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Abstract
Background: Expression of c-myc proto-oncogene is inappropriate in a wide range of human
tumors, and is a downstream target of Ras/Raf/ERK pathway, which promotes c-Myc stability by
enhancing c-Myc expression and activity.

The aim of this study was to investigate whether the oncogenic phenotype in the human muscle-
derived Rhabdomyosarcoma (RD) cell line and in non muscle-derived human tumor cell lines
(SW403, IGR39 and PC3) can be blocked by disrupting the c-Myc pathway either by means of
pharmacological MEK/ERK inhibition or by direct inactivation of the c-Myc protein.

Results: We demonstrate that, in all the tumor cell lines used, the MEK/ERK inhibitor U0126
rapidly induces c-Myc de-phosphorylation, which is followed by a marked reduction in its
expression level, by inhibition of proliferation and by reversion of anchorage-independent growth.
These data suggest that the targeting of pathways controlling c-Myc expression or stability reverses
deregulated growth of different tumor-derived cell lines. Indeed, in RD cells, we found a marked
down-regulation of cyclins E2, A and B and CDK2, all of which are known to be targets of c-Myc.
Moreover, ectopic MadMyc chimera, a c-Myc function antagonist, causes dramatic growth arrest,
CDK and cyclin modulation as well as inhibition of anchorage-independent growth in RD cells, as
occurs in U0126-treated cells. In particular, we found that the mere inhibition of c-Myc by MadMyc
chimera rescues the myogenic program, MHC expression and the acquisition of the myogenic-like
phenotype in RD cells.

Conclusion: Our data provide evidence of the key role played by the MEK/ERK pathway in the
growth arrest and transformation phenotype of Rhabdomyosarcoma and of non muscle-derived
tumor cell lines. In fact, MEK/ERK inhibitor, U0126, induces growth arrest, anchorage-dependent
growth of these cell lines. In addition, the results of this study demonstrate that the direct
inactivation of c-Myc by Mad/Myc chimera rescues myogenic program and leads to the reversal of
the Rhabdomyosarcoma phenotype. In conclusion these data strongly suggest that the targeting of
c-Myc by means of the MEK inhibitor can be tested as a promising strategy in anti-cancer therapy.
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Background
The Myc protein, which has been shown to play an essen-
tial role in the control of cell proliferation, growth, differ-
entiation and apoptosis [1,2], is a member of the basic
region/helix-loop-helix/leucine zipper (b/HLH/Zip) fam-
ily of transcriptional regulators that is capable of both
transactivation and transrepression [1,3] of a large
number of target genes [4,5] through heterodimerization
with its biological partner Max [6]. Members of the Myc
family are activated in many, if not most, human tumors
[1] and the strong selection for c-Myc over-expression in
tumors appears to reflect the ability of c-Myc to provide
constitutive signals that promote cellular transformation
[2]. It has recently been reported that Ras controls c-Myc
protein accumulation resulting from ERK-mediated stabi-
lization of c-Myc by Ser62 phosphorylation, whereas sub-
sequent Thr58 phosphorylation by glycogen-synthase
kinase-3 (GSK-3) is required for c-Myc degradation [7].
Thus, Ras activates AKT, which in turn inactivates GSK3,
leading to the block of c-Myc degradation pathway. Con-
sequently, the frequent Ras mutations in human cancer
[8] and concomitant deregulation of c-Myc suggest a pos-
sible synergistic relationship of c-Myc and Ras in the dis-
ruption of normal cell growth regulation [7]. Indeed,
inhibition of the MEK/ERK pathway in v-Ki-ras rat fibrob-
lasts, MDA-MB231 and HBC4 breast cancer cell lines, and
c-Myc depletion by siRNA in MCF7 and over-expression
of a c-Myc antagonist, Mxi1, in prostate carcinoma
DU145, all induce reversion of the malignant phenotype
[9-12].

Both the c-Myc and Ras/MEK/ERK pathways play an
important role in the progression of the G1-cell cycle
phase by enhancing cyclins expression [13,14] and CDK/
cyclin complex activities [15,16]. In addition, c-Myc con-
stitutive expression suppresses expression of the cell cycle
inhibitors p21WAF1 and p27KIP1 [17].

Lastly, both c-Myc and ERK, as a consequence of their
marked capacity to promote proliferation, play an impor-
tant role in controlling the differentiation program in sev-
eral cell type [1,2].

Interestingly, osteogenic sarcoma, harbouring conditional
alleles of c-Myc, differentiate into mature bone under
brief c-Myc inactivation [18]; likewise, transgenic mice
that conditionally express c-Myc in liver develop hepato-
carcinoma that is reversed following c-Myc inactivation
[19]. Accordingly, the down-regulation of c-Myc results in
the attenuation of both cell division and cell growth as
well as in the protection against some apoptotic processes
[20,21].

Given the synergistic relationship between MEK/ERK and
c-Myc in cell growth and malignant transformation, the

blocking of the MEK/ERK pathway [22] might conceiva-
bly be used against cancer.

The embryonal rhabdomyosarcoma cell line (RD) con-
sists of muscle-derived precursors that fail to complete the
differentiation program [23], probably owing to the
action of mutated N-Ras proto-oncogene [24], mutated
tumor suppressor p53 [25] and over-expressed c- or N-
Myc [26].

Since we found that U0126, a MEK/ERK pathway inhibi-
tor, induces p21WAF1 expression [27] and promotes G1
cell cycle arrest and myogenic differentiation in RD cells
[28], we decided to investigate whether the MEK/ERK
pathway and c-Myc might cooperate in cell growth and
transformation control in RD cells. Furthermore, in order
to investigate the effect of MEK/ERK inhibition on non-
muscle-derived cell lines we used colon adenocarcinoma-
(SW403), melanoma- (IGR39), prostate-derived cell lines
(PC3), all bearing mutated Ras and deregulated c-Myc
[29-31].

We found that the disruption of the MEK/ERK pathway,
by means of the MEK inhibitor U0126, dramatically
decreased c-Myc expression level, inducing growth inhibi-
tion and reversion of anchorage-independent growth in
all the cell lines used. Moreover, we show that direct inac-
tivation of c-Myc by the MadMyc chimera protein, a
repressor of c-Myc activity, causes growth arrest, reversion
of anchorage-independent growth and myogenic differen-
tiation in RD cells.

Results
MEK/ERK inhibitor drastically reduces c-Myc expression
In order to determine whether c-Myc is a target of the
MEK/ERK inhibitor U0126 in RD cells, we performed
time course experiments with 10 µM U0126 followed by
immunoblotting. As shown in Figure 1A, U0126 induced
early (3 hours), drastic (1d-4d) c-Myc down-regulation
that persisted throughout treatment (up to 4 days). Owing
to ERK inhibition (see additional file 1) [28], the level of
phosphorylated c-Myc was markedly reduced (Fig 1A)
before (30 min) c-Myc down-regulation began. That ERKs
are upstream kinases of c-myc in RD cells, as suggested by
U0126 experiments, was further demonstrated by RNA
interference experiment with ERK1-, ERK2-, ERK1/ERK2-
siRNA in transient transfection. After 3 days of transfec-
tion, we observed a down-regulation of total and phos-
pho-ERKs and a lack of c-Myc phosphorylation
particularly in ERK2 and ERK1/ERK2 siRNA transfected
cells (Fig 1B).

While the expression level of Max isoforms (21 and 22
Kda), which heterodimerize with c-Myc [1], was unaf-
fected (Fig 1A), the amount of c-Myc associated with Max
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MEK/ERK inhibition affects c-Myc phosphorylation and expression in RD cellsFigure 1
MEK/ERK inhibition affects c-Myc phosphorylation and expression in RD cells. A. Cell lysates from RD cells untreated (-) or 
treated (+) with 10 µM U0126 for indicated times were analysed by immunoblotting with specific antibodies for indicated pro-
teins. α-tubulin expression shows the loading of samples. B. Cells were transfected with control (C) or ERK1, ERK2, ERK1/2 
siRNAs and cultured for 3 days. Immunoblot of total lysates were performed using specific antibodies recognizing the indicated 
proteins. The values of fold increases over the control, arbitrarly set at 1, were obtained by densitometric analysis (A and B 
lower panels). C. Myc-Max heterodimer in RD cells untreated (-) or treated (+) with U0126 for 12 hours. Myc-Max complex 
was immunoprecipitated (IP) with a Max monoclonal antibody from extracts containing equal amounts of total proteins and 
subsequently analysed by immunoblotting with a c-Myc polyclonal antibody. Same filter was probed with a Max polyclonal anti-
body. Similar results were obtained in two different experiments.
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was dramatically reduced in U0126-treated cells, as
shown by immunoprecipitation experiments (Fig 1C).
Equal amounts of Max were detected in the immunocom-
plex (Fig 1C). Taken together, these results indicate that c-
Myc is a down stream target of ERKs and MEK/ERK inhi-
bition mediates loss of c-Myc and of the c-Myc/Max het-
erodimer, providing one possible molecular mechanism
of growth arrest i.e. that induced by the MEK inhibitor
U0126.

Effects of U0126 on G0/G1 arrest and cell cycle regulator 
expression in RD cell lines
Since c-Myc expression is well known to be down-regu-
lated during inhibition of cell growth [32,33] we
addressed whether the observed c-Myc down-regulation is
simply a consequence of cessation of cell growth due to
U0126 treatment. To this purpose we performed a time
course experiment with or without U0126 treatment of
RD cells that were subsequently processed for FACS and
immunoblotting analysis. As shown in Figure 2A, while c-
Myc level (grey bars) was already significantly reduced at
3 hrs of U0126 treatment the percentage of cells in G0/G1
(black bars) was unchanged compared to untreated cells.
Subsequently at 12 hrs, the percentage of cells in G0/G1
phase was highly increased by U0126 treatment, thus fol-
lowing of several hours the c-Myc down-regulation (Fig
2A compare 3 hrs with 12 hrs). This result demonstrated
that, since in the U0126-treated cells the loss of c-Myc pre-
ceded their withdrawal from cell cycle, c-Myc down-regu-
lation is not a consequence of the cessation of cell growth
but rather it might cause growth arrest. In light of these
results we hypothesised that c-Myc-dependent cell cycle
proteins expression was altered too. In fact, it has been
suggested that c-Myc-mediated cell transformation
involves modulation of cell cycle protein expression
[13,15,17]. Thus, we investigated whether cell cycle pro-
teins were modulated in U0126-treated RD cells by
immunoblotting experiments. Figure 2B shows that
U0126 treatment induced a decrease in cyclin E2, which
was stronger than that observed in cyclin E1, from 12 hrs
up to 4 days, and a decrease in cyclin A and B accumula-
tion which started at 1 day and persisted thereafter (2–4
days). Moreover, a reduction in CDK2, which forms com-
plexes with cyclin E, A and B, started one day after treat-
ment (Fig 2B). Of note, we have recently shown that
U0126 induced a decrease in cyclin D1 and an increase in
CKI, p21WAF1 and p27 [27]. Lastly, the expression profile
of the cyclins, CDK and CKI was in agreement with the
hypo-phosphorylated/active form of pRb, which was
detected as early as 12 hrs after treatment started (Fig 2B).
These results point to the existence of a pathway in which
an U0126-mediated lack of c-Myc activity affects cell cycle
protein expression and mediates G0/G1 cell cycle arrest in
RD cells.

Blockade of functional c-Myc induces growth arrest
In order to verify whether in RD cells loss of c-Myc might
cause growth arrest (Fig 1A) in the absence of MEK/ERK
inhibition by U0126, we stably transfected RD cells with
vector expressing MadMyc chimera, a strong antagonist of
c-Myc activity [15]. RD cells stably transfected with c-Myc
expressing vector and vector alone were also prepared. The
efficiency of MadMyc chimera and c-Myc transfections
was assessed by immunoblotting of transient and stably
transfected RD cells with c-Myc antibody, which recog-
nizes both c-Myc and MadMyc chimera (Fig 3A). Phos-
pho-ERK immunoblotting revealed that there were more
phospho-ERKs in MadMyc stably transfected cells than in
either c-Myc- or CMV-transfected cells (Fig 3A), whereas
no changes were detected in transiently transfected sam-
ples. The stably transfected polyclonal populations were
also analysed for growth potential (Fig 3B). Proliferation
of MadMyc-expressing cells was reduced after plating by
33.7% on day 2, and up to 68.4% by day 4, thereby indi-
cating that MadMyc chimera expression blocked RD cell
proliferation. By contrast, c-Myc over-expressing cells pro-
liferated more than control cells (CMV) from day 3,
attaining a 43.6% increase over the level of control cells by
day 4. In MadMyc chimera stably transfected cells, expres-
sion of cyclin D1, A and B as well as the faster migrating
form of CDK2 [21], which is present in CMV, were mark-
edly reduced, whereas CDK4 expression was not (Fig 4).
Moreover, increased p21WAF1 expression occurred in Mad-
Myc-expressing cells (Fig 4). These data demonstrate that
c-Myc pathway disruption (MadMyc chimera expression)
determines a molecular pattern resembling that induced
by the MEK/ERK inhibitor (Fig 2). However, cyclin E1, E2
and p27 were not altered by MadMyc expression (Fig 4),
suggesting that cyclin E down-regulation and p27
enhanced expression by U0126 might be due to ERK
depletion [34] in RD cells. Taken together, these data
demonstrate that c-Myc pathway disruption alone (Mad-
Myc chimera expression) establishes a molecular pathway
for growth arrest in RD cells.

Anchorage-independent growth of RD cells is inhibited by 
U0126-mediated c-Myc down regulation and rescued by c-
Myc over-expression
We have previously shown that RD cell growth inhibition
can be induced by phorbol ester TPA and U0126 through
different mechanisms mediated by ERK activation and
inhibition respectively [27,28].

We therefore investigated whether the growth inhibitory
function of U0126 and TPA was accompanied by a
decreased anchorage independent growth, as determined
by a colony-forming assay in soft agar. No colony forma-
tion was observed in U0126-treated cells after 2 weeks,
whereas numerous, large colonies were present in both
the untreated and TPA-treated RD cells (Fig 5A). These
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c-Myc down-regulation precedes the U0126-mediated effects on G0/G1 arrest and cell cycle proteins expressionFigure 2
c-Myc down-regulation precedes the U0126-mediated effects on G0/G1 arrest and cell cycle proteins expression. A. Histo-
gram showing the number of RD cells in G0/G1 phase expressed as percentage (black bars) and c-Myc levels (grey bars) 
expressed as arbitrary units (density of c-Myc band/α-tubulin band) in untreated (-) and U0126-treated RD cells (+) for the 
indicated times. Similar results were obtained in two separate experiments B. Cell lysates from RD cells untreated (-) or 
treated (+) with U0126 for indicated times were analysed by immuoblotting with specific antibodies for indicated proteins. α-
tubulin expression shows the loading of samples. The values of fold increases over the controls, arbitrarly set at 1, are obtained 
by densitometric analysis (lower panel). Similar results were obtained in three different experiments.
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Cell cycle arrest by MadMyc chimera expression in RD cellsFigure 3
Cell cycle arrest by MadMyc chimera expression in RD cells. A. Cell lysates from polyclonal population of CMV, MadMyc chi-
mera and c-Myc transiently and stably transfected RD cells were analysed by immunoblotting with c-Myc monoclonal antibody 
recognising both c-Myc and MadMyc chimera proteins. Same filters were re-probed with pospho-ERKs, ERKs and α-tubulin 
antibodies. B. Growth curve of polyclonal populations of RD cells stably transfected with MadMyc chimera (▼), c-Myc (❍ ), and 
CMV (● ). Polyclonal populations of stably transfected RD cells were plated and counted at indicated times. The data show the 
mean ± s.e.m. of triplicates of a representative experiment. Similar results were obtained in two experiments.
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data demonstrate that U0126, though not TPA, inhibits
anchorage-independent growth in RD cells.

In order to explain the different effects of U0126 and TPA
in regulating anchorage-independent growth, we investi-
gated whether cells growing without substrate attachment
were still responsive to growth arrest signals induced by
U0126 and TPA. For this purpose we performed an exper-
iment in which RD cells were grown either in suspension
(see Methods) or in adherent cultures, in the presence or
absence of U0126 or TPA. Growth was monitored at 1, 2
and 4 days. U0126 in both suspension and adherent cul-
tures inhibited growth (Fig 5B), whereas TPA did not
induce growth arrest in suspension, as instead occurred in
adherent cultures (Fig 5B). These results demonstrated
that the growth potential of RD cells can be inhibited by
both TPA and U0126, whereas anchorage-independent
growth is abolished by U0126 only. We then investigated
whether the different effects of U0126 and TPA on growth
without a substrate attachment can be correlated with the
modulation of c-Myc phosphorylation and expression
levels as observed in U0126-treated cells (Fig 1). We
found that c-Myc expression and phosphorylation were
enhanced after TPA treatment and were instead down-reg-
ulated by U0126 (Fig 6 and see additional file 2). We also

analysed the levels of p21WAF1 and cyclin D1, previously
shown to be up-regulated in response to TPA-mediated
growth arrest signal [27]. While U0126 down-regulated
cyclin D1, TPA, according to its inability to arrest growth
in suspension culture, failed to increase the levels of
p21WAF1 but still induced cyclin D1 increased expression.
It is noteworthy that, in this culture condition, TPA only
slightly stimulated ERK phosphorylation whereas U0126
still inhibited phospho-ERK levels. The results of growth
with or without substrate attachment (Fig 5) and of the
biochemical analysis (Fig 6), demonstrate that the mere
growth potential inhibition in adherence condition is not
a requisite for the reversal of anchorage independent
growth.

The results of Figure 5 and 6 suggested to assess whether
c-Myc pathways played by itself a role in the reversal of
anchorage-independent growth in the absence of MEK/
ERK inhibition. To this purpose c-Myc- and MadMyc chi-
mera-transfected clones were grown in soft agar. The
results of the soft agar assay of CMV-, c-Myc- and MadMyc
chimera-stably transfected cells demonstrated that Mad-
Myc chimera expression abolished, whereas c-Myc expres-
sion enhanced, colony formation, when compared with
CMV-transfected cells (Fig 7). Furthermore, c-Myc overex-

Effects of MadMyc chimera expression on CDK, cyclin and CKI proteinsFigure 4
Effects of MadMyc chimera expression on CDK, cyclin and CKI proteins. Polyclonal populations of RD cells stably transfected 
with MadMyc chimera and CMV were plated and harvested after 4 days. Cell lysates were analysed by immunoblotting with 
specific antibodies for indicated proteins. α-tubulin expression shows equal loading. The histograms (lower panel) show the 
values of fold increase over the control, arbitrarly set at 1, obtained by densitometric analysis of the immunoblottings. Similar 
results were obtained in two experiments.
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pression sensibly rescued the anchorage-independent
growth in U0126-treated cells (Fig 7). The results of Mad-
Myc chimera indicate that the disruption of the c-Myc can
be responsible of the reversion of transformation poten-
tial in RD cells.

Molecular and morphological myogenic-like phenotype is 
induced by MadMyc chimera and is attenuated by forced 
c-Myc expression
Since c-Myc over-expression efficiently inhibits myogene-
sis [35], we investigated whether the functional inactiva-
tion of c-Myc rescued the myogenic program. For this
purpose, RD cells were transiently co-transfected with

MadMyc chimera- or c-Myc-expressing vector together
with a reporter plasmid (pMyo84-luc) containing the MEF
and E-box binding sites of human myogenin promoter
[36]. We observed a four-fold increase in the myogenin
promoter transactivation as a result of MadMyc chimera
expression (Fig 8A). By contrast, c-Myc over-expression (c-
Myc) led to a significant (two-fold) reduction in basal
myogenin promoter activity (CMV). Moreover, no
changes in myogenin or MyoD expression levels occurred
in either MadMyc chimera- or c-Myc-transfected cells (Fig
8B), suggesting that MadMyc chimera expression led to
the rescue of myogenic transcription factor transactivating
functions. Expression of myogenic-specific markers, such

Effects of U0126 and TPA on anchorage independent growth of RD cellsFigure 5
Effects of U0126 and TPA on anchorage independent growth of RD cells. A. RD cells left untreated (C) or treated with U0126 
or 10-7 M TPA were tested for growth in soft agar. Colonies were photographed after 14 days. B. Growth curves of adherent 
and non adherent RD cells left untreated (● ) or treated with U0126 (▼) or TPA (❍ ). RD cells were counted at indicated 
times. The data shown are the mean ± s.e.m. of triplicates of a representative experiment. Similar results were obtained in 
three experiments for A and two for B.
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as sarcomeric myosin heavy chain (MHC), occurred as a
result of the restored function of myogenic transcription
factors (Fig 8B).

Furthermore, MadMyc chimera stably-expressing cells
predominantly displayed an elongated myotube-like cell
morphology, as shown in the immunofluorescence exper-
iment with MHC antibody (Fig 8C). Lastly, in order to
ascertain whether the over-expression of c-Myc overcame
the differentiative effect of U0126, RD cells transiently
transfected with c-Myc or empty (CMV) vectors were
treated with U0126, or were left untreated, for 4 days, and
were analysed for c-Myc, phospho-ERK, myogenin and
sarcomeric myosin expression. The results demonstrated
that U0126 inhibited phospho-ERKs in both CMV- and c-
Myc transfected cells, markedly down- regulated c-Myc,
and increased myogenin and myosin expression in CMV-
transfected cells. By contrast, c-Myc forced expression
attenuated U0126-mediated c-Myc down-regulation,
myogenin and myosin increased expression (Fig 9). This
result suggested that the U0126-mediated effects on the
myogenic program were counteracted by the high c-Myc
level.

Taken together, these results demonstrate that the mere
inhibition of c-Myc can rescue the myogenic program in
RD cells by myogenic transcription factor activation,
MHC expression and myogenic-like phenotype acquisi-
tion.

U0126 down-regulates c-Myc and counteracts the 
oncophenotype of non-muscle-derived tumor cell lines
To investigate whether the anti-growth and anti-onco-
genic effects of MEK/ERK inhibition are peculiarity of soft
tissue-derived tumor cell lines, such as RD, we used IGR39
melanoma-, SW403 colon adenocarcinoma-, PC3 pros-
tate-derived human tumor cell lines, C2C12 and NI3T3 as
control untransformed muscle and non-muscle cell lines.
We first investigated, in time course experiments either
with or without U0126, the effects of MEK/ERK inhibition
on the c-Myc phosphorylation level and expression. As
shown in Figure 10A (see additional file 3), U0126 effi-
ciently inhibited ERK phosphorylation in all the tumor
cell lines tested and induced a decrease in c-Myc expres-
sion as well as in its phosphorylation throughout the
treatment period (6 hrs-4 days). In the normal cell lines,
such as C2C12 and NIH3T3, phospho-ERK was markedly
inhibited by U0126 at early treatments (6 hrs), but recov-
ered at longer treatments (1–4 days). U0126 treatment
did not alter c-Myc expression in either C2C12 or NIH3T3
(Fig 10B). The analysis of growth potential (Fig 11A) dem-
onstrated that U0126 treatment reduced, as in RD cells,
the number of cells by 71% in IGR39, 65% in SW403 and
81% in PC3 cells. Normal untransformed cell lines were
less sensitive to the growth inhibiting effects of U0126,
with the number of cells dropping by 12% in C2C12 and
18% in NIH3T3. These results indicated that in normal
untransformed cell lines U0126 inhibited growth slightly,
while failed to induce long-lasting phospho-ERK inhibi-
tion.

Moreover, the colony-forming assay in soft agar showed
that the colony formation of the IGR39, SW403 and PC3
tumor cell lines was abolished by U0126, whereas numer-
ous, large colonies were present in the untreated cells (Fig
11B).

These data show that cell transformation of different
tumor-derived cell lines is halted by inhibition of MEK/
ERK pathway followed by c-Myc down-regulation.

Discussion
The pharmacological inhibitors of Ras/MEK/ERK signal-
ling are arousing considerable interest on account of their
potential therapeutic uses [22,37]. In this paper, we
addressed the issue of whether MEK/ERK inhibition, by
targeting c-Myc, prevents the transformed phenotype
expression in RD cells as well as in a number of tumor cell
lines that express a mutated version of ras and over-
express c-Myc. The efficient growth inhibition induced by
the MEK inhibitor U0126 in RD, colon carcinoma, pros-
tate and melanoma cell lines clearly demonstrates that the
MEK/ERK pathway is a pre-requisite for the aberrant
growth of these cells. Indeed, U0126 permanently inhib-
its phospho-ERKs in all tumor cell lines used. It is note-

Effects of U0126 and TPA on the expression of c-Myc, p21WAF1, cyclin D1 and ERKs of RD cells grown in suspen-sion cultureFigure 6
Effects of U0126 and TPA on the expression of c-Myc, 
p21WAF1, cyclin D1 and ERKs of RD cells grown in suspen-
sion culture. Cell lysates from cells left untreated (C) or 
treated with U0126 (U) or TPA (T) for indicated times were 
analysed by immuoblotting with specific antibodies for indi-
cated proteins. α-tubulin expression shows the loading of 
samples. Similar results were obtained in two different 
experiments.
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worthy that both c-Myc phosphorylation and c-Myc
expression itself decreased in RD cells as well as in all the
non muscle tumor cell lines examined following MEK/
ERK inhibition. Conversely, in muscle and non-muscle
untransformed cell lines, U0126, while transiently inhib-
iting phospho-ERKs, only slightly inhibits growth and
does not down-regulate c-Myc. This result is consistent
with no major effects of MEK/ERK inhibition on prolifer-
ation status of muscle and non-muscle untransformed cell
lines. All together these data are in line with the notion
that c-Myc is a downstream target of MEK/ERK pathway
and suggest that aberrant growth of different tumor cell
lines can be halted by targeting c-Myc following MEK/ERK
inhibition. Although c-Myc has previously been reported
to be a downstream target of MEKs/ERKs [7] the correla-
tion between ERK-mediated c-Myc stability and aberrant
growth, though inferable from recent studies in the litera-
ture [37,38], has so far received little attention.

Besides inducing growth arrest, U0126 also abolished, in
the cell lines used here, anchorage-independent growth,
as demonstrated by the lack of clones in the soft agar
assay. In addition, in RD cells the comparison of growth
in soft agar in the presence of U0126 or TPA demonstrates
that while TPA only reduces the growth potential of RD

cells, U0126 is also able to abolish anchorage-independ-
ent growth. The failure of TPA to abolish anchorage-inde-
pendent growth can be explained by its inability to induce
p21WAF1 and its positive effects on c-Myc and cyclin D1
expression in non-adherent RD cultures. Conversely, the
U0126-mediated arrest of growth in non-adherent cul-
tures can be due to the drastic c-Myc down-regulation and
cyclin D1, known to be involved in cell transformation
[12,16,39]. In addition, the experiment in suspension cul-
tures suggest that MEK/ERK inhibitor, U0126, may have
cytostatic effects [40]. These results demonstrate that the
mere inhibition of growth potential is not sufficient to
prevent the transformed phenotype expression.

Recent studies in the literature report, on the one hand,
that MAPKs and c-Myc cooperate in promoting invasive
growth [41] and, on the other, that targeted disruption of
c-Myc suppresses cell transformation and tumor forma-
tion [42]. The Ras-MAPK pathways are, however, currently
receiving attention owing to the therapy potential they
offer [37], while a number of papers reporting that c-Myc
inactivation results in tumor inhibition and regression
[11,12,18]. Our data attempt to demonstrate a possible
link between these two major targets in a cascade in which
MEK/ERK kinases lie upstream of the oncogenic molecule
c-Myc which, in turn, induces neoplastic transformation.
In fact, we here show that ERKs and particularly ERK2, are
upstream kinases of c-Myc in RD cells as demonstrated by
siRNA results. These results are in line with data reported
by others that c-Myc stability and accumulation is regu-
lated by ERK-mediated phosphorylation of ser62 [43].
Moreover, it is evident the relationship between MEK/ERK
inhibition, c-Myc down regulation and blockade of cell
transformation in the cell lines here used. This functional
correlation is highly relevant in the field of possible new
therapeutic approaches for some human tumor, including
rhabdomyosarcoma.

In an attempt to determine the specific role of c-Myc in
sustaining aberrant growth as well as cell transformation
and inhibition of differentiation, we used RD cells on
account of their ability to undergo growth arrest and myo-
genic differentiation upon MEK/ERK inhibition [27,28].
Our data show that MEK/ERK inhibition down-regulates
cyclin E2, A and B and CDK2, all of which are known to
be transcriptional targets of c-Myc [13,15,44]. It can, con-
sequently, be hypothesized that the disruption of the c-
Myc network by ERK depletion is responsible for the
failed expression of the relevant cell-cycle proteins.

Hypothesising that c-Myc expression alone sustains the
program for deregulated growth as well as transformation
and inhibition of differentiation, we stably over-expressed
MadMyc chimera in RD cells to specifically block c-Myc
activity [15]. We found that growth of MadMyc-over-

Effects of c-myc on anchorage independent growth of RD cellsFigure 7
Effects of c-myc on anchorage independent growth of RD 
cells. Polyclonal populations of RD cells stably transfected 
with MadMyc chimera, c-Myc and CMV vectors were tested 
for growth in soft agar. c-Myc polyclonal populations were 
left untreated or treated with U0126. Colonies were photo-
graphed after 14 days. Similar results were obtained in two 
experiments.
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Activation of myogenic program in MadMyc chimera transiently transfected RD cellsFigure 8
Activation of myogenic program in MadMyc chimera transiently transfected RD cells. A. Luciferase assay of lysate from RD 
cells co-transfected with the empty vector (CMV) or MadMyc- or c-Myc-expressing vectors and the plasmid carrying myogenin 
promoter (pMyo84-luc). The histogram shows the fold induction of myogenin promoter (pMyo84-luc) of MadMyc- or c-Myc- 
versus CMV-transfected RD cells arbitrarily set at 1. Data show mean values ± s.e.m. of triplicates of two experiments. B. 
Immunoblotting of parallel culture as in (A) with antibodies for indicated proteins. C. Immunofluorescence with antibody 
directed to sarcomeric myosin (MHC) of RD cells stably transfected with MadMyc chimera, c-Myc and CMV after 4 days of 
plating (middle panels). Cell nuclei were stained with DAPI (upper panels). Photomicrographs by contrast phase (lower panels) 
of other fields. Similar results were obtained in two experiments.
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c-Myc overexpression attenuates U0126 differentiative effectsFigure 9
c-Myc overexpression attenuates U0126 differentiative effects. Immunoblotting with specific antibodies for indicated proteins 
of cell lysates from c-Myc polyclonal population of RD cells left untreated or treated with U0126. α-tubulin expression shows 
the loading of samples. The histograms (right panel) show the values of fold increases over the control, arbitrarly set at 1, 
obtained by densitometric analysis of the immunoblottings. Similar results were obtained in two experiments.
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expressing RD cells is arrested, as demonstrated by
p21WAF1 enhanced expression and cyclin D1, A and B and
CDK2 down-regulation, as also observed in U0126-
treated cells. Furthermore, myogenic differentiation is
induced in MadMyc-expressing RD cells, as shown in this
study by the restored transcriptional function of myogenic
transcription factors and MHC expression. It is notewor-
thy that induction of myogenic differentiation in MadMyc
chimera expressing cells does not imply a myogenin or
MyoD increased expression level neither down-regulation
of pospho-ERKs which are instead enhanced. This is in
agreement with the role of ERKs in fusion and late differ-
entiation processes during myogenic differentiation [45].
Importantly, MadMyc-stably-expressing cells do not
exhibit anchorage-independent growth, which is instead
enhanced in c-Myc-over-expressing cells. On the other
hand, forced expression of c-Myc attenuated the U0126-
mediated anchorage-independent growth inhibition and

differentiative effects in RD cells. These experiments dem-
onstrate that c-Myc over-expression rescues oncogenic
phenotype repressed by MEK inhibitor U0126. Worthy of
note is also the fact that the role of mutated Ras in aber-
rant growth of RD cells is compromised by the selective
disruption of c-Myc in MadMyc-expressing cells demon-
strating that c-Myc is indispensable to the maintaining of
Ras/MEK/ERK-mediated oncogenic phenotype.

Conclusion
Our data provide evidence that the cooperation between
MEK/ERK and c-Myc pathways play a major role in the
expression of transformed phenotype in muscle and non
muscle-derived transformed cell lines. Importantly, our
results show for the first time that the disruption of c-Myc
pathway either directly or indirectly drammatically
impairs the expression of transformed phenotype induc-
ing myogenic differentiation in RD cells. In conclusion

Down-regulation of c-Myc by U0126 in non-muscle tumor cell linesFigure 10
Down-regulation of c-Myc by U0126 in non-muscle tumor cell lines. A. Total lysates from the indicated non-muscle tumor cell 
lines untreated (-) or treated (+) with 10 µM U0126 for indicated times were analysed by immunoblotting with anti-c-Myc, 
anti-pospho-c-Myc, anti-ERKs and anti pospho-ERKs. B. Total lysates from untransformed C2C12 and NIH3T3 were analysed 
by immunoblotting with anti-c-Myc, anti-ERKs and anti pospho-ERKs. α-tubulin expression shows the loading of samples. Simi-
lar results were obtained in two experiments.
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Effects of U0126 on non-muscle tumor cell lines proliferation and anchorage-independent growthFigure 11
Effects of U0126 on non-muscle tumor cell lines proliferation and anchorage-independent growth. A. The histogram shows the 
number of cells from tumor cell lines and, as control, from untransformed C2C12 and NIH3T3, cultured for 4 days with (+) or 
without (-) U0126. The data shown are the mean ± s.e.m. of triplicates of a representative experiment. B. Tumor cells left 
untreated (C) or treated with U0126 were tested for growth in soft agar. Colonies were photographed after 14 days. Similar 
results were obtained in two experiments.
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these data strongly suggest that the targeting of c-Myc by
means of the MEK/ERK inhibitor can be tested as a prom-
ising strategy in anti-cancer therapy.

Methods
Cell cultures and treatments
The embryonal Rhabdomyosarcoma (RD), the prostate
carcinoma PC3 (ATCC, Rockville MD), the melanoma
IGR39 and colon adenocarcinoma SW403 (DSMZ, Braun-
schweig, Germany) human cancer cell lines were cultured
in Dulbecco modified Eagle medium (DMEM), supple-
mented with glutamine, gentamycin (GIBCO-BRL Gaith-
ersburg, MD) and 10% (RD, PC3 and SW403) or 15%
(IGR39) heat-inactivated foetal bovine serum (Hyclone,
Logan UT). C2C12 and NIH3T3 (ATCC) were grown in
DMEM supplemented with glutamine, gentamycin and
10% heat-inactivated foetal bovine serum. One day after
plating, cells were treated with 10 µM U0126 kinase
inhibitors (Promega, Madison, WI) or 10-7 M TPA (Sigma,
St Louis, MO) for the times shown in the figures.

Immunoprecipitation
Cells were harvested in phosphate buffered saline, sedi-
mented and lysed in 10 mM Tris pH 7, 50 mM NaCl, 1%
NP40, 1 mM ZnCl2, additioned with protease and phos-
phatase inhibitors. Protein extracts were clarified by cen-
trifugation. Supernatant, normalized as equal amounts of
proteins, were incubated with Max antibody (H-2) (Santa
Cruz Biotechnology, Santa Cruz CA) at 4°C for 3 hrs. 30
µl of protein-G Plus (Santa Cruz Biotechnology) were
added to collect immunocomplexes. Protein G-bound
immunocomplexes were washed 6 times with extraction
buffer and processed for SDS-PAGE and immunoblotting.

Immunoblot analysis
Cells were lysed in 2% SDS containing phosphatase and
protease inhibitors sonicated for 30 sec. Proteins of whole
cell lysates were assessed using the Lowry method [46],
and equal amounts were separated on SDS-PAGE. The
proteins were transferred to a nitrocellulose membrane
(Schleicher & Schuell, BioScience GmbH, Germany) by
electroblotting. Immunoblottings were performed with
the following antibodies: anti-c-Myc polyclonal (N-262)
or monoclonal (9E10), anti-phospho c-Myc (Thr 58/Ser
62-R), anti-Max (H-2), anti-phospho ERK1/2 (E-4), anti-
ERK2 (C-14 positive also for ERK1), anti-p21WAF1 (C-19),
anti-p27 (F-8), anti-Cyclin-E (HE12), -A (H-432), -D1 (M
20) and -B (H-20), CDK2 (M2) and 4 (H-22), -pRb (C-
15), anti-myogenin (F-D5), a-tubulin (B-7), MyoD (C-20)
(all from Santa Cruz Biotechnology) and anti-MHC
(MF20, gift from Fichman D). Peroxidase-conjugate anti-
mouse or anti-rabbit IgG (Amersham-Pharmacia Biotech,
UK or Santa Cruz) were used for enhanced chemilumines-
cence (ECL) detection.

Plasmids and transfection
One day after plating, RD cells were transfected with plas-
mids using Lipofectamine Plus reagent (Invitrogen, Italy)
according to the manufacturer's instructions. For the luci-
ferase assay, the CMV or the c-Myc (kindly provided by
Dr. L.G. Larsson) or MadMyc chimera plasmid (kindly
provided by Dr. R. Bernards) were co-tranfected in RD
cells together with pMyo84-luc (kindly provided by B.M.
Scicchitano described in [36]). Total lysates were proc-
essed for luciferase activity according to the manufac-
turer's instructions (Promega Italia).

RD stably transfected cells were obtained transfecting cells
with a plasmid encoding c-Myc, MadMyc chimera or
empty vector CMV, all carrying G418-neomycin resist-
ance. Polyclonal populations of CMV, c-Myc and MadMyc
chimera expressing cells were selected using 0.4 mg/ml of
G418-neomycin (Sigma) for three weeks. RNA interfer-
ence experiments were performed with siRNA for ERK1
and ERK2 (Sancta Cruz Biotechnology) using Lipo-
fectamine 2000 reagent (Invitrogen, Italy), according to
the manufacturer's instructions. Briefly, cells were plated
at 40–50% confluence and transfected after 24 hr with
100 nM siRNA, which we ascertained was sufficient to
detect maximum fluorescence using fluorescein-conju-
gated control siRNA.

Immunofluorescence
Cells were fixed in 4% paraformaldehyde and washed;
non-specific binding sites were blocked with 3% BSA in
PBS for 20 min at room temperature. Cells were then incu-
bated for 1 hr at RT with a 1:100 dilution of the anti-MHC
(MF20), specific mouse monoclonal antibody. After rins-
ing with PBS, the cells were incubated with anti-mouse
IgG-Cy3 and DAPI (Zymed, Invitrogen, Italia).

Suspension cell cultures and colony-forming assays in 
semisolid agar
RD cells were initiated as adherent cultures, detached and
seeded in 50 ml Falcon tube at 5 × 104 cells/ml in a total
volume of 12 ml of same medium as adherent cultures
and after 1 day additioned with TPA or U0126. All tubes
were placed in an orbital shaker (~120 rpm) in a 37°C
humidified incubator with 5% CO2.

Colony-forming assays were based on standard methods.
Briefly, 2 × 104 cells were resuspended in 4 ml of 0.33%
special Noble agar (Difco, Detroit, MI) and plated (6 cm
plate) in growth medium-containing 0.5% soft agar. Col-
onies were photographed 14 days after plating.

Cell proliferation assay and FACS analysis
Cells from adherent and suspension culture were counted
using hemocytometer, and tested for exclusion of trypan
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blue. Data are expressed as average of triplicate + standard
error.

For FACS analysis cells were harvested by trypsin-EDTA
and washed; pellets were resuspended in 0,3 ml 50% FCS
in PBS, additioned with 0,9 ml 70% ethanol and left O/N
in the dark at 4°C before FACS analysis (Coulter Epics XL
Flow Cytometer, Beckman Coulter CA, USA).

Abbreviations
RD, rhabdomyosarcoma cell line; MEK, Mitogen-acti-
vated protein Extracellular Kinase; ERK, Extracellular sig-
nal-Regulated protein Kinase.
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Additional File 1
U0126-mediated phospho-ERK inhibition during culture times. Immuno-
blotting of cell lysates from untreated (-) and treated (+) cells with U0126 
using antibodies recognizing phospho-ERKs and total ERKs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-5-31-S1.pdf]

Additional File 2
Quantitative analysis of immunoblotting of Figure 6. The values of fold 
increases over the control, arbitrarly set at 1, are obtained by densitometric 
analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-5-31-S2.pdf]

Additional File 3
Quantitative analysis of immunoblotting of Figure 10. The values of fold 
increases over the control, arbitrarly set at 1, are obtained by densitometric 
analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-5-31-S3.pdf]
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