model can be reformulated as a fixed-delay equation via a suitable time transformation.
We exploit the analytical and numerical methods to investigate the stability boundary
in parameter planes. Our study shows some drastic qualitative changes in the stability
boundary under assumptions on the model parameters, which may have important
biological implications.
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1 Introduction

Maturation of cells, from the stem cell phase up to the fully mature phase, is an essen-
tial, and yet not completely understood, phenomenon. It is particularly interesting
to understand what are the processes that promote a healthy equilibrium population
state, or homeostasis, and what are those that may induce destabilisation of the equi-
librium and appearance of periodic behaviour. We remark that oscillations play an
important role in stem cell population dynamics in relation to hematological disorders
like cyclic neutropenia and periodic myelogenous leukemia, see for instance Mackey
(1978), Bernard et al. (2003), Pujo-Menjouet et al. (2005), and Adimy and Crauste
(2012).

In this paper we investigate a stem cell model where maturation is described as a
continuous process, andwe show that the stability properties of the positive equilibrium
are crucially affected by the choice of thematuration speed. In particular, we prove that
different choices of the maturation speed imply qualitative and quantitative changes
in the regions of stability of the equilibrium in parameter planes. We achieve this by
developing analytical and numericalmethods for the analysis of equilibria and stability
of structured population models.
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More precisely, the model is motivated by the blood cell production system and in
particular by the production of white blood cells. It describes the process of division
of cells by mitosis, their self-renewal, the differentiation of stem cells into progeni-
tor cells (also called simply progenitors), and a continuous maturation process of the
progenitors up to the transition into the mature cell compartment, see also Fig. 1. The
mature cell population regulates the processes of division, self-renewal, differentiation
and maturation. The development of progenitors, and in particular their self-renewal
and maturation, depends on their maturity, which is described by a deterministically
developing one-dimensional variable. In this way the progenitor population has con-
tinuous maturity structure. The latter is useful when it is not possible to divide the cell
population into a finite number of discrete subpopulations. The continuous variable
may represent a measurable quantity that evolves during maturation. This can be for
instance age, size, or, as mentioned by Potten and Loeffler (1990) (to which we also
refer for a short review of the biological terms), position in the tissue or “the weight
of a specific protein per cell”. An advantage of keeping the model general, without
specifying the maturity variable, is that it potentially applies to different cell types and
laboratory measurements.

We note that a similar concept of continuous maturity structure in the context
of blood cells is considered by Adimy et al. (2005). Hematopoietic stem cells are
divided into a resting and a proliferating phase, and the duration of the proliferating
phase is assumed to depend on the maturity at commitment. Adimy and Crauste
(2009) introduced regulation of the processes by growth factors, which are for instance
proteins like G-CSF or EPO, that are controlled by the amount of mature cells. Adimy
et al. (2010) considered an age-structuredmodelwith fixed duration of the proliferating
phase. We refer to Pujo-Menjouet (2016) for a recent review of models for blood cells.
All the above-mentioned models focus on the stem cell phase, which they structure by
maturity. Moreover, they assume that cells divide only at the end of the proliferating
phase, and division is assumed to be symmetric: upon division, two identical cells are
produced and enter immediately the resting phase.

We consider amodel for cell maturationwhere stem cells are assumed to be unstruc-
tured, whereas the maturity structure is introduced in the progenitor compartment.
Moreover, we include the case of asymmetric cell division: two daughter cells are not
necessarily of the same type, but they may belong to different compartments (stem or
progenitor). In particular, this is achieved with the concept of fraction of self-renewal
of stem cells (see also s(v) in Table 1), representing the fraction of daughter cells that
are themselves in the stem cell compartment. The complementary fraction of daughter
cells is assumed to enter the progenitor compartment with the initial maturity level.

A model motivated by these assumptions, but including a finite number of com-
partments to describe the progenitor phase, was established by Marciniak-Czochra
et al. (2009). The finite number of compartments can be replaced with continuous
maturity structure, where a progenitor cell is assumed to either undergo maturation
or divide and produce daughter cells at the same maturity stage. In the literature, this
has been done in two ways (see also Sect. 2 for more details). The first approach is
by means of a partial differential equation (PDE) of transport type for the progenitor
cells, coupled with two ordinary differential equations (ODE) for, respectively, stem
and (fully) mature cells. This was first done by Doumic et al. (2011). Alternatively one
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can formulate the system as a delay differential equation (DDE) for the mature cells,
in which the delay is state-dependent, coupled with the ordinary differential equation
for the stem cells. A first formulation as a state-dependent delay differential equation
(SD-DDE) was derived by Alarcón et al. (2011). Here we consider a slightly adapted
SD-DDE formulation derived by Getto and Waurick (2016) (see again Sect. 2).

By guaranteeing differentiability of the functional inducing the DDE and an appli-
cation of a theoretical result for SD-DDE ofWalther (2003), Getto andWaurick (2016)
showed that the model is well posed and that a linear variational equation can be asso-
ciated with the solutions. The stem cell model has a trivial equilibrium and a positive
equilibrium, which emerges from the trivial in a transcritical bifurcation. Recall that
the principle of linearised stability allows to determine the stability of the equilibrium
with respect to perturbed initial conditions by locating the roots of a characteristic
equation with respect to the imaginary axis.

The cell maturation model considered in this paper is an instance of a physiologi-
cally structured populationmodel in the sense ofMetz andDiekmann (1986) andDiek-
mann et al. (2001). Such models are often formulated as Volterra functional equations
coupled with DDE, in which the latter do not feature state-dependent delays. The prin-
ciple of linearised stability in this formulation was proven by Diekmann et al. (2007)
for the case of finite delay, and byDiekmann andGyllenberg (2012) for the case of infi-
nite delay.Diekmann andGyllenberg (2007) gave conditions for differentiability of the
right-hand side of a Volterra functional equation describing size-dependent cannibal-
ism, thus providing the key to linearised stability analysis.A size-structured consumer–
resource model was formulated by Diekmann et al. (2010, 2017) as a Volterra
functional equation, and the linearisation computed analytically. For a special case
of the model, the differentiability assumption required in Diekmann et al. (2007) was
proven by Diekmann and Korvasová (2016). We stress that, apart from these papers,
very few proofs of linearised stability exist for physiologically structured population
models. Therefore, there are substantive grounds for developing methods for a more
in-depth stability analysis. Here were develop both analytical and numerical methods.

Regarding analytical methods, in this paper we combine the linear variational equa-
tion derived byGetto andWaurick (2016)with theoretical results on linearised stability
for SD-DDEbyHartung et al. (2006) andStumpf (2016), to guarantee that the principle
of linearised stability holds for the stem cell model in the DDE formulation. Then, we
use the linear variational equation to derive characteristic equations for arbitrary, trivial
and positive equilibria, respectively. We use these to derive the following results. The
trivial equilibrium is stable in absence of the positive one and unstable in its presence,
and the positive equilibrium is stable upon emergence through a transcritical bifur-
cation. This result is in agreement with the analysis of the multi-compartment model
of Stiehl and Marciniak-Czochra (2011) and with the analysis of the PDE model of
Doumic et al. (2011).Regarding the positive equilibrium,we also prove that in the right
half-plane there are no roots of the characteristic equation outside of a compact set.
These results can be combinedwith an argument of Diekmann et al. (1995) to conclude
that roots can enter the right half-plane only through a compact subset of the imaginary
axis, and thus the positive equilibrium can destabilise only if the latter occurs.

By the previous arguments, it makes sense to analyse the characteristic equation for
the positive equilibrium on the imaginary axis, but the complexity of the characteristic
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equation in full generality motivates us to focus on special scenarios. Here, we con-
sider a simplified characteristic equation where the dependence on maturity and on
mature cell population of the progenitor development, given by maturation and self-
renewal, can be neglected. In the population dynamical formulation, this simplification
would transform the SD-DDE to a DDE with fixed delay, meaning a fixed positive
time delay between leaving the stem cell compartment and entering the mature cell
compartment. For this case, we show that the positive equilibrium can destabilise by
a pair of conjugate roots crossing into the right half-plane, which gives evidence for
a Hopf bifurcation.

To visualise the results (both analytical and, later on, numerical), we consider
specifications of the model ingredients taken or adapted from the available literature.
We single out pairs of parameters and we distinguish, in the associated parameter
plane, the regions in which the positive equilibrium is stable and the regions in which
it is unstable. These regions are shown via a curve, representing the stability boundary,
that is parametrised by the position of the roots on the imaginary axis. This approach
was presented for a prototype characteristic equation by Diekmann et al. (1995) and
elaborated for a somewhat more general characteristic equation by Alarcón et al.
(2014), and later by Diekmann et al. (2016). The characteristic equation analysed here
is yet slightly more involved and we show some qualitative features that are not shown
in the former references: depending on a third parameter, the curve describing the
stability boundary has a unique minimum or is monotonically increasing.

For the analysis of the stability boundaries in more general cases, we propose
numerical methods. The perhaps most generally applicable method for stability anal-
ysis in continuous population dynamics is the pseudospectral discretisation approach.
The approach was first applied for studying the stability of the zero solution of linear
DDE with fixed delay by Breda et al. (2005, 2013), see also Breda et al. (2015b) for a
review, and applied to the linearisation of a size-structured consumer–resource model
by Breda et al. (2015a). The pseudospectral discretisation was then applied by Breda
et al. (2016a) to nonlinear delay equations, including both differential and integro-
differential equations with fixed delay, and later extended to equations with infinite
delay by Gyllenberg et al. (2018). With this method, the nonlinear DDE is approxi-
mated with a system of ODE, whose properties can be studied numerically with the
package matcont for matlab, a well-established tool for the numerical bifurca-
tion analysis of ODE developed by Dhooge et al. (2003, 2008). Here, we extend the
approach to the case of SD-DDE. This is done by exploiting the uniform bound to the
state-dependent delay, which ensures that the states of the dynamical system associ-
ated with the DDE are defined on a fixed and bounded interval. The latter interval is
then discretised with a finite number of points and the state of the system is projected
in the finite-dimensional space of polynomials via the pseudospectral approximation
method. To the best of our knowledge, this is the only technique that allows the user
to study numerically the stability boundaries of DDE with history-dependent delay
using available software packages.

Since this paper contains the first application of the pseudospectral approach to
SD-DDE, here we put a strong emphasis on numerical validation, remarking that this
benefits the credibility of both the methods, numerical and analytical, involved here.
Validation can be carried out for the case of constant maturation speed mentioned
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above (for which the analytical methods can also be applied), and for a more general
case of maturation speed independent of the current value of maturity, that we are
going to describe below.

Suppose that the speed of maturation of progenitors is still allowed to depend on the
mature cell population, but it is independent of the maturity of the progenitor cell. This
is a mathematically motivated simplification which may apply to a biological scenario
in which the maturation rate of a progenitor cells at any stage is regulated only by
external growth factors, which we assume regulated only by the population of mature
cells. In the formulation of the populationmodel, this means that the delay is still state-
dependent, but the state-dependence is somewhat more explicit. In this case, a suitable
time transformation allows to rewrite the SD-DDE as an equation with fixed delay.

We mention that, for a scalar equation with threshold-type delay, an analogue time
transformationwasfirst considered bySmith (1992, 1993).More recently, the transfor-
mation has been successfully applied to study the dynamical and bifurcation properties
of delay models describing complex structured ecological systems, for instance by
McCauley et al. (2008), Nelson et al. (2013), Bjørnstad et al. (2016) andNisbet (1997).
Apart from these applications, we could not find in the literature a rigorous statement
of the correspondence of solutions of the two systems and of the related stability prop-
erties. Here we define the transformation explicitly introducing a parametrised map,
and we show rigorously the invariance of equilibria and stability properties.

We then remark that DDE with merely fixed delays can be studied numerically
with the package dde- biftool for matlab, developed by Engelborghs et al. (2002).
Like matcont for ODE, dde- biftool allows the user to perform for instance the
one-parameter continuation of equilibria and periodic solutions, the computation of
eigenvalues and multipliers, and the continuation of bifurcation points in two param-
eters. Hence, in the case of maturation speed independent of maturity, there are three
numerical methods for computing stability boundaries at disposal: pseudospectral
method (and matcont analysis) applied to the SD-DDE, pseudospectral method
applied after the transformation to a fixed-delay DDE, and dde- biftool after the
transformation. We stress moreover that, in the case of a fixed delay in the untrans-
formed model, the stability boundaries are available analytically and can be compared
with the numerically computed curves. We use all of the above methods to compute
stability boundaries and find that, upon changing the method, differences in the visu-
alised boundaries are not distinguishable by eye. These tests support the validity of the
pseudospectral approximation applied to SD-DDE, and justify the application of the
method for studying the stability boundaries of more general instances of the model
for which, as already mentioned, no other software package is available.

The stability boundaries presented here are the first to be computed for this model.
They are carried out for rate specifications taken from the literature from Marciniak-
Czochra et al. (2009), Doumic et al. (2011) and Stiehl et al. (2014). The specifications
include different regulation mechanisms of the stem cell processes, like division or
self-renewal, by the mature cell population. As for the progenitor maturation rate, for
which we could not find an established formulation, we considered a new formulation
that can incorporate different types of dependence on both maturity and mature cells.
Of potential biological interest are some rather drastic changes in the curves upon
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changing these regulation modes. A cell biological interpretation of these changes
and laboratory validation are some of the future perspectives of this research.

The paper is structured as follows. Section 2 introduces the model, see Eqs. (2.5)–
(2.8). In Sect. 3 we recall some theoretical results about existence and uniqueness of
solutions and the principle of linearised stability for equilibria. In Sect. 4 we compute
the equilibria of the general model and the corresponding characteristic equations; we
give conditions for the existence of a positive equilibriumwhich destabilises the trivial,
and we show that the positive equilibrium is stable upon emergence. In Sect. 5 we
restrict to a particular instance of Eqs. (2.5)–(2.8) with fixed delay; we give analytical
formulas for the stability boundary of the positive equilibrium and we describe how
the boundary changes qualitatively when the maturation rate changes. In Sect. 6 we
consider the case of a maturation rate independent of maturity: we introduce a time
transformation to define an equation with fixed delay with the same equilibria and the
same stability properties. In Sect. 7, we explain how to approximate SD-DDE of the
type (2.5)–(2.8) with the pseudospectral discretisation technique, and we specify the
approximating systemofODE. Finally, in Sect. 8we consider different assumptions on
the maturation rate and we investigate numerically the effect on the stability boundary
of the positive equilibrium. The proofs of the mathematical results of Sects. 3–6 are
collected in the “Appendix”.Wehave tried to structure and highlight the paper such that
each reader, inclined either to biological, computational or analytical aspects, should
be able to find the relevant topics, with no need of going deeply into details about
the other disciplines. In particular, we tried to present the main results and Sect. 9,
which also contains a discussion of the potential biological relevance of the results, in
a rather self-contained way.

2 Themodel

We consider a model for cell maturation studied in PDE formulation by Doumic et al.
(2011) and in DDE formulation by Getto andWaurick (2016). A schematic illustration
of the model is given in Fig. 1.

Cells are divided into stem cells, progenitor cells and fully mature cells. Stem cells
and fully mature cells are unstructured in the sense that only their total amount, w(t)

Fig. 1 Schematic representation of the model: at time t , w(t) and v(t) denote the total amount of stem cells
and mature cells, respectively; u(t, x) is the amount of progenitor cells with maturity x ∈ [x1, x2]. The
processes are indicated in the figure
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and v(t), respectively, affect the population dynamics. Progenitor cells, on the other
hand, are structured by a one dimensional quantity denoted by x and taking on values
in the finite interval [x1, x2]. We let u(t, x) denote the density of progenitor cells with
maturity x at time t .

We assume that the maturation process, including stem cell self-renewal and divi-
sion, is subject to regulation by themature cells v and by those only. In the terminology
of Diekmann, Metz and collaborators [Metz and Diekmann (1986), Diekmann et al.
(2001, 2003, submitted)], v plays the role of the environmental condition.

Let q(v) denotes the net growth rate of the stem cell population. This rate incorpo-
rates division, self-renewal, differentiation, which means transition to the progenitor
compartment, and apoptosis, or mortality, of cells. The dynamics of the stem cells is
given by the ordinary differential equation

w′(t) = q(v(t))w(t). (2.1)

Next, let g(x, v) > 0 and d(x, v) be the maturation rate and net production rate,
respectively, of progenitor cells. The rate d captures both self-renewal and decay of
progenitor cells. The density u(t, x) of progenitor cells satisfies the PDE

∂

∂t
u(t, x) + ∂

∂x
(g(x, v(t))u(t, x)) = d(x, v(t))u(t, x). (2.2)

At any time the total outflow from the stem cell compartment equals the inflow into
the progenitor cell compartment. Therefore the PDE (2.2) must be supplemented by
the following boundary condition:

g(x1, v(t))u(t, x1) = γ (v(t))w(t). (2.3)

Finally, progenitor cells are assumed to become fully mature upon reaching maturity
x2 and this leads to the following equation for the fully mature cells:

v′(t) = g(x2, v(t))u(t, x2) − μv(t), (2.4)

where μ is the per capita death rate of fully mature cells.
The system (2.1)–(2.4) specifies a physiologically structured population model.

Observe that if v(t) is assumed to be a known function of time, the system (2.1)–(2.3)
is a time-dependent linear system forw and u. The feedback described by (2.4) makes
the full system into a nonlinear autonomous system.

The progenitor cell compartment can be eliminated from the system (2.1)–(2.4)
by careful book-keeping. Notice that the progenitor cells reaching full maturity at
x = x2 at time t are the stem cells that differentiated and became progenitor cells
with maturity x = x1 at some time t − τ earlier plus those who have been born on the
way due to self-renewal minus those who have died. Because the maturation rate g
depends on the current density of fully mature cells, the maturation delay τ depends
on the history vt of the fully mature cells, where we have used the standard notation

xt (s) := x(t + s), s < 0,

if a function x is defined in t + s.
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To define τ(vt ) we first define the function y(·, vt ) as the unique solution of the
initial value problem

y′(s) = −g(y(s), vt (−s)), s > 0,

y(0) = x2,
(2.5)

given the history vt of the fully mature cells. Note that y(s, vt ) is the maturity of a
progenitor cell s time units before it reaches full maturity at time t , that is, its maturity
at time t − s.

Because the maturation rate g is assumed to be positive, the function y(·, vt ) is
monotone and therefore for any given history vt , the equation

y(τ, vt ) = x1, (2.6)

has a unique solution τ(vt ), which is the time it took for a progenitor cell to mature
from x = x1 to x = x2, given that it reached x = x2 at time t .

The book-keeping alluded to above amounts to integrating the PDE (2.2) along
characteristics (Metz and Diekmann 1986). This was done by Getto and Waurick
(2016). Substituting the resulting expression for u(t, x2) into (2.4) they obtained

w′(t) = q(v(t))w(t), (2.7)

v′(t) = γ (v(t − τ(vt )))g(x2, v(t))w(t − τ(vt ))

g(x1, v(t − τ(vt )))
e
∫ τ (vt )
0 (d−D1g)(y(s,vt ),v(t−s)) ds

−μv(t). (2.8)

Here and in the rest of the paper, the notation Dj denotes the derivative of a function
with respect to its j-th argument.

TheEqs. (2.7) and (2.8)with y and τ given by (2.5) and (2.6), respectively, constitute
the model which will be studied in the current paper.

Equations (2.7) and (2.8) consist of an ODE coupled with a differential equation
with state-dependent and distributed delay (DDE) in which the state-dependent delay
is defined via a threshold condition. We remark that a more explicit derivation of
the DDE directly from first principles was attempted by the first author in a paper by
Alarcón et al. (2011). However, that derivation erroneously missed the integral of D1g
in the exponent (the dilation factor, see Metz and Diekmann (1986)), as well as the
ratio g(x2, v(t))/g(x1, v(t − τ(vt ))), which comes from the equation of fluxes at the
boundaries of the maturation interval, taking into account that the maturation speeds
differ at the boundaries x1 and x2.

For a more in-depth analysis we will use the specifications for q and γ as given in
Table 1. These ingredientswere derived byMarciniak-Czochra et al. (2009) for amulti-
compartment model describing hematopoietic stem cells producing leukocytes, and
later considered by Getto and Marciniak-Czochra (2015) for the multi-compartment
model as well as for the present model. They are based on the assumption that the
individual stem cell division rate (dw(v)) and the fraction of self-renewal (s(v)) are
regulated by a single external feedbackmechanism through some signallingmolecules
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Table 1 Specifications for stem cell rates, from Marciniak-Czochra et al. (2009) and Getto and Marciniak-
Czochra (2015)

Description Function

Net growth rate q(v) = [2s(v) − 1] dw(v) − μw

Rate of inflow into progenitors γ (v) = 2 [1 − s(v)] dw(v)

Division rate dw(v) = p
1+kpv

Fraction of self-renewal s(v) = a
1+kav

The parameterμw is the stem cell mortality rate. The parameters a, p, ka , kp are nonnegative, with a > 0.5

called “cytokines”. The signal may either enhance the division rate or the fraction of
self-renewal. The mechanistic derivation of the signal intensity (which justifies the
form of the rates s(v) and dw(v) in Table 1) was obtained by Marciniak-Czochra et al.
(2009) through a quasi-steady state approximation. In this paper, we either consider
a generic progenitor production rate d or neglect progenitor production by assuming
d ≡ 0. For g we will consider various choices that will be given below.

In the model of Marciniak-Czochra et al. (2009) stem cells are still described by
(2.7),whereas progenitors are divided into a discrete number of compartments inwhich
cells can divide, self-renew and differentiate (similarly as stem cells). Accordingly,
the rates of inflow and net production of progenitor cells are described by rates with
the same algebraic construction as the rate of inflow and net growth rate in Table 1,
but possibly for different parameter values. Alarcón et al. (2011) and Doumic et al.
(2011) replaced the discrete number of progenitor compartments by one progenitor
compartment featuring continuousmaturity structure as in (2.5) and (2.6). The dynam-
ics within this compartment can be described by a classical transport equation. If the
rates are specified as in Table 1, the model assumptions are equivalent to those of
Doumic et al. (2011), and the results can be compared to this paper.

3 Linearised stability theorems

We show that the model can be analysed using results for a general class of DDE of
the form

x ′(t) = f (xt ), (3.1)

where f : O → R
n is defined on a suitable open subset O ⊂ C1([−h, 0], R

n) for an
appropriately chosen h ∈ (0,∞). The model (2.5)–(2.8) can obviously be written as
an equation of the above type if we set f = F and define

F1(ϕ, ψ) = q(ψ(0))ϕ(0)

F2(ϕ, ψ) = γ (ψ(−τ(ψ)))g(x2, ψ(0))ϕ(−τ(ψ))

g(x1, ψ(−τ(ψ)))
e
∫ τ (ψ)
0 (d−D1g)(y(s,ψ),ψ(−s)) ds

−μψ(0).
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for (φ,ψ) ∈ O ⊂ C1([−h, 0], R
2), that will be specified below. We will consider

two equilibrium states and the long-term behaviour of solutions starting closeby. To
this aim we present two results, which refer to the class of DDE (3.1) and to the stem
cell model (2.5)–(2.8), respectively. These state that, under certain conditions, the
well-known principle of linearised stability holds. The proofs, along with associated
results on existence and uniqueness of solutions for the respective systems, follow
from a compilation of results from the literature that will be given in the following.
We refer to this literature also for the mathematical details that we do not present here.
Following Hartung et al. (2006), we say that f satisfies property (S) if the following
hold:

(S1) f is continuously differentiable;
(S2) eachderivativeDf (φ) extends to a linearmapDe f (φ)definedonC([−h, 0], R

n);
(S3) the map (φ, χ) �→ De f (φ)χ is continuous.

Moreover, we additionally introduce for f the following property (whose name stands
for “strongly Lipschitz, uniformly on bounded sets”)

(sLb) for any bounded set B ⊂ O there exists some LB > 0 such that

| f (φ1) − f (φ2)| ≤ LB‖φ1 − φ2‖, for all φ1, φ2 ∈ B.

The latter property is used for instance by Walther (2003). We define a function ez by
introducing the notation

ez(θ) := ezθ .

Theorem 3.1 Suppose that f satisfies conditions (S) and (sLb). Then the DDE (3.1)
is well posed (in the sense of Hartung et al. (2006)). If additionally x is a constant
function satisfying f (x) = 0, then x is locally asymptotically stable if all the roots
z ∈ C of the characteristic equation

det(z I − Df (x)ez) = 0 (3.2)

have negative real part, and unstable if the equation has a root with positive real part.

The proof essentially follows from the works of Diekmann et al. (1995), Walther
(2003), Hartung et al. (2006), Stumpf (2016), and Getto and Waurick (2016). In the
“Appendix”, in “Proof of Theorem 3.1”, we present a more precise argumentation.

We now introduce some assumptions on the model ingredients that are used to
prove the principle of linearised stability for the model (2.5)–(2.8). We denote open
balls by B(x0, b) := {x ∈ R : |x − x0| < b} for some x0 ∈ R and some b > 0. First,
we assume that g satisfies property (G) by Getto and Waurick (2016), that we recall
here for convenience: there exist b, K , ε ∈ R and open intervals I , J , with 0 ∈ I ,
such that

(G1) B(x2, b) ⊂ J and g : J × I → R is C1;
(G2) D1g(x, y) is bounded on B(x2, b) × I ;
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(G3) 0 < ε ≤ g(x, y) ≤ K on B(x2, b) × I and x2 − x1 ∈ (0, b
K ε).

With these assumptions, h can be defined as h := b
K .

Finally, we make the following additional assumptions on the model ingredients:

(a) d, D1g : J × I → R are C1, bounded on B(x2, b) × I , and

sup
(x,y)∈B(x2,b)×I

|D1g(x, y)| <
K

b
;

(b) D2g, Did and Di D1g, i = 1, 2, are bounded on B(x2, b)× A, whenever A ⊂ I
is bounded;

(c) γ : I → R+ and q : I → R are continuously differentiable, and Lipschitz on
bounded sets.

Under these conditions, Getto and Waurick (2016) showed (see Theorem 1.13) that
F satisfies (S) and (sLb). Hence Theorem 3.1 can be applied, and this immediately
yields the following result.

Corollary 3.2 Suppose that g satisfies property (G), μ is a positive parameter, and g,
d, γ and q satisfy assumptions (a)–(c). Then the stem cell model (2.5)–(2.8) is well
posed (in the sense of Hartung et al. (2006)) and the solutions exist for all times.
If additionally (w, v) is a constant function satisfying F(w, v) = 0, then (w, v) is
locally asymptotically stable if all the roots z ∈ C of

det(z I − DF(w, v)ez) = 0 (3.3)

have negative real part, and unstable if the equation has a root with positive real part.

For completeness, we repeat here some results from Getto andWaurick (2016) that
will be useful later on. For O := C1([−h, 0], R) × C1([−h, 0], I ), the set

X = X(F) := {(ϕ, ψ) ∈ O : (ϕ, ψ)′(0) = F(ϕ, ψ)} (3.4)

is a C1-submanifold of C1([−h, 0], R
2). As clear from the definition, X contains the

segments of any solution after a certain finite time, including the constant functions
satisfying the equilibrium conditions. For this reason X is called solution manifold.
From (S) and (sLb) it follows that the delay functional is well defined by (2.5) and
(2.6) and satisfies

τ(ψ) ∈ (0, h) (3.5)

for all (ϕ, ψ) ∈ X . The system (2.5)–(2.8) supplemented with the initial condition

(w, v)0 = (ϕ, ψ), (ϕ,ψ) ∈ X , (3.6)

is well posed, and a differentiable semiflow can be associated. Moreover, Getto and
Waurick (2016) computed an expression for the derivative DF , which we will use in
the present manuscript to analyse (3.3).
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4 Equilibrium and stability analysis

4.1 Equilibria

Let us denote by (w, v) an equilibrium solution. If w = 0 there is exactly one equi-
librium, the trivial equilibrium (w, v) = (0, 0). If w �= 0 the equilibrium conditions
are

q(v) = 0 and w
γ (v)g(x2, v)

g(x1, v)
e
∫ τ (v)
0 (d−D1g)(y(s,v),v) ds = μv. (4.1)

We assume that, on [0,∞), the rate q decreases monotonically to a negative value.
Then there exists a unique positive equilibrium if and only if q(0) > 0. Thus, if we
interpret q(0) as a bifurcation parameter, there is a transcritical bifurcation at q(0) = 0.

4.2 Characteristic equations

Wenowpresent some results thatwill be used to compute and analyse the characteristic
equation. All the proofs are collected in the “Appendix”. Given a function f defined
on [0, τ ], we denote by f̂ its Laplace transform, defined by

f̂ (z) :=
∫ τ

0
f (t) e−zt dt, for z ∈ C.

Let us denote by (w, v) the positive equilibrium. We will also use the equilibrium
conditions (4.1), the latter of which allows to eliminate w.

Lemma 4.1 For the zero equilibrium the characteristic equation reads

(z − q(0))(z + μ) = 0.

If q(0) > 0, for the positive equilibrium the characteristic equation is

χ(v, z) = 0, (4.2)

where

χ(v, z) := zk̂(v)(z) + μv e−τ(v)z
[

z

(
γ ′

γ
(v) − D2g

g
(x1, v)

)

+ q ′(v)

]

− z2

+
(

v
D2g

g
(x2, v) − 1

)

μz,

k(v)(t) := μv

[

D2(d − D1g)(y(t, v), v)

− d − D1g

g
(x1, v) e− ∫ τ (v)

t D1g(y(θ,v),v) dθ D2g(y(t, v), v)

− D2g(y(t, v), v)

∫ τ(v)

t
D1(d − D1g)(y(σ, v), v) e− ∫ σ

t D1g(y(θ,v),v) dθ dσ

]

.

(4.3)
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4.3 Exchange of stability at the transcritical bifurcation and a priori bounds

We first conclude that the positive equilibrium destabilises the trivial one.

Corollary 4.2 The roots of the characteristic equation for the trivial equilibrium are
q(0) and −μ. Thus the trivial equilibrium is locally asymptotically stable if q(0) < 0
and unstable if q(0) > 0.

We next show that, if the positive equilibrium is sufficiently small, then the character-
istic equation has exactly one root and this root is negative.

Lemma 4.3 Suppose that q(0) > 0andconsider (4.2). Thenχ(0, 0) = 0, f is analytic,
and there exists a C1-function v �→ z(v), defined in a neighbourhood of zero, with
z(0) = 0, such that, in a neighbourhood of (0, 0), (v, z(v)) is the unique solution.
Moreover

z′(0) = q ′(0) < 0.

Hence, by our earlier assumptions on q, if q(0) is sufficiently small then v is small
enough for the corresponding unique root z(v) to be negative. Hence, the positive
equilibrium is stable upon emergence. In summary we have shown an exchange of
stability at the transcritical bifurcation.

We have shown that for q(0) sufficiently small the characteristic equation has no
roots in the right half-plane. Our next question is whether the positive equilibrium can
destabilise if q(0) moves further away from zero. In the following result we prove
some a priori bounds for the roots. The result will be used to establish a maximal
region of stability in parameter spaces.

Lemma 4.4 Suppose that q(0) > 0 and consider (4.2). Then there exists a K such
that, for every root z with Re z > 0, one has |z| ≤ K.

We conclude this section by presenting the specification of the characteristic equa-
tion in some particular cases. If D1g ≡ 0, we omit the first argument in the notation
of g and write g(v) and g′(v) instead of g(x, v) and D2g(x, v) respectively. Further
down we consider the case where g is a constant function, the value of which we also
denote by g. We will use similar notation for τ . We then get the following result.

Lemma 4.5 (a) If D1g ≡ 0, the characteristic equation becomes

zk̂(v)(z) + μv

[

z

(
γ ′

γ
− g′

g

)

(v) + q ′(v)

]

e−τ(v)z

− z2 +
(

v
g′

g
(v) − 1

)

μz = 0, (4.4)

with

k(v)(t) = μv
(
D2d(y(t, v), v) − g′

g
(v)d(y(t, v), v)

)
. (4.5)
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(b) If moreover D2d ≡ 0, D2g ≡ 0, it becomes

μv

[
γ ′

γ
(v)z + q ′(v)

]

e−τ z − z2 − μz = 0, τ = x2 − x1
g

. (4.6)

(c) If moreover q and γ are as specified in Table 1, it becomes

μv

[(d ′
w

dw
(v) − s′(v)

1 − s(v)

)
z + 2(s′dw)(v) + d ′

w(v)(2s(v) − 1)

]

e−τ z − z2 − μz = 0.

(4.7)

(d) If moreover s ≡ a for some parameter a > 0.5 (ka = 0 in Table 1), it becomes

d ′
w

dw

(v)μv(z + μw) e−τ z − z2 − μz = 0. (4.8)

(e) If moreover dw is as specified in Table 1, it becomes

[

1 − μw

(2a − 1)p

]

μ(z + μw) e−zτ + z2 + μz = 0. (4.9)

Note that, after the specifications, the existence condition q(0) > 0 for the positive
equilibrium can be translated to

p > μw/(2a − 1). (4.10)

Then the existence region in the (μ, p)-plane is the region above the line p =
μw/(2a − 1). Upon crossing the line from below, a transcritical bifurcation with
exchange of stability occur, see Fig. 4.

5 Determination and analysis of the stability boundary for the
positive equilibrium for an example with fixed delay

5.1 Destabilisation of the positive equilibrium

In this section we restrict to the case with fixed delay specified by the conditions of
Lemma 4.5(e), and we analyse more in detail the stability boundary of the positive
equilibrium. Multiplying (4.9) by τ 2, the following is proven.

Lemma 5.1 If p and μ are free parameters and the remaining ones are fixed, (4.9)
can be expressed as

rm(λ + η) e−λ + λ2 + mλ = 0, (5.1)
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where we introduced the increasing functions

r(p) := 1 − μw

(2a − 1)p
, m(μ) := μτ,

a scaled stem cell mortality η := μwτ , and a scaled complex variable λ = zτ .

For λ = ν + iω the characteristic Eq. (5.1) can be written as the two real equations

Hj (m, r , ν, ω) = 0, j = 1, 2, where

H1(m, r , ν, ω) := ν2 − ω2 + mν + mr e−ν[(ν + η) cosω + ω sinω],
H2(m, r , ν, ω) := 2νω + mω + mr e−ν[ω cosω − (ν + η) sinω].

Substituting ν = 0 and solving with respect to r and m, we get

r = ω

η sinω − ω cosω
, (5.2)

m = ω
η sinω − ω cosω

ω sinω + η cosω
. (5.3)

Note that we should take care of the singularities of (5.2) and (5.3): we do this in
the following result, together with a more complete analysis of the functions defining
the denominators. For a visualisation of the following result, see Figs. 2 and 3. In the
(m, r)-plane displayed in Fig. 3, the existence boundary corresponds to the positive
vertical axis and the existence region to the positive quadrant.

Lemma 5.2 For fη(ω) := η sinω − ω cosω and gη(ω) := ω sinω + η cosω the
following hold.

(a) For η < 1 and k = 0, 1, . . . , one has

(i) fη(2kπ) = −2kπ and f ′
η(2kπ) = η − 1 < 0; in every (2kπ, 2kπ + π/2)

there exists a unique zero; fη(2kπ + π/2) = η; fη > 0 and f ′
η > 0

on (π/2, π) + 2kπ ; in every (π, 3π/2) + 2kπ there exists a unique zero;
fη(3π/2 + 2kπ) = −η and fη < 0 and f ′

η < 0 on (3π/2, 2π) + 2kπ ;
(ii) gη(2kπ) = η; g′

η > 0 on (0, π/2)+2kπ ; gη(π/2+2kπ) = π/2+2kπ ; gη

has a unique zero in each (π/2, π)+2kπ ; gη(π +2kπ) = −η < 0; g′
η < 0

on (π, 3π/2)+2kπ , hence there are no zeros in these intervals. There exists
a unique zero in every (3π/2, 2π) + 2kπ .

For η ≥ 1,

(iii) fη(0) = 0; fη has no zeros in (0, π
2 ], and exactly one zero in every (0, π

2 )+
2kπ , k = 1, 2, . . . . Moreover, for every k = 0, 1, . . . , one has fη(

π
2 +

2kπ) = η, sgn fη = 1 on [π
2 , π ] + 2kπ , there exists a unique zero in

(π, 3π
2 ) + 2kπ , fη( 3π2 + 2kπ) = −η and sgn fη = −1 on [ 3π2 , 2π ] + 2kπ ;

(iv) for k = 0, 1, . . . one has gη(2kπ) = η and gη has no zeros in [0, π
2 ],

neither in [π, 3π
2 ] + 2kπ , a unique zero in each (π

2 , π) + 2kπ and in each
( 3π2 , 2π) + 2kπ .
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Fig. 2 Graphs of fη (solid) and gη (dashed) for different values of η

(b) The function ω �→ (m, r)(ω) has exactly the singularities ω0 < ω1 < . . . ,
where ω0 = 0 and, for j = 1, 2, . . . , the ω j are the ordered remaining zeros
of either fη or gη as determined in (a). In particular, for j = 1, 2, . . . , one has
ω j ∈ (π

2 , π) + ( j − 1)π
2 for η ≥ 1 and ω j ∈ (0, π

2 ) + ( j − 1)π
2 for η < 1.

(c) For η < 1 the function fη is increasing on [ω1, ω2].
It follows from Proposition XI 2.13 of Diekmann et al. (1995) that, when crossing the
curve ω �→ (m, r)(ω) from right—in the sense of increasing ω—to left, two complex
conjugate roots cross from the left to the right half-plane, provided that the determinant
in the following lemma is negative.

Lemma 5.3 One has det(∂i H j (m, r , 0, ω))1≤i, j≤2 = −ωm(η cosω + ω sinω).

We have shown that, in a right neighbourhood of the transcritical bifurcation point,
the positive equilibrium is stable. Since in Lemma 4.4 we have established a priori
bounds for the roots, we know that roots can enter the right half-plane only through
a compact subset of the imaginary axis. Now note that the signs of denominator in
(5.2) and numerator in (5.3) agree, and the signs of the denominator of (5.3) and
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Fig. 3 Graphs of (m, r)(ω) for η = 0.5 and η = 1.5. Existence boundary and region correspond to positive
vertical axis and positive quadrant, respectively

the determinant of Lemma 5.3 are opposite. It follows that, as long as the curves in
the (m, r)-plane are in the positive quadrant, the sign of the determinant is negative.
Hence we can combine the previous arguments with considerations on the ordering of
the curves, defined on the intervals bounded by the singularities, to conclude that the
boundary between themaximal region of stability and themaximal region of instability
is given by the curve ω �→ (m, r)(ω) ∈ R

2+, with

ω ∈
{

(ω1, ω2), if η < 1

(0, ω1), if η ≥ 1.
(5.4)

See Fig. 4 for a plot. We refer to Chapter XI of Diekmann et al. (1995) for further
details on the argumentation above.

5.2 Analysis of the stability boundary

In the following, we use f (ω+) and f (ω−) as a short-hand notation for the one-sided
right and left limit of a function f , respectively, whenever they exist, i.e.,

f (ω+) = lim
ω→ω+ f (ω), f (ω−) = lim

ω→ω− f (ω).

From Lemma 5.2 it becomes clear that, if η < 1,

(m, r)(ω−
1 ) = (0,−∞), (m, r)(ω−

2 ) = (+∞, r(ω2)),

(m, r)(ω+
1 ) = (0,+∞), (m, r)(ω+

2 ) = (+∞, r(ω2)),
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Fig. 4 Existence and stability of equilibria in the plane (μ, p), for the rate specifications of Lemma 4.5(e),
with μw = 1 and a = 0.9. The positive equilibrium exists for p > μw/(2a − 1) = 1.25 (no positive
equilibrium in the striped region). In the large panel, the solid curves are the analytical curves (5.2) and
(5.3) and show how the stability boundary changes qualitatively with η: the positive equilibrium is stable
below the curves, unstable above. The three upper panels contain some zooms of the curves: the instability
region is shaded and the black dots are the numerical approximations of the curves computed by numerical
continuation with the software dde- biftool. The rates correspond to the specifications (s)d and (pv)0 in
Table 2

and, if η > 1,

(m, r)(0) = (0, r(0)) =
(

0,
1

η − 1

)

, and

(m, r)(ω−
1 ) = (+∞, r(ω1)), (m, r)(ω+

1 ) = (−∞, r(ω1)),
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with r(ω1), r(ω2) ∈ (0,∞), see Fig. 3. Note that, for η → 1+, r(0) → +∞. The
stability region is unbounded inm, whereas it is bounded in r if η ≥ 1, and unbounded
if η < 1. In the following we present a rather complete analysis of the gradient of the
stability boundary. We refer to Fig. 4 for a visual summary.

Lemma 5.4 One has m′(ω) > 0 on (0, ω1) for η ≥ 1, and on (ω1, ω2) for η < 1.

It follows that we can alternatively define the stability boundary via (5.2) and (5.3) as
m �→ r(m) ∈ R+, with

m ∈
{

(0,∞), if η < 1
[0,∞), if η ≥ 1.

Lemma 5.5 For η < 3 the stability boundary m �→ r(m) first decreases, then

increases. Here, the minimum is assumed in values ω > π
2 if η < π2

4 , ω = π
2 if

η = π2

4 , and ω < π
2 if η > π2

4 . For η ≥ 3 the curve is increasing.

Note that for η > 1 there is a turning point after the minimum. Moreover, for both
cases η < 1 and η ≥ 1, the proofs of the previous results show (although Fig. 4 does
not) that r ′(0) = 0 and that there is a turning point also before the minimum.

6 Transformation to fixed delay for g independent of maturity

In this section we restrict to the case of a maturation rate g independent of maturity
(i.e., D1g ≡ 0), and we establish a relation between the solutions of the SD-DDE and
the solutions of a special equation with fixed delay. When g(x, v) = g(v), Eq. (2.8)
reads

v′(t) = γ (v(t − τ(vt )))g(v(t))w(t − τ(vt ))

g(v(t − τ(vt )))
e
∫ τ (vt )
0 d(y(s,vt ),v(t−s)) ds − μv(t).

(6.1)

In this case, the explicit expression

y(s, ψ) = x2 −
∫ 0

−s
g(ψ(θ)) dθ, s ∈ [0, h], (6.2)

allows us to write Eq. (2.6) as

∫ 0

−τ

g(ψ(θ)) dθ = δ, (6.3)

with

δ := x2 − x1. (6.4)

123



Stability analysis of a state-dependent delay… 301

Next to (2.7) and (6.1), we consider the differential equations

ω′(φ) = q(u(φ))

g(u(φ))
ω(φ) (6.5)

u′(φ) = γ (u(φ − δ))ω(φ − δ)

g(u(φ − δ))
e
∫ δ
0

d(x2−s,u(φ−s))
g(u(φ−s)) ds − μu(φ)

g(u(φ))
, (6.6)

for φ > 0, where the maximum delay δ is fixed by the model parameters, see (6.4).
The system (6.5) and (6.6) is provided with the initial condition

(ω, u)0 = (η, ζ ), (6.7)

for (η, ζ ) belonging to the solution manifold. We will explicitly construct a transfor-
mation of the independent variable that, given a solution of (2.7) and (6.1), provides
a solution of (6.5) and (6.6), and vice versa.

Given an interval J ⊆ R with 0 ∈ J and a continuously differentiable function f
defined on J with range in the domain of g, we define the transformationΦ f : J → R

such that

Φ f (t) :=
{∫ t

0 g( f (θ)) dθ, if t ≥ 0,

− ∫ 0
t g( f (θ)) dθ, if t < 0.

Note that Φ f (0) = 0 and Φ f is C1 with Φ ′
f (t) = g( f (t)) for t ∈ J .

Similarly, we define the transformation T f : J → R such that

T f (φ) :=
{∫ φ

0
1

g( f (θ))
dθ, if φ ≥ 0,

− ∫ 0
φ

1
g( f (θ))

dθ, if φ < 0.

Note that T f (0) = 0 and T f is C1 with T ′
f (φ) = 1/g( f (φ)) for φ ∈ J .

Lemma 6.1 Let v be defined in [−h,∞) and u be defined in [−δ,∞), both with range
in the domain of g. Define ζ := u0 and τζ := −Tζ (−δ). ThenΦv and Tu are invertible
with Φ−1

v ∈ C1([−δ,∞), R) and T−1
u ∈ C1([−τζ ,∞), R).

We are now ready to specify the relation between the solutions of the initial value
problems.

Theorem 6.2 Let (w, v) be a solution of (2.7) and (6.1) with initial condition (3.6)
defined on [−h,∞), and let η = ϕ ◦ Φ−1

ψ , ζ = ψ ◦ Φ−1
ψ . Then (ω, u) defined by

ω := w ◦ Φ−1
v , u := v ◦ Φ−1

v , (6.8)

is a solution of (6.5)–(6.7) on [−δ,∞).
Vice versa, given a solution (ω, u) of (6.5)–(6.7) on [−δ,∞), define τζ :=

−Tζ (−δ), and let ϕ,ψ defined on [−h, 0] such that

ϕ
∣
∣[−τζ ,0] = η ◦ T−1

ζ and ψ
∣
∣[−τζ ,0] = ζ ◦ T−1

ζ . (6.9)
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Then, (w, v) defined on [−τζ ,∞) by

w := ω ◦ T−1
u , v := u ◦ T−1

u , (6.10)

and extended to [−h,−τζ ) such thatw0 = ϕ, v0 = ψ , is a solution of (2.7) and (6.1).

We stress that, while the solution (ω, u) of the initial value problem (6.5)–(6.7) is
uniquely defined from (w, v), the converse is not true: the construction of a solution
(w, v) defined on [−h,∞) from a given solution (ω, u) in general involves an arbitrary
extension on [−h,−τζ ). Such extension is required in the mathematical analysis to
define the state of the dynamical system on the interval [−h, 0]. However, this should
not cause any problem in applications, where usually the initial data (ϕ, ψ) for system
(2.7) and (6.1) is fixed by observations or chosen arbitrarily for experiments. From
a biological point of view, the transformation φ = Φv(t) translates the temporal
time-scale into the “physiological” time-scale of progenitor cells (i.e., we measure the
maturity level of cells instead of their age).

We consider the transformed functional G, which is given as

G1(ϕ, ψ) = q(ψ(0))

g(ψ(0))
ϕ(0)

G2(ϕ, ψ) = γ (ψ(−δ))ϕ(−δ)

g(ψ(−δ))
e
∫ δ
0

d(x2−s,ψ(−s))
g(ψ(−s)) ds − μψ(0)

g(ψ(0))
.

Note that F(w, v) = 0 if and only if G(w, v) = 0. We now let (w, v) denote the
positive equilibrium.We remark that results similar to the following hold for the trivial
equilibrium. We will not go into details.

Proposition 6.3 For k = 1/g(v) it holds that det(z − DF(w, v)ez) = 0 if and only if
det(kz − DG(w, v)ekz) = 0.

The result is a simple corollary of the following

Lemma 6.4 For k = 1/g(v) and z ∈ C we have

DG(w, v)ekz = kDF(w, v)ez .

Therefore, system (2.7) and (6.1) and system (6.5)–(6.6) have the same equilibria,
with the same stability properties.

7 Numerical stability analysis: the pseudospectral approach for
differential equations with state-dependent delay

In this sectionwe adapt the pseudospectral discretisation approach, presented byBreda
et al. (2016a) in the case of nonlinear delay equations with fixed delay, to the case
when the delay depends on the state. The main idea of spectral methods is to project
a given equation defined on an infinite-dimensional space into a subspace of finite
dimension, see Gottlieb and Orszag (1977). Pseudospectral techniques are particular

123



Stability analysis of a state-dependent delay… 303

kinds of spectral methods where the approximating space is chosen as the space of
polynomials of a fixed degree M ∈ N, and the projection is done through collocation:
a finite number of conditions is imposed on a set of points, called collocation nodes.

Breda et al. (2016a) showed that, by means of pseudospectral techniques, it is
possible to obtain a finite-dimensional system of ordinary differential equations that
approximates the dynamical properties of the original delay equation with fixed delay.
Here, we extend themethod to equationswhere the delay is state-dependent by exploit-
ing the uniform bound of the delay (3.5). Thanks to the latter, the pseudospectral
approach can be applied on the fixed interval [−h, 0], and the convergence analysis
that holds in the fixed-delay case remains true also in state-dependent case, as we
will explain below. For the sake of presentation, we summarise the main steps of the
method and write explicitly the approximating system of ODE for Eqs. (2.7) and (2.8).
We refer to Breda et al. (2016a) for further details and for more general types of delay
equations.

The existence and uniqueness of solutions of (2.7)–(2.8) with initial condition (3.6)
implies that the semigroup of solution operators is well defined, strongly continuous,
and its infinitesimal generator is

A(ϕ, ψ) = (ϕ′, ψ ′), (ϕ, ψ) ∈ X ,

where X is defined in (3.4), see Crandall and Liggett (1971). Note that the action of
A is linear, while its domain X is defined via a nonlinear condition. Then, (2.7)–(2.8)
with initial condition (3.6) is equivalent to the abstract differential equation

d

dt
(W(t),V(t)) = A(W(t),V(t)), t ≥ 0, (7.1)

for (W(t),V(t)) ∈ X , with initial condition

(W(0),V(0)) = (ϕ, ψ). (7.2)

The problems are equivalent in the sense that, if (w, v) is a solution of (2.7)–(2.8)
and (3.6), then (W,V) is a solution of (7.1)–(7.2) withW(t) = wt , V(t) = vt for all
t ≥ 0, and vice versa.

Equation (7.1) is a differential equation in the space of continuous functions. In
order to obtain a numerical approximation, we fix a positive integer M ∈ N, called
discretisation index, and define ΠM as the space of R-valued polynomials of degree
M . Then we consider the finite-dimensional space XM := ΠM ×ΠM . The projection
of the abstract differential Eq. (7.1) in the space XM is

d

dt
(WM (t),VM (t)) = AM (WM (t),VM (t)), t ≥ 0, (7.3)

where (WM (t),VM (t)) ∈ XM , and AM : XM → XM is called the approximating
generator. The operator AM is defined by imposing some collocation conditions on
a finite set of nodes, as explained for instance by Gottlieb and Orszag (1977) and
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Boyd (2001), in the following way. We introduce a mesh of collocation nodes,ΩM :=
{θ0, . . . , θM } ⊂ [−h, 0], such that

− h = θM < θM−1 < · · · < θ0 = 0.

Given M + 1 values z0, . . . , zM , their interpolating polynomial on ΩM is uniquely
determined, and it can be represented in Lagrange form as a linear combination of the
values z j as

pM (θ; z0, . . . , zM ) :=
M∑

j=0

� j (θ)z j , θ ∈ [−h, 0], (7.4)

where the coefficients

� j (θ) :=
∏

k �= j

θ − θk

θ j − θk
, j = 0, 1, . . . , M,

form the basis of Lagrange polynomials, as explained for instance by Quarteroni et al.
(2007) in Chapter 8. Note that � j (θk) = δ jk , where δ jk is the Kronecker’s symbol.
Note also that, by linearity, the derivative of pM at the nodes can be expressed as

dpM
dθ

(θk; z0, . . . , zM ) =
M∑

j=0

�′
j (θk)z j =

M∑

j=0

dkj z j , k = 0, 1, . . . , M, (7.5)

where

dkj := �′
j (θk), j, k = 0, 1, . . . M,

are the elements of the differentiation matrix corresponding to the Lagrange poly-
nomial basis. Note that the elements dkj can be explicitly computed by established
numerical routines, as explained by Trefethen (2000).

Following Breda et al. (2016a), for all (WM ,VM ) ∈ XM we defineAM (WM ,VM )

as the pair of polynomials satisfying

AM (WM ,VM )(θ j ) :=
{
F(WM ,VM ) if j = 0

(W ′
M ,V ′

M )(θ j ), if j = 1, . . . , M,

where F = (F1, F2) is the functional defining the right-hand side of the DDE, as
defined at the beginning of Sect. 3. Note that AM is well defined because every
M-degree polynomial is uniquely determined by M + 1 independent conditions. By
exploiting the representations (7.4) and (7.5) into (7.3), it is easy to obtain the following
result.
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Proposition 7.1 The pseudospectral approximation of system (2.7)–(2.8) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′
0(t) = F1(WM ,VM )

v′
0(t) = F2(WM ,VM )

w′
1(t) = d10w0(t) + d11w1(t) + · · · + d1MwM (t)

v′
1(t) = d10v0(t) + d11v1(t) + · · · + d1MvM (t)

...

w′
M (t) = dM0w0(t) + dM1w1(t) + · · · + dMMwM (t)

v′
M (t) = dM0v0(t) + dM1v1(t) + · · · + dMMvM (t),

(7.6)

for w j (t), v j (t) ∈ R, j = 0, . . . , M, where

WM := pM (·;w0(t), . . . , wM (t)), VM := pM (·; v0(t), . . . , vM (t)).

The polynomials WM and VM are the pseudospectral projections of w(t) and v(t),
respectively.

The system (7.6) consists of 2(M + 1) ODE, and its properties can be studied with
well-established software like matcont for matlab.

In practice, the interpolation nodes are chosen as

θ j = h

2

(

cos

(
jπ

M

)

− 1

)

, j = 0, 1, . . . , M .

In the literature, these points are known as Chebyshev extremal nodes, and they are
defined as the abscissas corresponding to the maxima and minima of Chebyshev
orthogonal polynomials. Chebyshev nodes ensure that the interpolation process con-
verges on functions that are at least Lipschitz continuous, as explained for instance by
Davis (1975) and Quarteroni et al. (2007). Furthermore, the interpolation of infinitely
differentiable functions converges with spectral accuracy, viz. the error decays faster
than O(M−k) for any integer k, as shown by Trefethen (2000, 2013).

The one-to-one correspondence of the equilibria of (2.7)–(2.8) and (7.6) can be
proven in the same way as done by Breda et al. (2016a). Moreover, the fact that the
states of the dynamical system are defined in [−h, 0] allows us to use convergence
results about interpolation on a bounded and fixed interval. Since the eigenfunctions
associated with the linearised system are exponential, we can exploit the spectral
convergence of the interpolation process and use the argument of Breda et al. (2005)
to ensure the convergence of the associated characteristic roots. In particular, the
eigenvalues corresponding to the linearisation of (7.6) approximate the rightmost
eigenvalues of the linearisation of (7.1) with spectral accuracy, as proven by Breda
et al. (2005, 2015a, b). In conclusion, from Theorem 2.4 and Corollary 2.7 of Breda
et al. (2016a), by using results on interpolation on [−h, 0], the following result follows.

Proposition 7.2 If (w, v) is an equilibrium of (2.7)–(2.8), then

(w0, v0, . . . , wM , vM ) ∈ R
2(M+1) (7.7)
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with

w j = w, v j = v, j = 0, . . . , M, (7.8)

is an equilibrium of (7.6). Vice versa, if (7.7) is an equilibrium of (7.6), then (7.8)
holds and (w, v) is an equilibrium of (2.7–2.8). Moreover, the characteristic roots and
the bifurcation points associated with the equilibria of (7.6) converge to those of the
corresponding equilibria of (2.7)–(2.8) with spectral accuracy when M increases.

In the next section, we first validate the pseudospectral approximation technique
on some instances of system (2.7)–(2.8) that can be transformed via the time transfor-
mation introduced in Sect. 6. In particular, the numerical output of the pseudospectral
approximation (for M = 15 and tolerance 10−6) was compared with the output of
dde- biftool on the fixed-delay reformulation. All the curves in Figs. 4, 5, 6 and
7 were computed both with dde- biftool and with the pseudospectral method, and
all the respective curves are indistinguishable to the eye. Since dde- biftool is a
well-established package for numerical bifurcation of delay equations, we take the
agreement of the numerical output as an important evidence of the validity of the
pseudospectral discretisation approach applied to a type of equations (viz., SD-DDE)
to which it has never been applied before. After the validation of the method, we
exploit the pseudospectral approach to approximate the stability boundary of system
(2.7) and (2.8) in some cases when the time transformation is not applicable and there
is no well-established software available for bifurcation analysis.

8 Numerically computed stability boundaries

For the numerical results in this section we consider the stem cell rates specified in
Table 1 and we fix the following parameters

x1 = 0, x2 = 1, μw = 1, a = 0.9. (8.1)

For this choice of parameters, condition (4.10) for the existence of a positive equi-
librium (w, v) reduces to p > 1.25. As proven in Sect. 4, the positive equilibrium is
stable upon emergence. We consider two different regulation mechanisms of stem cell
processes (cfr. also Tables 1 and 2):

(s)s regulated self-renewal, unregulated division: ka = 1, kp = 0,
(s)d unregulated self-renewal, regulated division: ka = 0, kp = 1.

In the following we investigate numerically the stability region of the positive equi-
librium by including different types of v- and x-dependence in the maturation rate of
progenitor cells.

In the modelling literature we could find very few specifications of how the mat-
uration speed depends on maturity. Exceptions are the maturation rate proposed by
Doumic et al. (2011), which is increasing, and by Alarcón et al. (2011), which is
decreasing. Here we choose a maturation rate that allows to incorporate both cases.
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Table 2 Summary of the parameter sets used in the numerical tests

Parameters Description

(s)s ka = 1, kp = 0 Stem cell regulated self-renewal, unregulated division (see Table 1)

(s)d ka = 0, kp = 1 Stem cell unregulated self-renewal, regulated division (see Table 1)

(pv)0 k1 = 0, k2 = 0 Progenitor maturation independent of v (see (8.2))

(pv)1 k1 = 1, k2 = 0 Progenitor maturation decreasing in v (see (8.2))

(pv)2 k1 = 0, k2 = 1 Progenitor maturation increasing in v (see (8.2))

(px)1 pu(x) = 0.3 First type of progenitor x-dependence (see (8.2) and Table 3)

(px)2 pu(x) = p Second type of progenitor x-dependence (see (8.2) and Table 3)

See also Table 1 for specifications of stem cell rates, and Eq. (8.2) and Table 3 for the progenitor maturation
rate

Table 3 Specification of x-dependent rates for progenitor cells, see also Fig. 8

pu(x) au(x)

(px)1 pu(x) = 0.3 Constant: au(x) = 1/3

Linear: au(x) = 2/3(1 − x)

Quadratic: au(x) = 0.1 + 2.8(x − 0.5)2

(px)2 pu(x) = p Constant: au(x) = 0.9

Linear: au(x) = 0.99 − 0.18x

Quadratic: au(x) = 0.855 − 0.54(x − 0.5)2

Hence, we specify the maturation rate of the form

g(x, v) = g0 + 2
pu(x)

1 + k1v

(

1 − au(x)

1 + k2v

)

. (8.2)

By specifying the coefficients au(x) and pu(x) we can vary the dependence on
x ; for illustration, we will consider two types of dependence that are mathematically
convenient, see Table 3. We note that some parameter sets for the division rate and the
fraction of self-renewal of cells in progenitor compartments are proposed by Stiehl
et al. (2014).

In the following we also assume that the net production of progenitor cells is zero,
i.e., d(x, v) ≡ 0, corresponding to a biological situation when progenitor death and
self-renewal are in balance.

8.1 Constant progenitor maturation rate

We first consider the case of constant maturation rate of progenitor cells by taking
k1 = k2 = 0 (case (pv)0 in Table 2), and constant pu(x) and au(x), so that g(x, v) = g.
This means that the maturation process is not regulated by mature cells, and the
maturation speed is the same at all maturity levels. In this case, (2.7–2.8) reduces to
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Fig. 5 Stability boundary for parameter set (pv)0 and (s)s, for different values of τ . The positive equilibrium
exists for p > 1.25, and it is stable in the region below the stability boundary

an equation with one fixed discrete delay τ = δ/g, whose bifurcation properties can
be numerically analysed with the package dde- biftool.

The case (s)d corresponds to the specifications of Lemma 4.5(e). The stability
boundary was studied analytically in Sect. 5. The upper panels in Fig. 4 show the ana-
lytical stability boundary (solid line) and the numerically computed stability boundary
obtained with dde- biftool (black dots) for different values of τ (we recall that η = τ

for the choice (8.1)).
In the case (s)s, we studied the stability boundary for different values of τ varying

between 0.1 and 50. Some examples are plotted in Fig. 5. The stability boundarymoves
towards higher values of p when the delay τ decreases. In this case the numerical
simulations did not show any minimum: this behaviour is different from the case (s)d,
where a minimum appears for small values of τ , see Fig. 4.

8.2 Maturation rate dependent on the amount of mature cells

We assume now that the maturation rate of a progenitor cell is regulated by the amount
v of mature cells, but does not depend on thematurity of the cell itself: g(x, v) = g(v).
Under these assumptions, we can apply the time transformation introduced in Sect. 6,
so that the equilibria of system (2.7) and (2.8) and their stability properties are the
same as in the fixed-delay system (6.5)–(6.6). We investigate numerically the latter
system with dde- biftool. In particular, we take (8.2) with

au(x) = a, pu(x) = p,

and we consider two cases (see also Table 2):

(pv)1 maturation rate decreasing with v: k1 = 1, k2 = 0,
(pv)2 maturation rate increasing with v: k1 = 0, k2 = 1.

In the case (pv)1, the numerically computed stability boundary does not show a
minimum for the parameter values considered in the simulations. Some examples are
plotted in Fig. 6. When increasing g0, the boundary moves up. Interestingly, under
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Fig. 6 Stability boundary for parameter set (pv)1 and different values of g0. Left: stem cell regulation (s)s;
right: (s)d. Stability region below the boundary
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Fig. 7 Stability boundary for parameter set (pv)2 and different values of g0. Left: stem cell regulation (s)s,
stability region to the right of the boundary; right: (s)d, stability region to the left of the boundary

assumption (s)d we observe a change in the concavity of the boundary when g0 is
large enough, see Fig. 6 (right). As evident from the figure, by changing from concave
to convex, the stability region of the equilibrium becomes much larger and perhaps
unbounded in p, promoting stability of the system at equilibrium.

The type of regulation (pv)2 is elaborated by Doumic et al. (2011). In this case,
the numerical results reveal that the stability region of the positive equilibrium has
a qualitatively different shape compared to the cases examined so far, see Fig. 7. In
both cases (s)s and (s)d, the plots suggest the existence of an interval of values of μ

such that the positive equilibrium is stable for every value of p, but in the first case
this happens for large values of μ, while in the second case this happens for small
values of μ. This motivated us to investigate also the case of simultaneous stem cell
regulation (ka = kp = 1). No destabilisation was detected when varying the μ and
p in the interval (0, 50). Thus, the regulation of the stem cell processes seem to have
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Fig. 8 Plot of au(x) from Table 3: linear (dashed), quadratic (dotted) and constant mean value (solid). Left:
(px)1; right: (px)2
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Fig. 9 Stability boundary for case (px)2 in Table 3, when au(x) is constant (solid), linear (dashed) and
quadratic (dotted), and v-dependence (pc)2. Left: stem cell regulation (s)s, stability region to the right of
the boundary; right: (s)d, stability region to the left of the boundary

a significant impact on the shape of the stability region when the maturation rate is
regulated by amount of mature cells only.

8.3 Maturation rate dependent onmaturity and on the amount of mature cells

Finally,we investigate the casewhen thematuration rate depends explicitly onmaturity
x .We consider (8.2) with g0 = 0 andmaturity-dependent rates specified in Table 3. As
clear from the specifications, we fix pu constant andwe compare two different forms of
the function au(x) (linear decreasing and quadratic)with theirmean constant value, see
also Fig. 8. A linear increasing function au(x) did not produce qualitatively different
results, so we did not include the analysis here. Moreover, an increasing au(x) is not
supported by the parameter sets proposed by Stiehl et al. (2014). We stress again that
the transformation introduced in Sect. 6 does not apply to this case, and there is nowell-
established software for the numerical bifurcation analysis of (2.7)–(2.8). Therefore
we study the system numerically by applying the pseudospectral discretisationmethod
described in Sect. 7 and by studying the approximating system (7.3)with the numerical
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Fig. 10 Stability boundary in the plane (μ, p) for case (px)1 in Table 3, when au(x) is constant (solid),
linear (dashed) and quadratic (dotted). Different rows correspond to different types of v-dependence, see
also Table 2. Stability region is below the boundary

package matcont. In the following simulations, the discretisation index M is chosen
as an integer in the interval [10, 15] that guarantees the convergenceof the computation.

With parameter set (px)1, we considered different types of v-dependence corre-
sponding to the parameter sets (pv)0, (pv)1 and (pv)2 summarised in Table 2. The
results are summarised in Fig. 10. For parameter set (px)2, for illustration we only
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considered the case (pv)2 of maturation rate increasing with v (the case (pv)1 did not
exhibit any more interesting behaviour). The output is plotted in Fig. 9.

Introducing the dependence on maturity did not produce any qualitative change in
the stability boundary compared to Figs. 5, 6 and 7, but affected the location of the
boundary, sometimes in a relevant way, see for instance Fig. 9 (left). It is interesting
to notice that the quadratic x-dependence in Fig. 10, (pv)2 (right), has a different
effect (stability boundary moves up) compared to the other figures, where the stability
boundary moves down. Also, in Fig. 9 we observe that the boundary associated with
the quadratic dependence is located between those associated with linear and constant
rates, differently from the outcomes of Fig. 10. These differences in the stability
boundaries lead us to believe that the effects of maturity dependence are of great
complexity and strongly dependent on the specifications of model parameters.

9 Discussion and outlook

In the present paper we have considered a model for the regulated maturation process
of stem cells. We have developed analytical and numerical methods and used these
to show that a stable positive equilibrium destabilises the trivial in a transcritical
bifurcation, and that, upon further variation of parameters, the positive equilibrium
may destabilise. Note that we could introduce a quantity R that can be interpreted as
the expected lifetime net offspring production of a stem cell in absence of regulation.
In the special case analysed in Sect. 5 (with the rates specified in Lemma 4.5(e), i.e.,
fixed delay only), this quantity would be R := (2a − 1)p/μw and, by considering R
as bifurcation parameter, the transcritical bifurcation occurs at R = 1 as in classical
population ecology and epidemiology, see for instanceDiekmann et al. (1990).Wenote
that, in the case of regular cell production, the healthy state at homeostasis corresponds
to the positive equilibrium. If the model describes cancer stem cells, the positive
equilibrium may represent a pathological situation, while the zero equilibrium may
correspond to the absence of cancer tissue.

One motivation for the present research is the analysis of a six-compartment model
of Marciniak-Czochra et al. (2009). By means of simulations the authors show that,
under various choices of regulation mode and parameters, total cell numbers converge
to a positive equilibrium, which is associated with homeostasis of the cell population.
As remarked by Marciniak-Czochra et al. (2009), it is clear that convergence to a pos-
itive equilibrium is not feasible without regulation. In the case of two compartments,
Getto et al. (2013) showed analytically that there exists a unique positive equilibrium
in a certain region of the parameter space, while there is no positive equilibrium in the
remaining region. Via a Lyapunov function it is proven that the positive equilibrium
is globally stable under various regulation modes. Hence, Marciniak-Czochra et al.
(2009) and Getto et al. (2013) found similar stability results, but they did not find
destabilisation of the positive equilibrium (although Marciniak-Czochra et al. (2009)
presented an examplewhere the positive equilibrium is unstable on thewhole existence
region). These results are consistent with our findings in the sense that convergence
to a positive equilibrium is possible when the stem cells population net growth rate is
regulated.
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Nakata et al. (2012) considered one unstructured progenitor compartment besides
stem and mature cells, resulting in a three-compartment model. They proved that only
in presence of the intermediate compartment the positive equilibrium can destabilise
upon variation of parameters. Consistently with the analysis of Nakata et al. (2012),
we have shown that adding a compartment between stem and mature cells can—
depending on parameters—either preserve stability or allow for destabilisation. Such
intermediate compartment is considered unstructured by Nakata et al. (2012), whereas
it has a continuous maturity structure in the present paper. Comparing the stability
boundaries of Nakata et al. (2012) with the ones found here, however, many substantial
differences in shapes can be noted. It could be interesting to analyse these differences
more precisely, in particular in relation with experimental data. Stiehl and Marciniak-
Czochra (2011) and Nakata et al. (2012) showed that models with more than two
unstructured progenitor compartments have, next to a zero and a positive equilibrium,
also semi-trivial equilibria where the total amount of cells is positive, but where stem
cells are absent. Apart from complicating the mathematical analysis, this feature may
be questionable in terms of biological interpretation. As already observed by Doumic
et al. (2011), models with a continuously-structured progenitor compartment do not
allow for this type of semi-trivial equilibria and may therefore be more realistic in
some biological contexts.

We remark that Doumic et al. (2011) studied a model similar to the one considered
here, formulated as a transport equation. The paper contains results on boundedness of
solutions, linearised stability, and persistence. Through formal linearisation (substitut-
ing exponential trial solutions) and numerical simulations, the authors found evidence
for stability and for the destabilisation of the positive equilibrium via a Hopf bifurca-
tion. In our stability analysis, we added a degree of reliability by quoting theorems that
guarantee well-posedness and local correspondence of (in-)stability between original
and linearised system, together with theorems that ensure that the model satisfies the
necessary preconditions of the former theorems. Regarding the model ingredients,
Doumic et al. (2011) focused mainly on a particular case motivated by the multi-
compartment model,which is a special case of (8.2) with g0 = k1 = 0. Moreover,
the progenitor production rate is not regulated by mature cells. Our results of stability
on emergence hold for the more general model that incorporates a generic maturation
rate g(x, v) and a progenitor production rate d(x, v) which may depend on mature
cells.

One of the important results of Doumic et al. (2011) is the possibility of destabil-
isation of the positive equilibrium, which they accomplished by finding a parameter
interval where destabilisation is possible, and bymeans of numerical examples. One of
our aims here was to develop analytical and numerical methods for a quantification of
the analysis, in particular the exact computation of destabilisation points and stability
boundaries in parameter planes.

With analytical methods we have proven that the boundaries show interesting phe-
nomena such as switches from boundedness to unboundedness in the stability region,
and the appearance and disappearance ofmonotonicity upon variation of a third param-
eter, see Fig. 4. The presence of local minima corresponds to switches of the type
stable-unstable-stable upon variation of a single parameter, as evident for instance
from Fig. 4 (cases η = 0.99 and η = 2.5), when varying the parameter μ.
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The numerical computations show a wider range of potentially interesting phe-
nomena. For instance, the type of regulation of the maturation rate by mature cells has
significant impact: note the drastic differences in the stability boundaries in Figs. 6
and 7. The pseudospectral discretisation method allowed us to conduct the numerical
analysis for the fully general model, although, with our specifications of the rates,
adding maturity dependence in the maturation rate seemed to affect the boundaries
mainly quantitatively rather than qualitatively, see Figs. 9 and 10 .

The proven features regarding the shapes of the stability boundaries could be a
good starting point to understand possible biological mechanisms relating parameters
at the cell level with behaviours observable at the cell population level. The numerical
methods would then allow for a wider biological analysis: it would be interesting
especially to exploit the flexibility of the pseudospectral approximation to conduct
further analyses with parameter estimates coming from the experimental data.

We remark thatwe could find very few references among themodelling literature for
a mathematical description of the maturation speed. One possible reason for this may
be the fact that numerical methods being able to handle maturation rates dependent on
maturity are not widespread, and that computation times significantly increase for such
rates. A second possible reason is the biological state of the art, since cell maturation
is not completely understood yet. We hope that the exploration contained in this
paper, showing that the maturation rate strongly affects the stability of the positive
equilibrium, can contribute to raise interest in such biological questions.

On the mathematical side, it could be interesting to investigate if explicit repre-
sentations of stability boundaries can be computed algebraically for the case of a
non-constant maturation rate, and whether qualitative changes with respect to the
constant case can be shown. The numerical computations, together with the fact that
qualitative changes appear already when varying the value of the constant maturation
rate, suggest an affirmative answer.

Moreover, there is a clear analytical and numerical evidence that the destabilisation
of the positive equilibrium occurs through a Hopf bifurcation. It could be interesting
to prove the Hopf bifurcation analytically. As a “warm-up”, for the fixed-delay case
one could check whether the Hopf bifurcation theorem by Diekmann et al. (1995)
is applicable. For the state-dependent case, one could study related Hopf bifurcation
theorems by Hu and Wu (2010). We refer to Adimy et al. (2010) for a Hopf bifurca-
tion analysis in the context of an SD-DDE modelling cell maturation, which uses a
result from Eichmann (2006). An ongoing project is the proof of existence of periodic
solutions as fixed points of the next-state operators for the stem cell SD-DDE.

For a progenitor maturation rate that depends on maturity and mature cells, at
present, pseudospectral methods seem to be the only method of analysis. This paper
represents the first application of the method to a SD-DDE. This was possible by
exploiting the uniform bound of the delay (3.5), and by applying the discretisation
technique used for fixed-delay equations to the interval [−h, 0]. We argued that the
convergence results proven in the fixed-delay case remain true in this new context.
We also showed that, for fixed-delay equations, the stability curves obtained with
pseudospectral methods are indistinguishable from the ones obtained with the well-
established software package dde- biftoolEngelborghs et al. (2002). This agreement
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supports numerically the convergence of the pseudospectral approximations of the
stability and bifurcation properties of equilibria.

After the successful investigation of the stability of equilibria, it would be inter-
esting to exploit the features of the software packages for ODE to push the analysis
forward and investigate also the periodic solutions emerging from the Hopf bifurca-
tions, together with their stability and bifurcation properties.We recall that the proof of
convergence of the approximation of periodic solutions is still under investigation, but
the numerical tests of Breda et al. (2016a, b) support the conjecture of spectral accu-
racy for equations with fixed delay. We remark also that, when the ODE describing the
evolution of the structuring variable cannot be solved explicitly, like in the maturity-
dependent cases considered in this paper, the computation times may be significant.
An interesting future perspective is the application of the pseudospectral approxima-
tion technique to complex structured models of the type proposed by Diekmann et al.
(2010), with a special attention to the efficiency and computation times.

Finally, we remark that, in the spirit of physiologically structured population mod-
els, it could be interesting to reformulate the present model as a Volterra functional
equation coupled with a DDE, for which the principle of linearised stability was
proven by Diekmann et al. (2007) and Diekmann and Gyllenberg (2012). One of the
advantages of that formulation would be a larger set of admissible initial conditions.
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A Proofs of Sections 3–6

Proof of Theorem 3.1 Walther (2003) and Hartung et al. (2006) established that, if a
functional f satisfies (S), then it is possible to define a solution manifold such that, for
every initial condition belonging to the manifold, the initial value problem associated
with the DDE induced by f admits a unique solution defined on a maximal interval.
Moreover, the solutions define a differentiable semiflow, and a linear variational equa-
tion can be associated with the derivative. Getto and Waurick (2016) showed that, if
(S) and (sLb) hold, the solutions are global, meaning that they are defined on [−h,∞).
This proves the well-posedness statement. In Theorem 1.1 by Stumpf (2016) it was
established that, again under condition (S), an equilibrium is locally asymptotically
stable if all spectral values of the generator of the semigroup defined by the linear vari-
ational equation evaluated at equilibrium have negative real part, and unstable if there
is such a value with positive real part (for the proofs it is referred to Theorem 3.6.1
of Hartung et al. (2006) for the stability criterion, and to Proposition 1.4 of Stumpf
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(2010) for the instability criterion). Hartung et al. (2006) and Stumpf (2016) estab-
lished that these spectral values are given by the roots of the characteristic equation
that is obtained by the familiar Ansatz of substituting exponential trial solutions into
(3.1). Such a characteristic equation was expressed as (3.2) by Diekmann et al. (1995).
This shows that also the statements on stability and instability hold and completes the
proof. ��

The following result will be used to compute the characteristic equation. For the
corresponding differentiability proofs, we refer to Getto and Waurick (2016).

Lemma A.1 If (w, v) denotes an arbitrary equilibrium, we get

D1F1(w, v)ez = q(v), D2F1(w, v)ez = q ′(v)w,

D1F2(w, v)ez = γ (v)g(x2, v) e
∫ τ (v)
0 (d−D1g)(y(t,v),v) dt

g(x1, v)
e−τ(v)z

D2F2(w, v)ez = wγ (v)g(x2, v)

g(x1, v)
e
∫ τ (v)
0 (d−D1g)(y(t,v),v) dt

{[γ ′

γ
(v) − D2g

g
(x1, v)

]
e−τ(v)z

+ D2g

g
(x2, v) +

∫ τ(v)

0

[
D2(d − D1g)(y(t, v), v)

− D2g(y(t, v), v)
(d − D1g

g
(x1, v) e− ∫ τ (v)

t D1g(y(θ,v),v) dθ

+
∫ τ(v)

t
D1(d − D1g)(y(σ, v), v) e− ∫ σ

t D1g(y(θ,v),v) dθ dσ
)]

e−zt dt
}

− μ.

For the positive equilibrium, we additionally get

D1F1(w, v)ez = 0, D2F1(w, v)ez

= q ′(v)μvg(x1, v)

γ (v)g(x2, v)
e− ∫ τ (v)

0 (d−D1g)(y(t,v),v) dt ,

D2F2(w, v)ez = k̂(v)(z) + μv
[γ ′

γ
(v) − D2g

g
(x1, v)

]
e−τ(v)z

+μ
[
v
D2g

g
(x2, v) − 1

]
.

with k(v) defined in (4.3).

Proof of LemmaA.1 First, as proven in Propositions 1.9 and 1.11 byGetto andWaurick
(2016), by differentiating (2.5) and (2.6) we can express

D2y(t, v)ψ = −
∫ t

0
e− ∫ t

σ D1g(y(θ,v),v) dθ D2g(y(σ, v), v)ψ(−σ) dσ,

Dτ(v)ψ = D2y(τ (v), v)ψ

g(x1, v)
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= − 1

g(x1, v)

∫ τ(v)

0
e− ∫ τ (v)

t D1g(y(θ,v),v) dθ

D2g(y(t, v), v)ψ(−t) dt .

This leads to

∫ τ(v)

0
D1(d − D1g)(y(t, v), v)D2y(t, v)ψ dt

= −
∫ τ(v)

0
D1(d − D1g)(y(t, v), v)

∫ t

0
e− ∫ t

σ D1g(y(θ,v),v) dθ

D2g(y(σ, v), v)ψ(−σ) dσ dt

= −
∫ τ(v)

0

∫ τ(v)

t
D1(d − D1g)(y(σ, v), v) e− ∫ σ

t D1g(y(θ,v),v) dθ dσ

D2g(y(t, v), v)ψ(−t) dt .

We then get

D1F1(w, v)ϕ = q(v)ϕ(0), D2F1(w, v)ψ = wq ′(v)ψ(0),

D1F2(w, v)ϕ = γ (v)g(x2, v) e
∫ τ (v)
0 (d−D1g)(y(t,v),v) dt

g(x1, v)
ϕ(−τ(v)),

and

D2F2(w, v)ψ = w e
∫ τ (v)
0 (d−D1g)(y(t,v),v) dt

{g(x2, v)

g(x1, v)
γ ′(v)ψ(−τ(v)) + γ (v)

g(x1, v)
D2g(x2, v)ψ(0)

− γ (v)
g(x2, v)

g2(x1, v)
D2g(x1, v)ψ(−τ(v)) + γ (v)g(x2, v)

g(x1, v)
[
(d − D1g)(x1, v)Dτ(v)ψ

+
∫ τ(v)

0
D1(d − D1g)(y(t, v), v)D2y(t, v)ψ

+ D2(d − D1g)(y(t, v), v)ψ(−t) dt
]}

− μψ(0)

= w

g(x1, v)
e
∫ τ (v)
0 (d−D1g)(y(t,v),v) dt

{
g(x2, v)

[
γ ′(v) − γ (v)

g(x1, v)
D2g(x1, v)

]
ψ(−τ(v))

+ γ (v)D2g(x2, v)ψ(0) + γ (v)g(x2, v)
∫ τ(v)

0

[
D2(d − D1g)(y(t, v), v)
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− d − D1g

g
(x1, v) e− ∫ τ (v)

t D1g(y(θ,v),v) dθ D2g(y(t, v), v)

−
∫ τ(v)

t
D1(d − D1g)(y(σ, v), v) e− ∫ σ

t D1g(y(θ,v),v) dθ dσ

D2g(y(t, v), v)
]
ψ(−t) dt

}
− μψ(0).

Evaluation at ez yields the result for an arbitrary equilibrium. Additionally, using the
conditions for the positive equilibrium, we get that the first derivative becomes zero,
and we can eliminate w and substitute the expression into D2F1 and D2F2. With the
definitions of k(v) given in (4.3), the thesis follows. ��
Proof of Lemma 4.1 The characteristic equation for the trivial equilibrium follows from
the computation

det(z I − DF(0)ez) = det

(
z − q(0) 0

−D1F2(0)ez z + μ

)

.

Let now (w, v) denote the positive equilibrium. Then, using the previous lemma, we
can write

D2F2(w, v)ez = a(v) + b(v) e−τ(v)z + k̂(v)(z),

where

a(v) := μ

(

v
D2g

g
(x2, v) − 1

)

, b(v) := μv

(
γ ′

γ
(v) − D2g

g
(x1, v)

)

.

Then, by using the expressions obtained in Lemma A.1, the expression for the char-
acteristic equation for the positive equilibrium follows from the computation

det(z I − DF(w, v)ez) = z
[
z − (a(v) + b(v) e−τ(v)z

+ k̂(v)(z))
]

− q ′(v)μv e−τ(v)z

= −zk̂(v)(z) + e−τ(v)z [−zb(v) − q ′(v)μv
]

+ z2 − a(v)z.

��
Proof of Lemma 4.3 It is trivial to see that χ(0, 0) = 0. To conclude that χ is analytic,
one can for instance show that z �→ χ(v, z) satisfies the Cauchy–Riemann equations.
Moreover D1χ(0, 0) = q ′(0)μ and D2χ(0, 0) = k̂(0)(0)−μ = −μ, since k(0) = 0.
Since z �→ χ(v, z) is analytic with D2χ(0, 0) �= 0, the implicit function theorem
implies the statements with

z′(0) = −D1χ

D2χ
(0, 0) = q ′(0) < 0.
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Proof of Lemma 4.4 We can rewrite (4.2) as

zk̂(v)(z) + e−τ(v)z(a1z + a2) − z2 + a3z = 0, (A.1)

where, here and in the following, the ai are z-independent quantities with obvious
definitions. By continuity of t �→ k(v)(t) and since Re z > 0, we have (independently
of the shape of k(v)) that

|̂k(v)(z)| ≤ τ(v) max
t∈[0,τ (v)] |k(v)(t)|

and | e−τ(v)z | ≤ 1, hence

∣
∣zk̂(v)(z) + e−τ(v)z(a1z + a2)

∣
∣ ≤ |z|a4 + a5

for some nonnegative a4 and a5. Since |z2 − a3z| ≥ |z|2 − a6|z| for nonnegative a6,
it follows from (A.1) that

|z|a4 + a5 ≥ |z|2 − a6|z|.

This implies |z|2 ≤ a7|z| + a5, thus |z| ≤ a7 + a5|z| for nonnegative a7. Hence |z| ≤ K
with K := max{1, a5 + a7}. ��
Proof of Lemma 4.5 The representation (4.4) follows from Lemma 4.1 if we show that
k(v), and therefore k̂(v), change as stated. The latter follows by combining the two
identities

∫ τ(v)

t
D1d(y(σ, v), v) dσ

= 1

g(v)
(d(y(t, v), v) − d(x1, v)), (A.2)

k(v)(t) = μv
[
D2d(y(t, v), v) − d(x1, v)

g′

g
(v)

− g′(v)

∫ τ(v)

t
D1d(y(σ, v), v) dσ

]
. (A.3)

Then (4.6) is obvious. Using the specifications, (4.7) follows in a straightforward way
from (4.6), since

γ ′(v) = 2[−s′(v)dw(v) + (1 − s(v))d ′
w(v)],

γ ′(v)

γ (v)
= d ′

w(v)

dw(v)
− s′(v)

1 − s(v)
,

q ′(v) = 2s′(v)dw(v) + d ′
w(v)[2s(v) − 1].
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Using the new specifications, the characteristic Eq. (4.7) becomes

d ′
w

dw

(v)μv
[
z + dw(v)(2a − 1)

]
e−zτ − z2 − μz = 0.

If we use the equilibrium condition (2a − 1)dw(v) − μw = 0, we get (4.8). Finally,
for the specification of dw and using the equilibrium conditions we get

d ′
w(v)

dw(v)
v = μw

(2a − 1)p
− 1,

with which (4.9) follows from (4.8). ��
Proof of Lemma 5.2 (a) We prove only some statements for fη for η < 1, since the
proofs of the remaining statements do not use new techniques. One has fη(2kπ) =
−2kπ ≤ 0, fη(π/2+2kπ) = η, f ′

η(ω) = (η−1) cosω+ω sinω, f ′
η(2kπ) = η−1 <

0, f ′
η(π/2 + 2kπ) = π/2 + 2kπ > 0 and f ′′

η (ω) = −(η − 2) sinω + ω cosω > 0
in between, since both of its addends are positive. Thus f ′

η increases from a negative
to a positive value. Hence, fη first decreases from a nonpositive value, then increases
to a positive value. Thus there exists a unique zero in every (0, π/2) + 2kπ . (b) is an
obvious corollary from (a).
(c) On [ω1, π/2] the function f ′

η is positive by the arguments used in the proof of (a).
On [π/2, ω2] it is positive since both addends of the expression, see again proof of
(a), are positive on [π/2, π ]. ��
Proof of Lemma 5.3 In (m, r , 0, ω), one computes

∂1H1 = ∂mH1 = r(η cosω + ω sinω),

∂2H1 = ∂r H1 = m(η cosω + ω sinω),

∂1H2 = ∂mH2 = ω + r(ω cosω − η sinω),

∂2H2 = ∂r H2 = m(ω cosω − η sinω),

and from this the statement follows. ��
In the next two proofs, we do not denote subindices of fη and gη.

Proof of Lemma 5.4 Let first η ≥ 1. One has m(ω) = ω f (ω)
g(ω)

and

f ′(ω) = g(ω) − cosω, g′(ω) = sinω − f (ω).

Then,

sgnm′(ω) = sgn[ f (ω) + ω f ′(ω)]g(ω) − ω f (ω)g′(ω)

= sgn f (ω)g(ω) + ωg2(ω) + ω f 2(ω)

− ωg(ω) cosω − ω f (ω) sinω = sgn h(ω)
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for h defined in an obvious way. Note that the first three terms have positive sign. On
(0, π/2] we have

f (ω)g(ω) − ω f (ω) sinω = f (ω)(g(ω) − ω sinω)

= f (ω)η cosω > 0,

ωg2(ω) − ωg(ω) cosω = ωg(ω)(g(ω) − cosω)

= ωg(ω)[(η − 1) cosω + ω sinω] > 0.

Thus sgnm′(ω) = 1 on (0, π/2]. Similarly, on [π/2, ω1] we have

ω f 2(ω) − ω f (ω) sinω > 0, f (ω)g(ω) − ωg(ω) cosω > 0.

Thus sgnm′(ω) = 1 also on [π/2, ω1], hence on (0, ω1).
Let now η < 1. Then f (ω1) = 0 implies that

h(ω1) = ω1g(ω1)(g(ω1) − cosω1) = ω1g(ω1) f
′(ω1) > 0.

Now, not denoting the ω-argument where convenient,

h′ = f ′g + f g′ + g2 + 2ωgg′ + f 2 + 2ω f f ′

− g cos−ωg′ cos+ωg sin− f sin−ω f ′ sin−ω f cos

= 2g(g − cos) + 2ω(g sin− f cos) = 2g f ′ + 2ω2 > 0.

Thus h(ω) > 0 on (ω1, ω2). Hence the statement follows. ��
Proof of Lemma 5.5 By Lemma 5.4 it suffices to show the statement for r as a function
of ω. Using that r(ω) = ω

f (ω)
, we get sgn r ′(ω) = sgn h(ω), where

h(ω) := f (ω) − ω f ′(ω) = (η − ω2) sinω − ωη cosω = η sinω − ωg(ω).

If the sign of a function is not obvious we consider the derivative. We compute

h′(ω) = −ω[(2 − η) sinω + ω cosω],
h′′(ω) = (ω2 + η − 2) sinω + ω(η − 4) cosω,

h′′′(ω) = ω(6 − η) sinω + (ω2 + 2η − 6) cosω,

h(4)(ω) = (12 − 3η − ω2) sinω + ω(8 − η) cosω.

Now, let first η ∈ [1, 2]. Then, h′|(0, π
2 ) < 0 since η ≤ 2 and, since moreover h(0) = 0,

we have h|(0, π
2 ) < 0. Next, using g(ω1) = 0, we get

h(ω1) = η sinω1 − ω1g(ω1) = η sinω1 > 0,

h′(ω1) = [−(η − 1)2 + 1 − ω2
1] cosω1 > 0, since ω1 ∈ (

π

2
, π),

h′′(ω) > 0 on (
π

2
, π), since η ∈ [1, 2].
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Hence h′ increases from negative to positive on [π
2 , ω1]. Thus h decreases from zero

in zero to a minimum, which lies to the right of π
2 , then increases to a positive value

in ω1. Hence, r as a function of ω decreases from a positive value to a minimum, also
to the right of π

2 , then increases. This implies the statement for η ∈ [1, 2].
Let now η < 1. Then h(ω1) = −ω1 f ′(ω1) < 0. Since moreover h′ < 0 on (ω1,

π
2 ]

we have h < 0 on [ω1,
π
2 ]. Next, h(ω2) = η sinω2 − ω2g(ω2) = η sinω2 > 0. Now

h′(π
2 ) < 0 and, using g(ω2) = 0, we get

h′(ω2) = −ω2

(

2 − η − ω2
2

η

)

sinω2 > 0,

as the term in brackets is negative sinceω2
2 ≥ π2

4 > 1 ≥ η(2−η).Moreover h′′ > 0 on
(π
2 , ω2). Hence, h′ increases from negative to positive on (π

2 , ω2). Thus, h decreases
from negative then increases to positive and the zero lies in (π

2 , ω2). The statement
for r for η < 1 follows.

Now consider η ∈ (2, 3). We first consider [0, π
2 ]. Then h′′′(0) = 2η − 6 < 0.

Moreover 12 − 3η − ω2 > 3 − π2

4 > 0, hence h(4) > 0 on (0, π
2 ). Now h′′′(π

2 ) =
π
2 (6−η) > 0. Thus h′′′ increases from negative to positive. Sincemoreover h′′(0) = 0

and h′′(π
2 ) = π2

4 + η − 2 > 0 this implies that h′′ decreases from zero, then increases

to positive. Since h′(π
2 ) = −π

2 (2−η) > 0 so does h′. As h(π
2 ) = η− π2

4 the function

h decreases from zero, then increases, to negative if η < π2

4 , to zero, if η = π2

4 and to

positive if η > π2

4 . We next consider [π
2 , π ]. Then h′ > 0. Now, since h(ω1) > 0 the

function h increases on (π
2 , ω1) from positive, if η > π2

4 , from zero, if η = π2

4 , and

from negative to positive, if η < π2

4 . This implies the statement for η ∈ (2, 3).
We now first consider η ≥ 4. Then h′′ > 0 on (0, π

2 ]. Thus h′ increases from zero
in zero to a positive value in π

2 . Hence, so does h. Let now η ∈ [3, 4]. Then h′′′ > 0
on (0, π

2 ]. It follows that h′′, thus h′, hence h is positive on (0, π
2 ]. Now consider all

η ≥ 3. Then h′ > 0 on [π
2 , π ]. Hence h remains positive on [π

2 , ω1), thus is positive
on (0, ω1], hence r increases. ��
Proof of Lemma 6.1 Assumption (G3) in Sect. 3 ensures that Φv and Tu are monoton-
ically increasing and hence injective. From Proposition 1.9(a) by Getto and Waurick
(2016), there exists a unique τ = τ(v0) ∈ (−h, 0) such that Φv(−τ) = −δ, hence
[−δ, 0] ⊆ Φv([−h, 0]) and Φv is surjective on [−δ,+∞). Moreover, Φ−1

v satisfies

(Φ−1
v )′(φ) = 1

g(v(Φ−1
v (φ)))

, φ ≥ −δ, (A.4)

hence Φ−1
v is continuously differentiable for φ ≥ −δ.

From assumption (G3), we can bound

−τζ = Tζ (−δ) ≥ −δ

ε
≥ − b

K
= −h,
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hence Tζ ([−δ, 0]) = [−τζ , 0] ⊆ [−h, 0] and Tζ is surjective onto [−τζ , 0]. This
implies that Tu is invertible with T−1

u : [−τζ ,+∞) → R satisfying

(T−1
u )′(t) = g(u(T−1

u (t))), t ≥ −τζ .

��
Proof of Theorem 6.2 Let (w, v) be a solution of (2.7) and (6.1) with initial condi-
tion (3.6), and (ω, u) be defined by (6.8). From Lemma 6.1 we have that Φ−1

v ∈
C1([−δ,+∞), R), hence (ω, u) is continuously differentiable on [−δ,+∞). More-
over, (6.7) holds true by definition. Thus, we only need to prove that (ω, u) satisfies
(6.5) and (6.6). From (6.3) we conclude that, for all t > 0,

Φv(t) − Φv(t − τ(vt )) = δ. (A.5)

Hence, for all t > 0 we can rewrite the discrete delay terms as

w(t − τ(vt )) = ω(Φv(t − τ(vt ))) = ω(Φv(t) − δ), (A.6)

v(t − τ(vt )) = u(Φv(t − τ(vt ))) = u(Φv(t) − δ). (A.7)

Consider now the distributed delay term in (6.1), that we rewrite as

∫ τ(vt )

0
d(y(s, vt ), v(t − s)) ds =

∫ t

t−τ(vt )

d(y(t − σ, vt ), v(σ )) dσ. (A.8)

From (6.2), using the change of variable φ = Φv(θ) and relation (A.4), we can write

y(t − σ, vt ) = x2 −
∫ t

σ

g(v(θ)) dθ

= x2 −
∫ t

σ

g(u(Φv(θ))) dθ

= x2 −
∫ Φv(t)

Φv(σ )

g(u(φ))

g(u(φ))
dφ

= x2 − (Φv(t) − Φv(σ)) .

Substituting into (A.8), we get

∫ τ(vt )

0
d(y(s, vt ), v(t − s)) ds

=
∫ t

t−τ(vt )

d(x2 − (Φv(t) − Φv(σ)), u(Φv(σ ))) dσ

=
∫ Φv(t)

Φv(t−τ(vt ))

d(x2 − (Φv(t) − φ), u(φ))

g(u(φ))
dφ
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=
∫ δ

0

d(x2 − s, u(Φv(t) − s))

g(u(Φv(t) − s))
ds, (A.9)

where the last equality follows from (A.5). Finally, by applying the chain rule, we get

ω′(φ) = w′(Φ−1(φ))(Φ−1
v )′(φ) = w′(Φ−1(φ))

1

g(u(φ))

u′(φ) = v′(Φ−1(φ))(Φ−1
v )′(φ) = w′(Φ−1(φ))

1

g(u(φ))
.

By using (2.7) and (6.1) with t = Φ−1
v (φ) and substituting relations (A.6), (A.7) and

(A.9), we conclude that (ω, u) satisfies (6.5) and (6.6) for all φ > 0.
Vice versa, let (ω, u) be a solution of (6.5)–(6.7). From Lemma 6.1 it follows that

T−1
u ∈ C1([−τζ ,+∞), R). Let ϕ,ψ be defined on [−h, 0] and satisfying (6.9), and

let (w, v) be defined by (6.10) and extended such that w0 = ϕ, v0 = ψ . By definition,
(w, v) is continuously differentiable on [−δ,+∞) and satisfies (3.6). We now show
that (w, v) satisfies (2.7) and (6.1). Note that Tu = Φ−1

v , since Φ−1
v (0) = Tu(0) = 0

and they have the same derivative for φ ≥ 0. Let τ = τ(ψ) be defined implicitly
by (6.3). For every t > 0, τ(vt ) satisfies (A.5), and hence (A.6) and (A.7) hold true.
The distributed delay term can be transformed analogously as before to obtain the
identity (A.9). Finally, by applying the chain rule, we have

w′(t) = ω′(T−1
u (t))(T−1

u )′(t) = ω′(T−1
u (t))g(v(t))

v′(t) = u′(T−1
u (t))(T−1

u )′(t) = u′(T−1
u (t))g(v(t)),

and we conclude that (w, v) satisfies (2.7) and (6.1) for all t > 0. ��
Proof of Lemma 6.4 Lemma A.1 and Eqs. (A.2) and (A.3) imply that

D1F1(w, v)ez = 0, D2F1(w, v)ez = q ′(v)μv

γ (v)
e− ∫ τ (v)

0 d(y(t,v),v) dt ,

D1F2(w, v)ez = γ (v) e
∫ τ (v)
0 d(y(t,v),v) dt e−τ(v)z,

D2F2(w, v)ez = k̂(v)(z) + μv

(
γ ′

γ
− g′

g

)

(v) e−τ(v)z + μ

(

v
g′

g
(v) − 1

)

,

(A.10)

with k(v) as in (4.5). We show only that the respective last entries agree, i.e., that

D2G2(w, v)ekz = kD2F2(w, v)ez, (A.11)

since the techniques for the remaining elements are less complex. First, one has

D2G2(w, v)ψ = w e
∫ δ
0

d(x2−s,v)

g(v)
ds

g(v)

{(
γ ′ − g′γ

g

)
(v)ψ(−δ)
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+ γ

g
(v)

∫ δ

0

[
D2d(x2 − s, v) − d(x2 − s, v)

g′

g
(v)

]
ψ(−s) ds

}

−μ
( 1

g(v)
− v

g′

g2
(v)

)
ψ(0).

Using the equilibrium condition μv = γ (v)w e
∫ δ
0

d(x2−t,v)

g(v)
dt , we get

D2G2(w, v)ψ = μ

g(v)

{
v
[(γ ′

γ
− g′

g

)
(v)ψ(−δ)

+ 1

g(v)

∫ δ

0

(
D2d(x2 − t, v) − d(x2 − t, v)

g′

g
(v)

)
ψ(−t) dt

]

− (
1 − vg′

g
(v)

)
ψ(0)

}
.

Hence,

D2G2(w, v)ekz = μ

g(v)

{ v

g(v)

∫ δ

0

[
D2d(x2 − t, v) − d(x2 − t, v)

g′

g
(v)

]
e− zt

g(v) dt

+μv
(γ ′

γ
− g′

g

)
(v) e− δz

g(v) + v
g′

g
(v) − 1

}
.

Comparing this expression with (A.10), it is easy to see that (A.11) holds. ��
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