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3is study was designed to analyze the characteristics of bladder cancer-related genes and establish a prognostic model of bladder
cancer. 3e model passed an independent external validation set test. Differentially expressed genes (DEGs) related to bladder
cancer were obtained from the Gene Expression Omnibus (GEO), 3e Cancer Genome Atlas (TCGA), and Genotype-Tissue
Expression (GTEx) databases.WGCNAwas used to fit the GSE188715, TCGA, and GTEx RNA-Seq data. Fusing themodule genes
with the high significance in tumor development extracted from WGCNA and DEGs screened from multiple databases. 709
common prognostic-related genes were obtained. 3e 709 genes were enriched in the Gene Ontology database. Univariate Cox
and LASSO regression analyses were used to screen out 21 prognostic-related genes and further multivariate Cox regression
established a bladder cancer prognostic model consisting of 8 genes. After the eight-gene prognostic model was established, the
Human Protein Atlas (HPA) database, GEPIA 2, and quantitative real-time PCR (qRT-PCR) verified the differential expression of
these genes. Gene Set Enrichment Analysis and immune infiltration analysis found biologically enrichment pathways and cellular
immune infiltration related to this bladder cancer prognostic model. 3en, we selected bladder cancer patients in the TCGA
database to evaluate the predictive ability of the model on the training set and validation set. 3e overall survival status of the two
TCGA patient groups in the training and the test sets was obtained by Kaplan–Meier survival analysis.3ree-year survival rates in
the training and test sets were 37.163% and 25.009% for the low-risk groups and 70.000% and 62.235% for the high-risk groups,
respectively. Receiver operating characteristic curve (ROC) analysis showed that the areas under the curve (AUCs) for the training
and test sets were above 0.7. In an external independent validation database GSE13507, Kaplan–Meier survival analysis showed
that the three-year survival rates of the high-risk and the low-risk groups in this database were 56.719% and 76.734%, respectively.
3e AUCs of the ROC drawn in the external validation set were both above 0.65. Here, we constructed a prognostic model of
bladder cancer based on data from the GEO, TCGA, and GTEx databases. 3is model has potential prognostic and clinical
auxiliary diagnostic value.
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1. Introduction

Bladder cancer (BLCA) is a common malignant tumor, and
its morbidity and mortality rank first among urinary
system tumors [1, 2]. BLCA is divided into bladder uro-
thelial carcinoma and bladder nonurothelial carcinoma,
with the former accounting for most instances of BLCA.
Urothelial carcinomas are divided into bladder, renal
pelvis, ureter, and proximal urethra cancers. BLCA ac-
counts for 90 to 95% of urothelial cancers. Histologically,
nonmuscle-invasive BLCA accounts for 75% of BLCA, and
muscle-invasive or metastatic accounts for 25% [3]. 3e
complexity of cancer types increases the difficulty of BLCA
diagnosis and treatment [4]. Although the overall 5-year
survival rate of nonmuscle-invasive BLCA can reach 90%,
most patients require lifelong cystoscopy and combined
intervention therapy, making BLCA one of the most ex-
pensive cancers to treat [5]. 3e 5-year survival rates for
muscle-invasive and metastatic BLCA are 36% and 5%,
respectively [6]. In Europe, 5-year standard relative sur-
vival rates for BLCA vary widely [7]. Most developing
countries lack survival statistics based on large-scale
populations, so it is necessary to identify new biomarkers
and establish a relatively complete prognostic model for
BLCA diagnosis and treatment.

Risk stratification is an effective tool for cancer man-
agement, and reasonable risk stratification can increase the
use of correct interventions for high-risk groups and re-
duce unnecessary interventions for low-risk groups [8, 9].
In recent years, risk grading guidelines have been con-
tinuously adjusted to improve the accuracy of daily clinical
use and reduce the complexity of practical operations
[10–13]. Compared with traditional tumor clinical pa-
rameters, risk stratification based on molecules and factors
can better evaluate the scores of in situ immune cell in-
filtration and abnormal DNA and mRNA levels in tumors
[14–16].

High-throughput technology is an effective means to
measure the degree of molecular influence on tumors
[17, 18]. RNA-Seq transcriptome sequencing, the primary
high-throughput technology tool for exploring tran-
scriptomic information, has been widely used in cancer
research. Indeed, a large proportion of cancer research relies
on advanced RNA-Seq sequencing technologies and their
continual improvement [19]. At present, a comprehensive
prognostic model of BLCA based on RNA-Seq data is
lacking.3is study was designed to determine the prognostic
significance of transcriptomic information in BLCA through
screening integrated high-throughput RNA-Seq data in the
Gene Expression Omnibus (GEO) [20],3e Cancer Genome
Atlas (TCGA) [21], and Genotype-Tissue Expression
(GTEx) databases [22, 23]. Using this approach, prognostic-
related genes in normal and tumor tissue were identified.
3ese genes were further narrowed down to identify genes
significantly associated with overall survival to establish a
prognostic risk stratification scoring model. 3e model was
evaluated on an external validation dataset. 3e prognostic
model for patients with BLCA, established in this study, has
potential prognostic value.

2. Materials and Methods

2.1. Experimental Design and Cohort Study. BLCA and
normal bladder tissue transcriptome and clinical data were
obtained from GEO, TCGA, and GTEx databases. A sys-
tematic retrospective analysis was used to avoid bias caused
by a single cohort or small sample cohort. Two groups of
DEGs were identified by comparing RNA-Seq transcriptome
data of BLCA tissue and normal bladder tissue. 3en,
weighted gene coexpression network (WGCNA) analyses
[24] of BLCA tissue and normal bladder tissue were per-
formed in the GEO, TCGA, and GTEx databases to identify
the relationship between BLCA gene expression profiles and
clinical BLCA manifestations. WGCNA results focused on
the role of significant genes in predicting the prognosis and
survival status of patients with BLCA. 3e common genes
identified in the DEGs and WGCNA analyses were con-
sidered prognostic-related genes and were subjected to
univariate Cox regression analysis. 3e BLCA samples in
TCGA were randomly divided into training and validation
sets (n� 203 each), and the training set was used to optimize
the LASSO coefficient, perform multivariate Cox regression
analysis, and establish a risk scoring model. LASSO re-
gression analysis [25] was used to narrow down the prog-
nostic-related gene results to avoid overfitting and to replace
highly correlated genes. Finally, multivariate Cox regression
analysis was used to process the screened genes, and a
prognostic model was established to predict the overall
survival rate.

After the prognostic model was established, GEPIA 2,
HPA, and qRT-PCR were used to validate the significance of
genes in the prognostic model. GSEA and immune infil-
tration analysis divide all tumor samples in TCGA into high-
and low-risk groups based on risk scores, showing results of
enrichment pathways and cellular immune infiltration.

3e validation set was used to verify themodel’s accuracy
for risk stratification and prognostic survival. GSE13507 was
used for independent external validation of model validity as
external validation. 3e flow chart of this study is shown in
Supplementary Figure 1.

2.2. Data Acquisition. 3e RNA-Seq transcriptome se-
quencing data of BLCA tissue and normal tissue were
downloaded from the GEO (GSE188715 and GSE13507).
3e RNA-Seq transcriptome sequencing data and clinical
information of BLCA patients and normal samples were
downloaded from the GTEx [22, 23] and TCGA [21, 26]
databases using the Xena platform [27].

2.3. Identification of Differentially Expressed Genes fromGEO
Sequencing Data, TCGA, and GTEx Sequencing Data.
After downloading the GEO data, we found that the
GSE188715 dataset had been preprocessed by the uploader,
and DEGs were filtered using |Log2FC|> 1 and P< 0.05 as
cut-off values. GSE13507 was used as an external validation
set for the prognostic model due to having sufficient cancer
and clinical data. Gene expression data used above was
assessed by Illumina Human-6 v2.0 Expression BeadChip
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and DNBSEQ-G400 platforms. After RNA-Seq data was
downloaded, FPKM values from GTEx were processed by
Log2(x+ 0.001), and FPKM values from TCGA were pro-
cessed by Log2(x+ 1). 3e format of both TCGA and GTEx
datasets was unified as Log2(x+ 1), and the R package
“limma” [28] was used for normal bladder tissue and BLCA
tissue with a cut-off value of |Log2FC|> 1 and P< 0.05.
Log2FC> 0 indicates that the gene is overexpressed in tumor
tissue.

2.4. Weighted Gene Coexpression Network Analysis. 3e R
package “WGCNA” was called in GSE188715, TCGA, and
GTEx, respectively, as the detection gene module, and the
correlation of each module with the occurrence of cancer
was evaluated. 3e specific steps used for the two WGCNA
analyses were as follows: (a) extract the gene expression
profiles of BLCA patients and normal bladder tissue from
GSE188715, TCGA, and GTEx, respectively; (b) perform
sample clustering to detect any outliers; (c) select the best
scale-free topological fit index (soft threshold) to achieve a
higher average network connectivity with a scale-free fit
number greater than 0.9; (d) transform the adjacency matrix
into a topological overlap matrix (TOM) to define gene
coexpression similarity; (e) based on the dissimilarity
measured by TOM, use the “hclust” algorithm to perform
gene hierarchical clustering; (f ) set the optimal module size,
and identify the modules using dynamic tree-cutting; (g)
calculate dissimilarity of the module eigengenes and observe
the degree of similarity to build module; (h) on the basis that
the characteristic gene expression profile of eachmodule had
been determined, determine the characteristic genes of the
modules with significance.

2.5. GO Analysis. After WGCNA module clustering of the
two groups of data, the significant module genes with the
largest and smallest module significance in the twoWGCNA
module groups were selected, and these significant genes
were intersected with the GEO, TCGA, and GTEx DEGs to
identify the common prognostic-related genes. GO analysis
was performed on the common prognostic-related genes in
BLCA tissue and normal bladder tissue of GSE188715,
TCGA, and GTEx, using the R package “clusterProfiler” [29]
with adjusted P< 0.01 and Q< 0.01 as cut-off values. 3e R
package “GOplot” was used to produce GO enrichment
maps. 3ree types of enrichment maps were drawn: bio-
logical process (BP), cell component (CC), and molecular
function (MF).

2.6. Establishment of a Prognostic Model. 3e common
prognostic-related genes were entered into the R package
“survival” to construct a prognostic model. 3e screening
criteria were as follows: hazard ratio and 95% confidence
interval >1 (genes affecting overall survival). 3e screened
genes were subjected to univariate Cox regression analysis,
with P< 0.01 as the significance threshold [30]. 3ese sig-
nificant genes were further narrowed down by LASSO re-
gression analysis using the R package “glmnet”, and the

optimal tuning parameter (λ) was selected to achieve the
smallest partial likelihood deviation in the cross-validation
plot. Genes with corresponding coefficients not equal to 0
were entered into the multivariate Cox regression model.
3e R package “caret” [31] was used to randomly divide
TCGA BLCA samples into training and validation sets
(n� 203 each). Finally, train the model in the training set.
3e expression level of the final screened gene was multi-
plied by its Cox regression coefficient, and these values were
added to calculate the risk score [30].

2.7. Validation Genes in Prognostic Model by GEPIA 2 and
HPA Database. GEPIA 2 was used to verify the expression
difference of prognostic model genes in bladder cancer
tumor samples and normal samples [32]. 3e RNA-Seq
datasets used in the GEPIA 2 are based on UCSC Xena
(http://xena.ucsc.edu), which is computed by standard
pipelines to analyze RNA-sequencing expression of tumor
and normal samples from the TCGA and GTEx datasets.
3erefore, this study used the TCGA and GTEx gastric
cancer RNA-Seq data integrated by the GEPIA 2 platform
for comprehensive validation. With |Log2FC| cutoff� 1, p

value cutoff� 0.01, draw a box plot of the RNA-Seq data of
bladder cancer genes in the prognostic model.

3e Human Protein Atlas (HPA) database [33] uses
transcriptomic and proteomic technologies to study protein
expression in tumors and normal tissues of various human
organs. 3e immunohistochemistry (IHC) staining data for
this study were downloaded from the HPA database. 3en,
the results of bladder cancer pathology and normal bladder
tissue were processed.

2.8. Validation of Two Most Significant Genes in Clinical
Patients’ Tissue. Among all genes, GNG7 and MXRA7 have
the two highest coefficients in the prognostic model, indi-
cating that they influence the prognosis of BLCA greatly. 24
pairs of BLCA tumor tissues and adjacent normal mucosa
tissues were collected from the Affiliated Hospital of
Yangzhou University and the Peking University First
Hospital (Supplementary Table.1). 3e protocol was ap-
proved by the Institutional Ethical Review Board of
Yangzhou University. Total RNA was extracted from sam-
ples with RNA Extraction TRIzol (Life, Shanghai, China).
Reverse transcription and quantitative real-time PCR (qRT-
PCR) was conducted by TransScript Green One-Step qRT-
PCR SuperMix (Transgen, Beijing, China). 3e reaction
conditions of the Agilent AriaMx quantitative real-time PCR
instrument are as follows: Step 1: 1 cycle of 95°C for 30
seconds; Step 2: 40 cycles of 95°C for 5 seconds, 60°C for 30
seconds; Step 3: dissolution curve. Primers are available in
Table 1. Relative quantitation analysis of two-gene expres-
sion data was conducted according to the 2−ΔΔCT method.

2.9. Gene Set Enrichment Analysis (GSEA). 3e risk score of
each patient in TCGA is calculated based on the prognostic
model. 3en, all patients were divided into high- and low-
risk groups based on the median risk score. We extracted
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TCGA data as an expression matrix. KEGG gene sets in
MSigDB [34] were set as functional annotation gene sets.
3e GSEA analysis [35] of bladder cancer proceeded.

2.10. Immune Infiltration Analysis in Immune Cells. We
uploaded the genetic data of TCGA bladder cancer patients
on the TIMER platform [36] and download the immune
infiltration data of B cell, T CD4+ cell, T CD8+ cell, myeloid
dendritic cell, macrophage, and neutrophil on the platform.
3e Pearson correlation analysis uncovered the relationship
between high- and low-risk groups and immune scores
based on these immune infiltration data.

2.11. PrognosticModel Training andValidation Sets. To train
and validate the prognostic, we calculate the risk score of
each patient in training and test sets. Patients were, re-
spectively, divided into high- and low-risk groups based on
the median training and test set risk scores. 3e R package
“survival” was used to calculate the final prognosis of one-
and three-year overall survival by Kaplan-Meier survival
analysis. 3e R package “survivalROC” [37] was used to plot
the ROC curve of the training and test set, determining
patient one- and three-year survival accuracy. GSE13507 was
used to externally validate the prognostic model validity.

3. Results

3.1. GEO, TCGA, and GTEx RNA-Seq Transcriptome Data-
base Analysis. GSE188715, downloaded from the GEO da-
tabase, contains data from 57 cases of cancer and 13 normal
bladder tissue samples. 3e TCGA database contains in-
formation from 406 cancer samples and 19 normal bladder
samples. Due to the lack of normal bladder tissue sample
data in TCGA, data from 9 normal bladder tissue samples
were downloaded from the GTEx database maintained by
MIT and Harvard University, increasing the number of
normal bladder tissue samples in TCGA and GTEx to 28
cases. GTEx and TCGA databases RNA-Seq sequencing data
and clinical characterization information were downloaded
from the UCSC Xena platform (http://xena.ucsc.edu/).

3e R package “limma” was used to analyze cancer data
and normal bladder tissue data from GEO, TCGA, and
GTEx databases. Using the cut-off value of |log2FC|> 1 and
P< 0.05, a total of 4183 DEGs were screened in GSE188715.
Of these 4183 DEGs, 2082 genes were upregulated and 2101
genes were downregulated in cancer tissue relative to normal
tissue. 3ere were 1990 DEGs in TCGA and GTEx. Of these
1990 DEGs, 843 were upregulated and 1147 were down-
regulated genes in cancer tissue compared with normal
tissue.

3.2. Identification of High-Associated Genes in Bladder Car-
cinogenesis in WGCNA. To find the correlation between
cancer occurrence and genes, we used the R package
“WGCNA” to fit the highly correlated genes in GSE188715,
TCGA, and GTEx into modules and analyzed their con-
nection with the occurrence and development of BLCA. Due
to there being sufficient cases and gene data in the GEO,
TCGA, and GTEx databases to meet WGCNA analysis
conditions, gene maps of BLCA patients and noncancer
populations meeting the requirements were extracted from
the database. A sample dendrogram was plotted for
GSE188715, and a threshold of 4 was determined (Sup-
plementary Figure 2(a)). Dynamic tree-cutting with a
module size of 30 resulted in 33 color-coded modules based
on topological overlap matrix gene clustering (Supple-
mentary Figure 2(b)). A TCGA and GTEx sample den-
drogram was plotted, and a threshold of 3 was determined
(Supplementary Figure 3(a)). Dynamic tree-cutting with a
module size of 30 resulted in 42 color-coded modules based
on topological overlap matrix gene clustering (Supple-
mentary Figure 3(b)).

3e relationship between the gene module and the de-
velopment of cancer should be sought. WGCNA analysis in
GSE188715 revealed that the tan module had the highest
positive tumor correlation (r� 0.98, P � 4e − 50), and the
turquoise module has the lowest negative tumor correlation
(r� −0.7, P � 2e − 11) (Figure 1(a)). WGCNA analysis in
TCGA and GTEx revealed that the pink module has the
highest positive tumor correlation (r� 0.41, P � 1e − 18),
and the red module has the lowest negative tumor corre-
lation (r� −0.64, P � 4e − 52) (Figure 1(b)). 3erefore, this
study used the genes in these four modules and two sets of
DEGs to construct a prognostic model. 3e study firstly
screened 709 prognostic-related genes among two groups of
WGCNA gene clustering and two DEGs results.

3.3. GO Analysis Results. GO analysis showed that the 709
prognostic-related genes had 334 pathways in biological
process (BP) (Figure 2(a)), 52 pathways in cellular com-
ponent (CC) (Figure 2(b)), and 12 pathways in molecular
function (MF) (Figure 2(c)). 3e main involvement of the
muscle system in biological processes is related to the
function of the extracellular matrix tissue. Cell composition
and molecular functions are mainly related to the collagen-
containing extracellular matrix and actin binding.

3.4. Establishment of the BLCA Prognostic Model.
Univariate Cox regression analysis was performed on the
clinical manifestation association data to identify the pre-
dictive power of these 709 genes. 3e analysis conditions
were hazard ratio and 95% confidence interval >1 and

Table 1: Primers for quantitative real-time PCR (qRT-PCR).

Name Forward Reverse
GNG7 TTGAGCGCATCAAGGTCTCC AAGGTTTCTTGTCCTTAAAGGGG
MXRA7 GAAGCTGAGGGGAAACCAGTAC TCGGACATCTCGCCAAACGTCT
GAPDH GACCCCTTCATTGACCTCAAC CTTCTCCATGGTGGTGAAGA
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P< 0.01. Finally, 95 genes were obtained in the cohort, and
correlations were predicted (Supplementary Figure 4).

LASSO regression analysis was used to select genes with
key predictive functions. In LASSO-penalized Cox regres-
sion, as log λ (tuning parameter) is changed, the corre-
sponding coefficients of identified genes are reduced to 0.
3e tapered parameters suggest that their effect on the model
can be ignored (Figure 3(a)). 3en, in cross-validation, 21

genes reached the minimum value of partial likelihood bias,
so at this point, log λ was close to −2.765 and 21 genes
showed a certain effect. All genes showed a positive risk ratio
(hazard ratio >1), revealing a positive effect on the devel-
opment of BLCA (Figure 3(b)). 3erefore, these 21 genes
were fitted to the prognostic model. 3ese genes are
THEM252, PCOLCE2, GNG7, MXRA7, ASB2, CNTN1,
SETBP1, RPS6KA1, CHMP4C, CES1, PDGFD, EFHD2,
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Figure 1: Module-trait relationships in GSE188715, TCGA, and GTEx. (a) WGCNA labeled heatmap for GSE188715. (b) WGCNA labeled
heatmap for TCGA and GTEx. In the labeled heatmaps, each row represents a module characteristic gene encoded by color, and the two
columns represent clinical characteristics of tumor and normal tissue, respectively. Each cell represents the Pearson correlation coefficient
and P value (in parentheses) of the corresponding module characteristics, and the color of each cell represents the value of correlation.
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Figure 2: 3e seven most significantly enriched pathways in BP, CC, and MF.3e size of the circle indicates the number of enriched genes,
and the color corresponds to the adjusted P value.

299

4

2

0

–2

–4

–6 –5 –4 –3 –2

Log Lambda

Co
effi

ci
en

ts

261 139 32 2

(a)

–6 –5 –4 –3 –2

Log (λ)

400

300

200

100

0

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

306 299 288 275 257 225 170 123 71 48 24 12 9 3

(b)

0.20.1 0.5 1 2

Hazard ratio

# Events: 86: Global p–value (Log–Rank): 0.000023449
AIC: 787.4; Concordance Index: 0.7

(0.30 – 0.96)

(0.81 – 1.11)
(0.51 – 1.01)
(0.50 – 1.16)
(0.68 – 1.88)
(0.76 – 1.25)
(0.39 – 1.05)
(1.01 – 2.26)

(0.55 – 3.55)

(0.68 – 1.20)
(0.73 – 1.40)
(0.74 – 1.40)
(0.53 – 1.15)

(0.94 – 1.16)
(0.98 – 1.36)
(0.70 – 1.03)
(0.78 – 1.15)

(0.85 – 1.71)
(0.67 – 1.32)
(0.96 – 1.80)

0.54

0.95
0.72
0.76
1.13
0.97
0.64
1.51

1.39

0.90
1.01
1.02
0.78

1.05
1.15
0.85
0.95

1.21
0.94
1.31

(N = 203)

(N = 203)
(N = 203)
(N = 203)
(N = 203)
(N = 203)
(N = 203)
(N = 203)

(N = 203)

(N = 203)
(N = 203)
(N = 203)
(N = 203)

(N = 203)
(N = 203)
(N = 203)
(N = 203)

(N = 203)
(N = 203)
(N = 203)

0.037 *

0.51
0.059
0.211
0.625
0.831
0.077
0.047 *

0.488

0.475
0.943
0.918
0.211

0.377
0.092
0.092
0.574

0.298
0.729
0.092

GNG7

CES1
CHMP4C
RPS6KA1
SETBP1
CNTN1
ASB2
MXRA7

TMEM252

OAS1
AHNAK
STAP2
ZNF165

KRT23
LYPD3
APOL1
TPPP3

FAM43A
EFHD2
PDGFD

(c)

Figure 3: Continued.
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FAM43A, ZNF165, STAP2, AHNAK, OAS1, TPPP3, APOL1,
LYPD3, and KRT23 (Figure 3(c)).

3e 406 BLCA samples in the TCGA databases were
randomly divided into training and validation sets (n� 203
each). 3e training set was used to establish a prognostic

model, and the validation set was used to test the accuracy of
the prognostic model. Multivariate Cox regression analysis
of the training set identified eight genes as independent
predictors, namely, GNG7, MXRA7, ASB2, RPS6KA1,
CHMP4C, PDGFD, APOL1, and LYPD3.

The final predicted risk score � GNG7 × (−0.491) + MXRA7

× 0.5063 + ASB2 ×(−0.330) + RPS6KA1 ×(−0.313)

+ CHMP4C ×(−0.403) + PDGFD × 0.273

+ APOL1 ×(−0.219) + LYPD3 × 0.164.

(1)

3ese figures are the regression coefficients of the
multivariate Cox regression analysis (Figure 3(d)).

3.5. Eight Genes Expression in GEPIA 2, HPA, and qRT-PCR.
3e expression of eight genes in cancer and normal samples
was validated in GEPIA 2. 3e box plot of GEPIA 2 presents
the expression levels of the eight genes in the standard of
expression-Log2 (TPM+1) (Figure 4(a)). We can find that
the expression of GNG7, MXRA7, ASB2, and PDGFD in
tumor samples is significantly lower than that in normal
samples, while the expression of RPS6KA1, CHMP4C,
APOL1, and LYPD3 is reverse.

3is study also performed an IHC analysis in the bladder
data of genes included in the prognostic model from the
HPA database. 3e results of IHC staining are shown in
Figure 4(b). 3e results showed that RPS6KA1, PDGFD,
APOL1, and LYPD3 are all upregulated in tumor tissues,
which were consistent with GEPIA2. Unfortunately, due to
the novelty of prognostic genes in this model, data of another
four genes could not be found in the HPA database.

After extracting RNA from tissues, the results of qRT-
PCR were consistent with the results stated in the progress of
filtering DEGs and GEPIA 2 analyses. In the 24 pairs of
samples including tumor and normal tissues, most ex-
pressions of GNG7 and MXRA7 in tumor tissues minus
their expressions in normal samples were less than 0, in-
dicating that the two most significant genes have higher
expressions in normal tissues (Figure 4(c)).

3.6. GSEA. 3e results of the GSEA analysis showed that
there were 15 and 2 significantly enriched pathways
(P< 0.05 and FDR <25%) in the high- and low-risk groups,
respectively. In the high-risk group, enriched pathways
involved glycosaminoglycan-biosynthesis-chondroitin-sul-
fate, ecm-receptor-interaction, dilated-cardiomyopathy,
gap-junction, arrhythmogenic-right-ventricular-cardiomy-
opathy-arvc, focal-adhesion, vascular-smooth- muscle-
contraction, melanoma, hypertrophic-cardiomyopathy-
hcm, regulation-of-actin-cytoskeleton, renin-angiotensin-
system, melanogenesis, neuroactive-ligand-receptor-inter-
action, calcium-signaling-pathway, and long-term-
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Figure 3: LASSO regression model and multivariate regression analysis results. (a) LASSO distribution of 95 differentially expressed genes
associated with prognosis of bladder cancer. Each curve represents a coefficient λ. When it changes, the coefficient not 0 changes and enters
the lasso regression model. (b) Selecting the best tuning parameters (λ) and cross-validation; red dotted line represents the best logarithm λ.
When crossing, it is equivalent to the minimum value of the multivariate Cox model, and the two dotted lines represent one standard
deviation of the minimum distance. (c) Hazard ratios and confidence intervals of 21 genes in LASSO regression analysis. (d) Multivariate
Cox regression analysis results generated using the training set.
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Figure 4: Validations in GEPIA 2 platform, HPA database, and qRT-PCR experiment. (a) 3e red and gray boxes represent cancer and
normal tissues in TCGA and GTEx datasets, respectively. BLCA, bladder cancer, p< 0.01 (GEPIA 2 website). (b) Immunohistochemical
staining of RPS6KA1, CHMP4C, APOL1, and LYPD3 in the Human Protein Atlas (HPA) database. (c) 3e expression level of GNG7 and
MXRA7 in qRT-PCR (tumor expression minus normal expression).
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Figure 5: GSEA enrichment pathway analysis. (a–d) Top four significant enrichment pathways in high-risk groups. (e) (f ) All significant
enrichment pathways in low-risk groups.
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depression. 3e top four enriched pathways are presented in
Figure5(a). In the low-risk group, enriched pathways related
to peroxisome and Huntington’s disease (Figure 5(b)). 3e
prognostic model’s risk score played a good classification
role in the GSEA analysis based on the KEGG gene sets. 3e
main significantly enriched pathways were clustered in the
high-risk group. Targeted treatment of these enriched
pathways may contribute to prolonging the prognosis and
survival of bladder cancer patients.

3.7. Results of Immune Infiltration Analysis. To explore the
potential mechanisms of eight prognostic-related genes in
the tumor microenvironment, this study performed a
Pearson correlation analysis on six immune cells. 3e box
plot showed that the high-risk group had higher immunes
cores than the low-risk group in T CD8+ cell, macrophage,
and myeloid dendritic cell (Figure 6(a)). In the B cell, the
low-risk group had higher scores (Figure 6(a)). Correlation
scatter plots showed that T CD8+ cell and macrophage had a
significant positive relation (P< 0.05) with the prognostic
model’s risk scores (Figure 6(d), F), and the B cell had a
significant negative relation (P< 0.05) with risk scores
(Figure 6(b)).

3.8. Risk Stratification andValidation of the PrognosticModel
Based on TCGA. To verify the accuracy of the prognostic
model, the study stratified the cancer data from the cancer
TCGA database was stratified. Risk scores were first cal-
culated for the TCGA training set; then, the training set was
divided into high-risk (n� 102) and low-risk (n� 101)
groups based on the median score, 1.03 (Figure 7(a)). 3e
prognostic model identified the three-year survival rates of
the high- and low-risk groups as 37.163% and 70.000%,
respectively (Figure 7(d)). 3e high-risk group had a greater
likelihood of low survival outcomes than the low-risk group.
To determine the predictive accuracy of the prognostic
model, a ROC curve analysis was performed. 3e one- and
three-year survival AUCs in the training set were 0.70722
and 0.76282, respectively (Figure 7(g)).

3e same method was used to test the accuracy of the
prognostic model in the validation set, which was split into
high- and low-risk groups (n� 102 each) using the median
score of 1.002 (Figure 7(b)). 3is analysis also revealed that
the high-risk group had a lower survival rate than the low-
risk group. 3e three-year survival rates of the high- and
low-risk groups were 25.009% and 62.235%, respectively
(Figure 7(e)). ROC curve analysis revealed that the one- and
three-year survival AUCs in the validation set were 0.72911
and 0.73118, respectively (Figure 7(h)). 3erefore, this
prognostic model successfully demonstrates potential pre-
dictive power for the populations at high- and low-risk
groups of BLCA in the TCGA database.

3.9. External Validation of the Prognostic Model Based on
GSE13507. GSE13507 was used as an external dataset to
validate the accuracy of the prognostic model. GSE13507
data were stratified into high- and low-risk groups (n� 81

each) based on the median score of 0.007 (Figure 7(c)). 3is
analysis showed that the GSE13507 high-risk group had a
lower survival rate than the low-risk group. 3e three-year
survival rates of the high- and low-risk GSE13507 groups
were 56.719% and 76.734%, respectively (Figure 7(f)). ROC
curve analysis revealed that the one- and three-year survival
AUCs in the external validation set were 0.66993 and
0.65388, respectively (Figure 7(i)). 3is prognostic model
demonstrated good predictive potential as shown using a
GEO dataset for external validation.

4. Discussion

BLCA can occur at any age, is the most common malignant
tumor of the urinary system, and is one of the ten most
common tumors in the body. It is important to identify
potential BLCA biomarkers and establish a prognostic
model to improve prognosis. In this study, a BLCA prog-
nostic model was developed based on gene sequencing data
from the GEO database and transcriptome data from the
TCGA database. 3e prognostic model contains eight genes
(GNG7, MXRA7, ASB2, RPS6KA1, CHMP4C, PDGFD,
APOL1, and LYPD3) to accurately calculate the risk score of
BLCA patients. 3e model also consistently predicted lower
overall survival in patients with high-risk scores.

In this study, eight bioinformatics tools were used to
assess data downloaded from multiple databases: GO,
GEPIA 2, GSEA, immune infiltration, WGCNA, univariate
Cox regression, LASSO regression, and multivariate Cox
regression analysis. GO analysis is a common gene en-
richment analysis method used to classify genes according to
their functions. It can reveal the functional characteristics of
genes differentially expressed in BLCA and normal bladder
tissue. GEPIA 2 is a tool for gene expression and survival
analysis that integrates TCGA and GTEx databases. 3is
study used this tool to draw box plots of 8 prognostic-related
genes, which verified the expression differences of 8 genes in
tumor tissue and normal tissue. As an enrichment method,
GSEA can effectively make up for the omissions of some
methods of “screening according to the fold difference
threshold” and better reflect the significant functional dif-
ferences caused by the accumulation of small changes in
certain genes in a gene set. In some kind of situations where
the differential expressions in certain genes are not so sig-
nificant but do have obvious biological functions, this
method of mining enrichment pathways helps us find
comprehensive biological enrichment pathways. Immune
infiltration analysis of six types of immune cells discovers the
relationship between tumor prognosis and potential im-
mune mechanism.

LASSO regression analysis is used to identify the core
variables most relevant to prognosis and survival. 3is
analysis is also used to optimize the model without reducing
the clinical predictive ability and to reduce interference from
variables unrelated to prognosis. WGCNA is a powerful
bioinformatics tool used to detect gene clusters associated
with clinical functions, identify clinically relevant gene
markers, and group genes with similar clinical functions in
the same module. 3e WGCNA analysis used in this study
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Figure 6: Cell immune infiltration analysis. (a) Immune scores of six immune cells (B cell, T CD4+ cell, T CD8+ cell, myeloid dendritic cell,
macrophage, and neutrophil) in the high- and low-risk groups. (b–g) Correlation between risk score and six immune cells.
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differs from the common clustering method by evaluating
the correlation coefficient of BLCA gene expression values to
the power of N, which is more consistent with scale-free
network analysis and more in line with biological rules.
Compared with common coexpression network analysis,
this method includes the concepts of soft threshold and
weight network to form a weighted coexpression network.
3e predictive power of multivariate Cox regression analysis
is better than that of univariate Cox regression analysis
because univariate Cox analysis is easily affected by the bias
of univariate significant variables. 3e predictive power of
multivariate regression to establish a prognostic model is

better than that of univariate Cox regression [38]. Com-
bining the use of eight bioinformatics tools to establish the
BLCA prognostic model increases model accuracy, reduces
model-independent variables, and improves predictive
sensitivity and depth.

In this study, the modules closely related to the char-
acteristics of BLCA were screened using WGCNA, and eight
genes central to BLCA development were obtained
(P< 0.05). Established prognostic models of BLCA have
been described. Yao Kang et al. established a 13-gene
prognostic model based on the prognostic analysis of BLCA
samples [39], Zihao Chen et al. established a two-gene
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Figure 7: Expression of survival curves in prognostic models of TCGA bladder cancer patients and validation of model accuracy. (a–c) 3e
risk score of patients in the training set, test set, and external validation set. 3e left side of the vertical dotted line represents low-risk
patients, the right side represents high-risk patients, and the horizontal dotted line represents the critical value of the risk score used to define
low- and high-risk patients. (d–f) Kaplan–Meier survival curve of patients in training, test set, and external validation set. (g–i) ROC curve
of the training set, test set, and external validation set risk scores predicting one-year and three-year survival.
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prognostic model [40], and Libo Yang et al. established a
nine-gene prognostic model [41]. In our study, we screened
the genetic predictors using additional approaches, in-
cluding univariate Cox, LASSO regression, and multivariate
Cox analyses. Compared with the analysis performed by Yao
Kang et al., the prognostic model presented here contains
fewer prognostic-related genes and has higher prediction
efficiency. Compared with the model established by Zihao
Chen et al., the prognostic model presented here contains
more prognostic genes but also more accurately predicts
one- and three-year survival as measured by AUC values.
Compared with the BLCA prognostic model established by
Libo Yang et al., we performed in-depth filtering using the
WGCNA method and used LASSO regression to optimize
potential BLCA biomarkers. Compared with described
BLCA prognostic models, our prognostic model has the
advantages of rich data processing methods, fewer prog-
nostic model-related genes, higher prediction efficiency, and
higher model authenticity [42, 43]. Moreover, the accuracy
of this prognostic model is as good as that of the classical
bladder cancer prognostic model including FGFR3 and
TP53 genes [44].

3e relationships we revealed between the prognostic
model and immune cells were confirmed in previous re-
search studies. In this study, macrophage has a significant
positive correlation with risk scores, which means it pro-
motes bladder cancer metastasis and diffusion. While B cell’s
function is the opposite. Chen et al. found that LNMAT1
regulates bladder cancer lymphatic metastasis through
CCL2-dependent macrophage recruitment [45]. Martinez
et al. disclosed that BMP4 is closely associated with type II
macrophage differentiation, promoting bladder cancer
progression [46]. On the other hand, Zirakzadeh found that
B cells are a vector for CD86 induction and inhibit the
progression of bladder cancer [47]. 3ese researches are in
correspondence with our study.

In the labeled heatmaps, each row represents a module
characteristic gene encoded by color, and the two columns
represent clinical characteristics of the tumor and normal
tissue, respectively. Each cell represents the Pearson cor-
relation coefficient and P value (in parentheses) of the
corresponding module characteristics, and the color of each
cell represents the value of correlation.

3e genes used in our BLCA prognostic model are
involved in cancer. Gong Peng et al. regulated the intra-
cellular PDGFD expression by controlling oxygen tension
and found that PDFGD can stimulate glioblastoma pro-
liferation [48]. APOL1 is a risk factor for kidney and
cardiovascular diseases [49, 50]. Recently, Jiewei Lin et al.
found that APOL1 activates the NOTCH1 signaling
pathway to activate the proliferation and migration of
pancreatic cancer cells [51]. In a Bolivian cohort study, high
urine levels of LYPD3 were found to be a cancer risk factor
[52]. Guan-Rong Lai et al. found that RPS6KA1 increases
the sensitivity of prostate PC-3 cells to vitamin D and
promotes the progression of prostate cancer [53]. GNG7,
MXRA7, ASB2, and CHMP4C are also involved in the
development of lung cancer, gastric cancer, colorectal
cancer, and cervical cancer, respectively [54–57].

3ere are areas of this study that require additional
investigation. While the theory of this study is sufficient and
the prognostic model is worthy of subsequent clinical trials,
whether the expression of the genes in the prognostic model
change with the clinical progression of BLCA remains to be
verified.

In conclusion, this study systematically constructed an
eight-gene prognostic model of BLCA and revealed a
moderate predictive effect on the prognosis and progression
of BLCA. 3e specific mechanism of action and clinical
application of the eight genes at the urinary bladder tissue
level awaits further experimental exploration and clinical
cohort verification.
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Figure S1: the flow chart of this study. Figure S2: results of
gene coexpression network analysis in GSE188715. A: the
soft threshold of the best scale-free topological model fitting
index (left) and mean connectivity (right) were determined.
3e red horizontal line represents R2 = 0.9. B: gene clus-
tering based on topological overlap matrix. Genes with
relative correlation are located on the same or adjacent
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connectivity (right) were determined. 3e red horizontal
line represents R2 = 0.9. B: gene clustering is based on a
topological overlap matrix, and genes with relative corre-
lation are located on the same or adjacent branches. Figure
S4: ninety-five differential genes were screened by univariate
Cox analysis of common significant genes in GSE188715,
TCGA, and GTEx. All 95 genes are shown. 3e first four
columns of the forest map are as follows: gene name, p value,
hazard ratio, and 95% confidence interval, respectively.
Table S1: clinicopathological features of bladder cancer
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