
1.  Introduction
Type 2 diabetes mellitus (T2DM), a complicated and severe metabolic disease, has escalated sharply during 
recent decades world-wide, resulting in massive burdens on both T2DM patients and society. According to the 
International Diabetes Federation, as the ninth cause of death, 537 million people were suffering from diabetes in 
2021 globally. Among the diabetes patients, T2DM accounts for 90%, which was predicted to rise to 783 million 
in 2045 (Sun et al., 2022). When compared with people without diabetes, T2DM patients had a 15% increased 
risk of all-cause mortality (Tancredi et al., 2015). Considerable socioeconomic pressures from diabetes were for 
costs to global health economies, which were estimated at least US$966 billion in 2021, having increased 316% 
over the last 15 years (Sun et al., 2022). Heavy burden had brought for many countries, since the large quantity of 
diabetes patients. Specially, 140.9 million Chinese adult population had T2DM in 2021, having the most T2DM 
patients in the world (Sun et al., 2022). Since the China's healthcare reform in 2009, Chinese government has 
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Plain Language Summary  Type 2 diabetes mellitus (T2DM) as complicated and severe metabolic 
disease, would be affected by air pollution, rendering numerous burdens on patients and society. In this study, 
the associations and burden of air pollutants (NO2, PM10, PM2.5, SO2, and CO) on hospital admissions (HAs) for 
T2DM were estimated using conditional poisson regression. Data on HAs for T2DM in nine cities in Sichuan 
Province during 2017–2019 were involved. In summary, there were 92,381 cases of T2DM hospitalizations. 
Results showed that significant short-term effects of air pollution on HAs for T2DM. In stratified analyses 
modified by age, sex, and season, higher impacts were linked with old (≥65 years) and female patients. When 
adopting WHO's air guidelines of NO2, PM10, PM2.5, and CO, the attributable number and cost of HAs for 
T2DM exceeding air guidelines were estimated, posing central risks to public health. Continuous and further 
efforts should be taken to air pollution.
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issued a series of policies and strategies to enhance the management of chronic diseases, like diabetes as one of 
the most typical chronic diseases (Jia & Tong, 2015).

Around the world, almost 99% people are breathing the air that are above the limits of World Health Organization 
(WHO, 2022). In recent years, various studies have investigated the associations between short-term exposure 
to ambient air pollution and T2DM incidence and burden (Liu et al., 2013, 2021a; Rajagopalan & Brook, 2012). 
Globally, 3.2 million cases of diabetes mellitus were linked with ambient air particle matter (PM), rendering to 
8.3 million disability-adjusted life-years (Benjamin et al., 2018). A study in Chile reported that an interquartile 
range increase in particle matter (PM) with aerodynamic diameter ≤2.5  μm (PM2.5), ≤10  μm (PM10), nitro-
gen dioxide (NO2), and sulfur dioxide (SO2) were involved with relative risks of hospitalization for diabetes as 
1.11 (95% confidence interval (CI): 1.06, 1.16), 1.11 (95% CI: 1.07, 1.15), 1.12 (95% CI: 1.05, 1.20), and 1.14 
(95% CI: 1.06, 1.22), separately (Dales et al., 2012). Evidence from in vivo, in vitro and epidemiologic studies 
consistently supports the short exposure to air pollution to cause inflammation through further exacerbating 
systemic insulin resistance via over activity of the sympathetic nervous system (Li et al., 2012; Rajagopalan & 
Brook, 2012), which need to be further investigated with more relative studies.

Until now, limited studies were observed in developing countries, which were undergoing a marked aggravation in 
T2DM over the last decades with severer air pollution than developed countries (Nicole, 2015). However, there were 
gaps for the epidemiology evidence in developing countries, like the areas of China with high air pollution, which 
could lead to comparable health and cost (Jiang et al., 2022; Ma et al., 2016). For example, Sichuan Province was the 
fourth of high air levels in China in which the high PM2.5 and PM10 levels was 47.7 and 75.9 μg/m 3 (Xiong et al., 2019), 
being about 9 and 5 times higher than the annual guideline (5 μg/m 3 for PM2.5 and 15 μg/m 3 for PM10) reported by 
World Health Organization (WHO, 2021). Situated in Sichuan Basin, in addition to high population densities and rich 
economies, Sichuan Province was linked with heavy air pollution from the intensive consumption of energy and unfa-
vorable geographical conditions (Zhang et al., 2009). Particularly, a total of about 83 million residents in 2020 was 
in Sichuan Province, ranking as the fifth of population among all provinces (NBSC, 2021). Environment and mete-
orological conditions, like temperature or humidity would vary from city to city (Wang et al., 2021). Nonetheless, air 
pollution and health outcomes mainly pay attention to megacity of China, like Beijing (Bao et al., 2017). Few previous 
studies have confirmed the short-term effect of air pollution on multi-city scale in Sichuan. Besides, available studies 
have not evaluated the short-term effect of ambient air pollution on hospital admissions (HAs) for T2DM and related 
economic burden, which could serve as an evidence-based implications for chronic disease prevention in China.

Thus, the objective of this study is to estimate the associations between short-term exposure to ambient air pollu-
tion and hospital admissions (HAs) for T2DM in nine cities in Sichuan Province during 2017–2019. We also 
calculated the economic burden of T2DM owing to ambient air pollution.

2.  Materials and Methods
2.1.  Study Area

There are 21 cities in Sichuan Province. Considering the low data quality and limited availability of health data, 
some cities were no involved. In this study, 9 cities in Sichuan Province were included (Figure 1). Nine cities were 
Chengdu (CD), Mianyang (MY), Nanchong (NC), Guangan (GA), Meishan (MS), Zigong (ZG), Liangshanzhou 
(LSZ), Yibin (YB), and Luzhou (LZ), respectively.

2.2.  Data

2.2.1.  Hospitalization Data

The hospitalization data were obtained from the hospital electronic health records of 131 tertiary and secondary 
hospitals in nine cities of Sichuan Province. The International Classification of Disease 10th Revision (ICD-10: 
E11) codes of each hospitalization records were adopted to define as T2DM patients during the period of 1 January 
2017 and 31 December 2019. The data include basic demographics, HAs time and primary discharge diagnosis.

2.2.2.  Environmental Data

Ambient daily air pollution data of NO2, SO2, PM10, PM2.5, and CO were obtained from Sichuan Ecological 
Environmental Monitoring Station from 2017 to 2019, covering 82 air monitoring stations in the 9 cities with 
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19 in CD, 9 MY, 9 in NC, 6 in GA, 6 in MS, 6 in ZG, 17 LSZ and 10 YB. Meteorological data were collected 
from Sichuan Meteorological Bureau. Inverse distance weighting method (IDW) were involved to solve the 
missing data, which was a common and practical spatial interpolation method in environmental investigations 
(Byun & Schere, 2006). The calculation of IDW interpolation was based on the weighted average, which was 
applied to point source data like the environmental data from monitoring stations in this study (Shepard, 1968; Su 
et al., 2018). In addition, the AutoNavi Maps API (https://lbs.amap.com/) were involved to geocode the locations 
of all T2DM cases and monitoring stations. The individual exposure on the single day (from the current day to 
7 days before: from lag 0 to lag 7) and multi-day moving average day (lag 01 to lag 07) could be calculated, which 
were used to estimate the average daily levels for the model.

2.3.  Modeling

The analysis involves three steps: confirming exposure-response function, estimating the number of HAs for 
T2DM due to ambient air pollution, and calculating corresponding economic cost of HAs for T2DM due to air 
exposure.

2.3.1.  Statistical Methods

Time-series analysis was involved to evaluate the short-term effect of ambient air levels with HAs for T2DM 
(Zanobetti et al., 2014). Case-crossover study would compare the exposure in admissions with those from the 
same day of the week in the same month of this year as reference days, to evaluate the differences of exposure 
which might be influenced by the daily count of records (Janes et al., 2005). Based on case-crossover design 
framework, the influence of long-term tendency, seasonal effect, and day of week could be adjusted (Zanobetti 
et al., 2009). This study applied the time-stratified case-crossover design with conditional poisson regression to 
estimate main exposure from NO2, PM10, PM2.5, SO2, and CO on daily T2DM hospitalizations. In the model, 
temperature, relative humidity and city were taken as confounding factors. Daily T2DM cases were poisson 
distribution (Menzin et al., 2010). The Relative Risk (RR) and 95% CI were calculated for per 1 μg/m 3 increase 
of air concentrations.

The relative risk increase (RRI) in HAs for T2DM per 10 μg/m 3 increase of air levels were calculated by (RR-1), 
with details as follows:

RRI% = exp(𝛽𝛽 ∗ 10) − 1 ∗ 100%� (1)

Figure 1.  Geographical distribution of study areas, 9 cities of Sichuan Province.

https://lbs.amap.com/
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where β is the coefficient of air concentrations and HAs for T2DM from conditional poisson regression based on 
time-stratified case-crossover design. Besides, to make practicable comparison with previous study, the RRI in 
HA for per interquartile range increase was also estimated by using the interquartile data for air pollutants from 
different lag structure.

The short-term effects of air levels were confirmed by single pollutant models. When discerning the temporal 
effect with different lag structures, the single day (from the current day to 7 days before: from lag 0 to lag 7) and 
multi-day moving average day (from lag 01 to lag 07) were associated. The multi-day moving average lag expo-
sures were the cumulative average from the current day (lag 0) to the lag day, like lag 02 is the cumulative average 
from lag 0, lag 1, and lag 2. Subgroups analyses were also involved to estimate the effects of stratified modifi-
cation by age (<65 years and ≥65 years), gender (male and female) and season (warm season: April-September 
and cold season: October-March).

Pearson's correlation coefficients were estimated to confirm the correlation degree between air pollutants and 
meteorological data. All analyses were conducted using R (version 4.0.4). The amapGeocode package were 
adopted to geocode the locations. The gnm package were involved to apply the conditional poisson regression 
based on the time-stratified case-crossover design. The significance criterion was set at p < 0.05.

2.3.2.  Calculating the Number of HAs for T2DM due to PM Pollution

The attributable number of HAs for T2DM was estimated from the coefficients of conditional poisson regression, 
with WHO's air quality guidelines for the 24 hr average setting as reference levels (25 μg/m 3 for NO2, 45 μg/m 3 
for PM10 and 15 μg/m 3 for PM2.5, and 4 μg/m 3 for CO) (WHO, 2021). Since the concentrations of SO2 were often 
below air guidelines, the attributable number of HAs for T2DM were excluded. The formula is as follows:

AN𝑖𝑖 = (exp(𝛽𝛽 ∗ (𝑥𝑥𝑖𝑖 − 𝑥𝑥0)) − 1)∕exp(𝛽𝛽 ∗ (𝑥𝑥𝑖𝑖 − 𝑥𝑥0)) ∗ 𝑁𝑁𝑁𝑁� (2)

where ANi is the number of attributable HAs of T2DM to exceeding reference levels on day i; xi (µg/m) is the 
observed level of air pollution on day i; x0 is reference concentration from air quality guideline of WHO, which 
was setting as the theoretical minimum threshold levels. When air levels below the minimum threshold, there is 
no effect on HAs for T2DM (Evans et al., 2013); Ni is the number of HAs for T2DM on day i; AN is the sum of 
overall ANi during 2017–2019. In single pollutant model, the largest effect was adopted to estimate the attribut-
able exposure to exceeding air guidelines (Wang et al., 2020).

2.3.3.  Evaluating the Corresponding Hospitalization Economic Expense

The economic burden of HAs for T2DM due to air pollution were estimated, including the total HA expense and 
out-of-pocket cost. The formulas were as follows:

𝐴𝐴𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝐴𝐴𝐴𝐴𝑦𝑦 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦� (3)

𝐴𝐴𝐴𝐴𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝐴𝐴𝐴𝐴𝑦𝑦 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦� (4)

where ACytotal and ACypocket are the total HA cost and out-of-pocket cost being attributable to exceeding air refer-
ence levels in year y; ANy is the sum of overall ANy during year y obtained from Equation 2; Costytotal and Costy-

pocket indicate the case-average total HA expenses and out-of-pocket expenses in year y; CPIy is the product of 
customer price indexes from year y + 1 to 2019; ACtotal is the sum of ACytotal, and ACypocket is the sum of ACypocket 
during the study period.

2.4.  Sensitivity Analysis

The robustness of major air pollutant influence on T2DM HAs in two-pollutant models were confirmed after 
adopting other air pollutant. In addition, the cases within circular areas of 50 km surrounding air measuring 
stations were estimated, which could represent the potential influence of distance (Liu, Pan, et al., 2021).

3.  Results
3.1.  Data Description

The descriptive results for T2DM hospitalization, air pollutant levels, and meteorological variables in Sichuan 
from 2017 to 2019 were listed in Table 1. In total, 92,381 T2DM cases were recorded, with 48,340 males and 
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44,041 females. The age group of <65 and ≥65 years accounted for 52.2% and 47.8% separately. The number of 
HAs for T2DM in warm season were slightly higher than cold season. The overall total medical cost and self-
paid cost was 935.8 million China Yuan (CNY) and 324.9 million CNY. And the case-average costs were 1.0 and 
0.4 10 thousand CNY, respectively. Daily mean concentrations were 29.3 μg/m 3 for NO2, 65.3 μg/m 3 for PM10, 
41.3 μg/m 3 for PM2.5, 10.8 μg/m 3 for SO2, 84.1 μg/m 3 for CO, 17.6°C for temperature, and 76.7% for relative 
humidity. The season-specific concentrations of air pollution were larger in cold season, except PM2.5 and PM10. 
Summary statistics of specific characteristics for 9 cities were displayed in Tables S1 and S2 in Supporting Infor-
mation S1. Pearson correlation coefficients for all air levels and meteorological variables was illustrated in Figure 
S2 in Supporting Information S1.

Pollutant Total number

Descriptive statistics for daily data

Mean ± SD Min Max P25 P50 P75

T2DM (n) 92,381 69 ± 48 1 202 20 68 108

Total admission by age (n)

  <65 48,206 44 ± 19 1 116 29 43 57

  ≥65 44,175 40 ± 18 1 112 27 39 53

Total admission by sex (n)

  Male 48,340 44 ± 19 1 113 29 43 58

  Female 44,041 40 ± 17 1 102 27 39 52

Total admission by season (n)

  Warm season 47,712 87 ± 35 18 200 59 86 112

  Cold season 44,669 82 ± 36 1 202 56 80 106

Medical expenses a

  Total expenses 1 ± 1.3 0 140.3 0.5 0.8 1.2

  Out-of-pocket cost 0.4 ± 0.7 0 81.8 0.1 0.2 0.4

Air pollution levels (µg/m 3)

  NO2 29.3 ± 14.9 1 127.1 18.3 26.2 37.1

  Warm season b 25.4 ± 12.8 1 109.2 16.4 22.3 31.5

  Cold season b 33.4 ± 15.8 1.1 127.1 21.8 30.8 42.3

  PM10 65.3 ± 42 2.4 441.5 35.4 54.2 83.5

  Warm season 49.3 ± 25.7 2.4 207.6 30.8 43.7 62.3

  Cold season 82.4 ± 48.9 3.2 441.5 46.1 72.2 107.6

  PM2.5 41.3 ± 30.2 2 279.9 20.6 32.7 52.3

  Warm season 28.4 ± 15 2 164.1 17.3 25.4 36.2

  Cold season 55.1 ± 35.7 2 279.9 28.8 46.8 72.7

  SO2 10.8 ± 5.7 0 138.9 7.1 9.6 13

  Warm season 10.2 ± 5.2 0 108.6 6.9 9.1 12.2

  Cold season 11.5 ± 6.1 1 138.9 7.4 10.1 13.9

  CO 84.1 ± 41.1 1.1 310.2 54.5 77 108.6

  Warm season 106.4 ± 39.3 2.7 310.2 76.6 101.2 131.4

  Cold season 60.2 ± 27.2 1.1 190.6 40.6 57.3 75.8

Meteorological measures

  Temperature (°C) 17.6 ± 7.2 0.1 34.5 11.2 18 23.6

  Relative humidity (%) 76.7 ± 12.7 12.9 99.9 69.1 78.5 86.2

 aUnit: case-average expenses, 10 thousand CNY.  bwarm season: April-September and cold season: October-March.

Table 1 
Summary Statistics of Hospital Admissions for Type 2 Diabetes Mellitus, Related Medical Expenses, Air Pollution Levels 
and Weather Conditions in the Nine Cities of Sichuan Province, 2017–2019
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3.2.  Health Effects of PM Exposure in Overall and Subgroup Population

The associations of air pollutants with HAs for T2DM in single pollutant models along different lag structure were 
showed in Figure 2. Generally, except CO, the effect of air pollution on HAs for T2DM presented significantly at 
lag 5, lag 6 and lag 7 with the highest effect at lag 6. Per 10 μg/m 3 increase of NO2, PM10, PM2.5, SO2, and CO were 
linked with a RRI of 3.39% (95% CI: 2.26%, 4.54%), 0.33% (95% CI: 0.04%, 0.62%), 0.76% (95% CI: 0.35%, 1.16%), 
12.68% (95% CI: 8.14%, 17.42%) and 79.00% (95% CI: 39.81%, 129.18%) in HAs for T2DM at lag 6, separately. 
The effect after adjusting individual city were estimated in Figure S1 in Supporting Information S1, since at lag 6 
with strongest effect in single pollutant models. As shown, the effect of air pollution on T2DM would vary by cities.

The results of stratified analyses by age, sex, and season at lag 6 were displayed in Figure 3. Based on the results 
of the single pollutant model with the largest effects at lag 6, the subgroup analyses were presented at lag 6. As for 
the results of stratified analyses by age, the effects of air pollution on HAs for T2DM were significant for patients 
(≥65 years), except the correlations with PM10. While for the old (≥65 years), a RRI of 4.17% (95% CI: 2.67%, 
5.71%), 0.71% (95% CI: 0.32%, 1.11%), 1.28% (95 CI%: 0.71%, 1.84%), 14.71% (95% CI: 8.35%, 21.44%), and 
53.1% (95% CI: 21.42%, 114.50%) were estimated with an increase of 10 μg/m 3 of NO2, PM10, PM2.5, SO2 and 
CO. In gender-specific analysis, the female was exposed to higher air pollution risks. In terms of season analyses, 
except CO, the effects of air pollution were both positive in cold and warm season. Higher associations were found 
between NO2 and SO2 in cold season, while stronger effects were estimated in warm season for PM10 and PM2.5.

3.3.  Sensitivity Analysis

To estimate the coupled effects of other pollutants on the HAs for T2DM, the results of two-pollutant model was 
displayed in Table S4 in Supporting Information S1. Besides, the associated effects between PM2.5 and PM10 

Figure 2.  Percentage change (95% confidence interval) in hospital admissions for Type 2 diabetes mellitus associated with a 10 μg/m 3 increase in NO2, PM10, PM2.5, 
and SO2 on single day lags (from current day to 7 days before: lag 0–lag 7) and multi-day moving average lags (from lag 01 to lag 07) using single pollutant models.
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were excluded since the high correlation (r = 0.95). The results of two-pollutant models were listed in Table S4 
in Supporting Information S1. After the adjustment of the second pollutant, the effect of a single pollutant would 
vary to some extent. Some would be weakened, while the other would be enhanced. Like, the effect of PM2.5 
and PM10 would be decreased after the introduction of the second pollutant, while the impact of SO2 would be 
increased after the introduction of PM10 or PM2.5. In addition, to test the robustness of main models, the percent-
age change (95% CI) of air pollutants per 10 μg/m 3 increase at various lag structure within the circular areas of 
50 km from the nearest air monitoring stations were displayed in Figure S3 in Supporting Information S1.

3.4.  Attributable Health Risks and Economic Costs due to PM Pollution

The attributable number of HAs for T2DM and associated economic expense in Sichuan Province during 2017–
2019 were displayed in Table 2, which were caused by exceeding the WHO air quality standard. As shown, 786, 
323, 793 and 2127 total cases of HAs for T2DM could be owing to exceed the air guidelines of NO2, PM10, PM2.5 
and CO. Associating with exceeding exposure of NO2, PM10, PM2.5, and CO during 2017–2019, 25.83, 10.54, 
30.74, and 67.78 million CNY were estimated for the total medical expense, and 10.27, 4.15, 12.19, and 26.93 
were confirmed for the out-of-pocket cost, separately.

4.  Discussion
4.1.  Summary of Findings

This study is the first to estimate the associations between levels of NO2, PM10, PM2.5, SO2, and CO and risks 
of HAs for T2DM in short-term exposure in nine cities in Sichuan Province from 2017 to 2019. As shown, 

Figure 3.  Percentage change (95% confidence interval) of age, sex, and season group in overall hospital admissions for Type 2 diabetes mellitus associating with a 
10 μg/m 3 increase in NO2, PM10, PM2.5, and SO2 at lag 6 in Sichuan Province in 2017–2019.
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significant associations between air pollution exposure and HAs for T2DM were discerned. In stratified analysis, 
the old (≥65), female patients and in cold season might expose to higher effect of outdoor air pollution, which 
is consistent with prior studies (Rao et al., 2015; Wang et al., 2018). In addition, taking the WHO's air quality as 
reference, exceeding NO2, PM10, PM2.5, and CO exposure associated with massive total economic cost to HAs for 
T2DM, with 25.83, 10.54, 12.19 and 26.93 million CNY during 2017–2019.

In stratified analyses, the short-term effect of ambient air levels with HAs for T2DM distributed not equally 
among subgroups. In age-specific analyses, the patient with age ≥65 years were more susceptive to the air pollu-
tion, which was in line with previous studies (Sun et al., 2016). Higher mortality or morbidity risks related to 
air pollution being found in the elderly than the young. Since that the old were more vulnerable to air pollution, 
this introduced more greater exposure associated from more outdoor time than the young with work necessities 
(Tong et al., 2015). As for the gender-specific effects, females were associated with higher exposure to air pollu-
tion than males, linking with prior studies (Wang et al., 2018). For instance, a cross-sectional study found that 
females were exposed to high levels of NO2 with a 4% increase in diabetes prevalence while not for males in the 
US (Brook et al., 2008). Not only biological but also non-biological factors might result in this difference. Like, 
female has greater deposition of particle pollution in the lung and smaller airway diameter than men (Mitsakou 
et al., 2007). Under such susceptibility to health conditions, airway reactivity would be elevated through favoring 
particulate deposition (Bennett et  al., 1996). In addition, females and males were involved with different life 
stress and socioeconomic status (Seeman et al., 2002). A study reported that health and behavior of female are 
more vulnerable to various residential environmental factors (Wen & Zhang, 2009). The effects of air pollutants 
with T2DM hospitalizations were stronger in cold season for NO2 and SO2, while contrary results for PM10 and 
PM2.5. So far, the evidence was not consistent about the modification effects of season on air pollution (Wang 
et al., 2018). Different pronounced effects in cold and warm seasons may be owing to various characteristic of 
air pollution, climate conditions and pollutant sources. Previous studies have found stronger association between 
air pollution and T2DM HAs in cold season (Luo et al., 2023). With less rain and wind during cold season, the 
higher levels of particle pollutants are associated with slower diffusion. Besides, there might be some common 
biological pathways for low temperature and air pollution, like elevated inflammation and oxidative stress by 
increasing the susceptibility to air pollution (Halonen et al., 2010). As for warm season, heat exposure is more 
likely linked with increasing risks of diabetes-related HAs (Xu et al., 2019). Because the pollutant sources and 
climate conditions would vary. NO2 and SO2 are precursors of secondary particles. In China, coal combustion 
was the primary source of particulate and gaseous pollutants in cold season, like NO2 and SO2. As for particle 
pollutants, mainly from industrial production and vehicles, higher levels were estimated in warm season (Zhao 
et al., 2018). Like a previous study found that NO2 and PM10 all were relative with insulin resistance increasing, 
while PM10 with higher effect of 18.7% than NO2 of 17.0%. Besides, recent studies reported that the development 
and progression of cardio-metabolic diseases might link with systemic oxidative stress and low-grade inflam-
mation which were involving with the pathogenesis of T2DM, when exposed to traffic related air pollution 
(Rajagopalan & Brook, 2012).

The RR of T2DM per interquartile range increase of NO2, SO2, PM10, and PM2.5 is 1.34% (95% CI: 0.90%, 
1.79%), 4.89% (95% CI:3.18%, 6.63%), 0.13% (95% CI: 0.02%, 0.25%), and 0.30% (95% CI: 0.14%, 0.46%) 
on lag 6, respectively. Interestingly, higher impact was found in gaseous pollutants (NO2, SO2, and CO) when 

NO2 PM10 PM2.5 CO

Year ANy ACytotal
 a ACypocket

 a ANy ACytotal
 a ACypocket

 a ANy ACytotal
 a ACypocket

 a ANy ACytotal
 a ACypocket

 a

2017 216 8.14 3.81 78 2.92 1.36 202 7.59 3.55 444 16.70 7.81

2018 405 12.94 4.60 175 5.58 1.98 380 12.15 4.32 802 25.62 9.10

2019 164 4.75 1.87 71 2.04 0.80 211 10.99 4.32 881 25.46 10.1

Total 786 25.83 10.27 323 10.54 4.15 793 30.74 12.19 2127 67.78 26.93

Note. ANy, ACytotal, ACypocket were calculated based on the largest effect estimates in single pollutant models (lag 6).
 aUnit: million CNY. The annual economic costs were measured at the CPI from 2019.

Table 2 
The Attributable Number of Hospital Admissions for Type 2 Diabetes Mellitus and Corresponding Economic Cost due to 
Exceeding Air Pollution Exposure Using WHO Air Quality Standard in Sichuan Province, 2017–2019
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compared with particulate air pollutants (PM10 and PM2.5) in lag 5–7, which was associated with a meta-analysis 
on the associations between air pollution and diabetes risk (Janghorbani et  al.,  2014) and time-series studies 
addressed the effects of air pollutants on mortality in China (Wong et al., 2008; Wu et al., 2021). Whereas the 
findings from Europe and US were not accordant, reporting that higher effects of PM10 and NO2 on morbidity 
than SO2 (Milojevic et al., 2014; Woodruff et al., 2008). In prior studies on health outcomes, stronger effects were 
also found in gaseous pollutants than particulate pollutants, with different values that might owing to the diver-
sity in population sensitivity and hygiene conditions for different areas (Liang et al., 2019; Zhang et al., 2017). 
Overall, exposure to ambient air pollutants is likely more than one pollutant since the mixture of air pollutants.

4.2.  Selected Review of Relevant Literature

In the past few decades, increasing studies observed the significant associations between air pollutants and 
HAs for T2DM, from developed areas like Europe or North America to developing countries like China (Kloog 
et al., 2012; Song et al., 2018). Only limited multi-city studies reported the associations of air pollution with 
T2DM hospitalizations. For example, a multi-city study in the US found that a 10 μg/m 3 of PM2.5 corresponded 
to a 1.14% (95% CI: 0.56%, 1.73%) increase in hospitalization risks for diabetes in the moving average of lag 2 
(Zanobetti et al., 2014). Particularly, the large quantity of studies was conducted in single-city level. Song et al. 
reported that an increase of 10 μg/m 3 of NO2, PM10, PM2.5, SO2 and CO corresponded to increment in T2DM 
hospitalization of 1.27% (95% CI: 0.33%, 2.22%), 0.32% (95% CI: 0.10%, 0.55%), 0.53% (95% CI: 0.22%, 0.83%), 
0.55% (95% CI: 0.04%, 1.07%) and 0.04% (95% CI: 0.02%, 0.06%) in Shijiazhuang, China (Song et al., 2018). A 
study reported that a 10 μg/m 3 increase in NO2 was coincided with an increase in morbidity for diabetes by 1.22% 
(95% CI: 0.51, 2.96) in Tianjin, China (Tong et al., 2015). A study conducted in Shanghai found that a 10 μg/m 3 
increase in PM10, SO2 and CO were involved with a 0.6% (95% CI: 0.1%, 1.2%), 1.1% (95% CI: −0.10%, 3.2%), 
and 1.3% (95% CI: 0.00%, 2.6%) increase in RR of diabetes mortality (Kan et al., 2004). We also summarized the 
relative studies on the short-term effect between air pollutants and T2DM incidence or prevalence in Table S5 in 
Supporting Information S1, which could give insights to support the short-term effect of air pollution on diabetes.

There were some relative studies conducted in developed countries. A study presented that the United States 
adults would increase hospitalizations of diabetes when exposed to higher levels of air pollutants (Zanobetti 
et al., 2009). A study conducted in Los Angeles found that higher exposure to traffic related PM2.5 and NO2 were 
likely associated with diabetes development (Coogan et al., 2012). The results from Chile reported that increased 
concentrations of air pollutants would contribute to increasing the risks of diabetes (Dales et al., 2012). These 
studies provided the effects of air pollutants on HAs for T2DM for various region, facilitating the abundance and 
insights of relative studies globally.

4.3.  Pathophysiologic Mechanisms of T2DM and Air Pollution

So far, the mechanisms of T2DM and air pollution is plausible, with several hypotheses existing. Strong evidence 
supported the triggering of inflammation in T2DM (Donath & Shoelson, 2011), specifically when chronic acti-
vation of inflammatory may be linking with chronic insulin resistance and subsequent T2DM, which is associated 
with air pollution (Liu et al., 2013; Rajagopalan & Brook, 2012). There are also other two possible mechanisms 
in mediating T2DM, namely pulmonary and systemic inflammation. One is involved with directly releasing 
cytokines, altering in glucose homeostasis by defective insulin signaling in tissues, and activating in visceral 
adipose tissues potentiating inflammation (Sun et al., 2009; Xu et al., 2010; Yan et al., 2011). While the other one 
is related with endoplasmic reticulum stress in the lung and liver associated with hepatocyte and alveolar cells 
(Liu et al., 2013; Rajagopalan & Brook, 2012).

In addition, PM2.5 as a hypothalamic stressor could cause peripheral inflammation and abnormalities in glucose 
metabolism (Liu et al., 2013; Yan et al., 2011), mediate dysfunctional brown adipose and mitochondrial tissues 
rendering one of the systemic pathologies in T2DM (Lowell & Shulman, 2005). Besides, positive effect of PM10, 
NO2 and CO on insulin resistance among children in Iran were reported (Kelishadi et al., 2009). As a supplement, 
a later study in Germany found residential proximity to traffic, PM10, NO2, and CO play positive roles in the 
risks of insulin resistance for Children. Exposure to traffic related air pollution could impair glucose tolerance in 
pregnancy (Fleisch et al., 2014). Sulfate was linked with decreased vascular reactivity for T2DM patients (O'Neill 
et al., 2007). Air pollutants were statistically significant with the increase of subcutaneous abdominal adipose 
tissue, especially PM2.5 and NO2 (Sun et al., 2009).
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4.4.  Economic Burden Assessment

In this study, the burden of HAs for T2DM attributable to PM exposure was calculated. T2DM as one of the 
major chronic disease, it ranked eighth among top 25 causes of disability-adjusted life-years (Zhou et al., 2019). 
Particularly, exposure to air pollutants was unavoidable when compared with other risk factors, like obesity and 
lifestyle. In low-income and lower-to-middle income countries, the demographic expansion, rapid industrializa-
tion and aging might increase the burden of health loss owing to air pollution (Li et al., 2019). As shown, the 
air pollution-related burden of T2DM could be a notable public health problem in China. Proportional benefits 
in reducing the cost of T2DM can be achieved by abatement of air pollution, which is critical for cost-effective 
policymaking and T2DM prevention (Yang et al., 2014).

When assessing the corresponding economic burden of exceeding PM exposures, both AN and AC are significant 
indicators, which could provide data to verify the underlying effects of air pollution on health (Lin et al., 2016). 
Such method was associated with a study that confirmed the diabetes death in China on national scale, which 
reported that 5,878 diabetes deaths being attributable to the total PM10. When Chinese National Ambient 
Air Quality Standards and WHO target level were adopted in PM10-related diabetes deaths, 2016 and 5,528 
deaths could be saved (Yang et al., 2020). Zhao et al. (2022) adopted different methods to estimate the rates of 
diabetes-related ANs, with crude rates of diabetes-related ANs being 247.10 and 272.37 in 2016 and 2017 in 
Sichuan Province, respectively (Zhao et al., 2022). As aforementioned, positive associations between economic 
burden and PM pollution were discerned. Tighter control policies and stricter regulation on decreasing air pollu-
tion end emission in China, more profound hospitalizations and economic lost could be avoided. The quantity 
of health and economic cost fell from 2018, owing to the various measures to control air pollution by Chinese 
government since 2015 (Council, 2013). As the first study associating the estimation on attributable burden of 
HAs for T2DM owing to exceeding PM exposure in Sichuan Province, this might bring about evidence for public 
health implications.

4.5.  Strengths and Limitations of the Present Study

There were several characteristics of this study. (a) The comparable cases of T2DM hospitalizations were 
collected, involving 92381records across the Sichuan Province, which enabled to reveal credible results. (b) 
This is the first investigation to estimate the association between exposure to ambient air pollution (NO2, PM10, 
PM2.5, SO2, and CO) and HAs for T2DM in Sichuan Province, based on time-stratified case-crossover design, 
a dependable method to confirm the short-term effects of air pollution (Jaakkola, 2003). (c) The total medical 
expenses and out-of-pocket cost attributable to air pollution were estimated, which could support the society and 
individuals on economic burden.

There were also some limitations. (a) Only 9 cities of Sichuan Province were involved since the unavailability 
to the data for other cities. (b) Not all potential effect modifiers were involved, like family income, education 
level, due to the limit to the availability of data. (c) The real economic cost of T2DM hospitalizations due to PM 
pollution could be underestimated, only with total medical expenses and out-of-pocket cost and excluding the 
outpatient expenses and indirect medical cost.

5.  Conclusions
In summary, exposures to air pollutants (NO2, PM10, PM2.5, SO2, and CO) were associated with HAs for T2DM 
in nine cities in Sichuan Province during 2017–2019, based on the time-stratified case-crossover analysis. Given 
the associations and burden of air pollutants on HAs for T2DM, the enhanced risks and burden of T2DM were in 
severe air pollution areas, manifesting the strategies of public health promotion on air pollution. Besides, higher 
risks were found in old (≥65 years) and female patients. Continuous and further efforts should be taken to air 
pollution and its induced health risks in China, which is possible and should be involved with national prevention 
programs.

Data Availability Statement
The raw/processed patient data involve individual information, which are not accessible to the public due to 
Medical Ethics Committee of the Affiliated Hospital of Chengdu University of Traditional Chinese Medicine's 
data policy.
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