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Abstract: Fritillariae thunbergii bulbus has been widely used to treat symptoms of coughs and airway
congestion in the chest due to pathological colds and damp phlegm in traditional Chinese medicine.
Despite its long history of traditional use, its pharmacological activities on osteoclastogenesis and
osteoporosis have not been evaluated. This study investigated the effects of the water extract of
Fritillariae thunbergii bulbus (WEFT) on osteoclast differentiation in bone marrow-derived macrophage
cells and on ovariectomy (OVX)-induced osteoporosis in mice. We found that WEFT significantly
inhibited osteoclastogenesis by downregulating the receptor activator of the NF-κB ligand (RANKL)
signaling-induced nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) expression. In an
OVX-induced osteoporosis model, WEFT significantly prevented the OVX-induced trabecular loss
of femurs, accompanied by a reduction in fat accumulation in the bone marrow and liver. In
addition, WEFT significantly prevented weight gain and gonadal fat gain without recovering uterine
atrophy. Using ultrahigh-performance liquid chromatography-tandem mass spectrometry, seven
alkaloids (peimisine glucoside, yibeissine, peiminoside, sipeimine-glucoside, peimisine, peimine, and
peiminine) were identified in WEFT. The results of this study suggest that WEFT can be a potential
pharmacological candidate to reduce menopausal osteoporosis and menopause-related symptoms,
such as fat accumulation.

Keywords: Fritillariae thunbergii bulbus; osteoclast differentiation; ovariectomy; osteoporosis

1. Introduction

Osteoporosis is a bone disease characterized by a decrease in bone volume and bone
mineral density, a gradual shortage of calcium, and an imbalance in bone remodeling [1].
Bone remodeling is the restructuring process of bone in adults to maintain bone homeostasis,
which is the resorption of old or damaged bone accompanied by new bone formation [2,3].
The excessive activation of osteoclasts disrupts the net balance of bone remodeling, re-
gressing bone microstructure and decreasing bone mineral density, which increases the
progression of osteoporosis and eventually leads to a high incidence of bone fracture [4,5].

Receptor activator of NF-κB ligand (RANKL), generated from various cells, including
stromal cells, osteoblasts, and osteocytes, is a pivotal cytokine that regulates osteoclast
differentiation and activation [5]. RANKL/RANK signaling is initiated by the activation
of tumor necrosis factor receptor-associated factor 6 (TRAF6) to stimulate MAPK, NF-κB,
and AP-1 activation during the early phase of osteoclast differentiation [6,7]. It sequentially
triggers the induction and activation of nuclear factor of activated T-cells cytoplasmic 1
(NFATc1) to regulate osteoclast-specific gene expression, such as tartrate-resistant acid
phosphatase (TRAP) [8,9]. There are some negative regulators of NFATc1 at the transcrip-
tional level, including v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog
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B (MafB) and interferon regulatory factor-8 (Irf-8), which repress NFATc1 expression in
osteoclast precursors [10,11]. Regarding the significant role of osteoclasts in bone remod-
eling, pharmaceutical studies to regulate osteoclastogenesis or its activation have been
extensively investigated to develop effective anti-osteoporosis therapy [1].

Fritillariae thunbergii bulbus has been widely used as an ingredient in herbal formulas to
treat lung diseases in traditional Chinese medicine [12]. Various pharmacological activities
of F. thunbergii bulbus, including anti-tussive effects [13], tracheobronchial relaxation [14],
anti-muscarinic activity [15], and anti-inflammatory activities [16] have been reported.
In addition, phytochemical studies have identified various phytochemical components,
such as alkaloids (peimine, peimisine, and sipeimine), essential oils, and diterpenoids in
F. thunbergii bulbus [17,18]. However, the pharmacological effects of F. thunbergii bulbus on
osteoporosis and osteoclast differentiation have not been studied. Therefore, the present
study explored the anti-osteoporosis effects of the water extract of F. thunbergii bulbus
(WEFT) in a mouse ovariectomy (OVX) model and the inhibitory mechanism of WEFT on
osteoclast differentiation using bone marrow-derived macrophage cells (BMMs).

2. Results and Discussion
2.1. WEFT Inhibits RANKL-Induced Osteoclast Differentiation

Osteocytes are the major cells that produce RANKL for osteoclastogenesis in bone
remodeling [19]. Therefore, we employed an osteocyte-BMM co-culture system using MLO-
Y4 cells to examine the pharmacological effects of WEFT on osteocyte-dependent osteoclast
differentiation. MLO-Y4, an osteocyte-like cell, supports the osteoclast differentiation
of bone marrow precursor cells under co-culture conditions [20]. MLO-Y4 cells induce
the osteoclast differentiation of precursors by RANKL binding, but also produce soluble
RANKL under stress conditions [20,21]. As shown in Figure 1A,B, WEFT significantly and
dose-dependently inhibited osteoclast differentiation in co-culture.
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centrations of WEFT (11.1, 33.3, 100, and 200 µg/mL) were treated in culture medium for five con-
secutive days. Typical images of TRAP-stained cells (A); (scale bar, 200 µm). The number of TRAP-
positive multinucleated cells (TRAP+ MNCs) (B). (C) The mRNA expression of Csf1, Tnfsf11, and 
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Figure 1. WEFT inhibits osteoclast differentiation of BMM co-cultured with MLO-Y. (A,B) BMMs
were co-cultured with MLO-Y4 cells. 1α,25-dihydroxyvitamin D3 (VitD3, 10 nM) and different
concentrations of WEFT (11.1, 33.3, 100, and 200 µg/mL) were treated in culture medium for five
consecutive days. Typical images of TRAP-stained cells (A); (scale bar, 200 µm). The number of
TRAP-positive multinucleated cells (TRAP+ MNCs) (B). (C) The mRNA expression of Csf1, Tnfsf11,
and Tnfsf11b was analyzed using a quantitative real-time polymerase chain reaction (qPCR) after
1 day of incubation of MLO-Y4 cells with or without WEFT (100 µg/mL) and VitD3 (10 nM). * p < 0.05;
** p < 0.01 vs. vehicle.
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However, when we examined the effects of WEFT on the mRNA expression of Csf1,
Tnfsf11, and Tnfsf11b in MLO-Y4 cells, WEFT significantly increased the mRNA expression
of Csf1 and Ttnfsf11 (Figure 1C) in VitD3-treated cells. This suggests that WEFT could
directly inhibit osteoclastogenesis by acting on osteoclast precursors independently of its
indirect effect on MLO-Y4 cells. Thus, we investigated the possible effects of WEFT on
RANKL-induced osteoclast differentiation using BMM single cultures. We found that WEFT
at 100 and 200 µg/mL markedly inhibited the RANKL-induced osteoclast differentiation
of BMMs (Figure 2A), which was supported by WEFT’s inhibition of TRAP activity and
osteoclast number (Figure 2B,C). WEFT did not affect BMM proliferation at the tested doses
(Figure 2D). These results suggest that WEFT directly inhibited RANKL-induced osteoclast
differentiation without cell toxicity.
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Figure 2. WEFT inhibits the RANKL-induced osteoclast differentiation of BMMs. BMM cultures were
incubated with vehicle (distilled water) or WEFT (11.1, 33.3, 100, and 200 µg/mL) in the presence
of M-CSF (60 ng/mL) and RANKL (50 ng/mL) for four consecutive days. (A) TRAP-stained cells
were photographed (scale bar, 200 µm). (B) TRAP activities were examined and represented as the
percentage of control. (C) TRAP-stained MNCs were enumerated. (D) BMMs were incubated with the
indicated concentrations of WEFT for 24 h, and cell viability was measured by using a CellTiter-Glo
luminescent cell viability assay. ** p < 0.01 versus vehicle.

2.2. WEFT Inhibits RANKL-Induced NFATc1 Expression

RANKL signaling initiates TRAF6 to NFATc1 activation through MAPK, AP-1, and
NF-κB signaling. MAPK, AP-1, and NF-κB transcriptionally induce NFATc1 expression in
response to RANKL at an early phase of osteoclast differentiation [6,8]. NFATc1 also leads to
the robust self-amplification of NFATc1 in cooperation with these molecules [22]. Therefore,
we investigated the effect of WEFT on these components via qPCR and Western blot analysis.
We selected 100 µg/mL of WEFT, the lowest concentration required to strongly inhibit
osteoclast differentiation without cell toxicity. WEFT (100 µg/mL) significantly inhibited
RANKL-induced c-Fos and NFATc1 expression at the transcriptional and translational
levels (Figure 3A). WEFT significantly inhibited the RANKL-induced early activation of
MAPK (ERK, JNK, and p38), determined by the phosphorylation levels. It also inhibited the
RANKL-induced degradation of IκBα (Figure 3B,C). This suggests that WEFT significantly
inhibits the RANKL signaling axis during the early phase of osteoclast differentiation. Based
on WEFT’s inhibition on NFATc1 expression, we further evaluated NFATc1 target genes,
Tm7sf4 and Atp6v0d2, which function in the cell fusion of osteoclast precursors during the
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late phase of osteoclast differentiation [23,24]. We found that WEFT significantly inhibited
the mRNA levels of Tm7sf4 and Atp6v0d2 (Figure 3D), consistent with the decrease
in multinuclear osteoclasts (Figure 2). RANKL can stimulate NFATc1 expression not
only by up-regulating positive regulators but also by downregulating negative regulators.
Therefore, we examined the mRNA expression of Mafb and Irf8, which are known to
occupy the NFATc1 promoter region to suppress NFATc1 expression [10,11]. We found
that WEFT significantly induced their expression at day 0 and suppressed the decrease
induced by RANKL (Figure 3D), which might contribute to the suppression of RANKL-
stimulated NFATc1 expression. These results suggest that WEFT inhibits osteoclastogenesis
by suppressing the RANKL-induced positive and negative regulation of NFATc1 expression.
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Figure 3. WEFT inhibits RANKL signaling pathway. (A) Vehicle or WEFT (100 µg/mL) was treated
in BMM cultures at day 0 in the presence of M-CSF (60 ng/mL) and RANKL (50 ng/mL). The
RANKL-induced mRNA or protein levels of c-Fos and NFATc1 were evaluated by qPCR or Western
blot at day 0, 1, 2, and 3. (B) BMMs were stimulated with RANKL for the indicated minutes, 3 h
after pre-treatment with WEFT (100 µg/mL). The indicated proteins were detected by Western blot.
(C) Each phosphorylated MAPK level and total IκBα level were quantified by densitometry and
normalized to total each MAPK and β-actin levels, respectively. (D) BMMs were treated as in A, and
the mRNA expression of c-Tm7sf4, Atp6v0d2, Mafb, and Irf8 was analyzed using qPCR at day 0, 1, 2,
and 3. * p < 0.05, ** p < 0.01 vs. vehicle.
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2.3. WEFT Attenuates OVX-Induced Bone Loss in Mice

Given WEFT’s inhibition of RANKL-induced osteoclastogenesis using BMMs, the
in vivo pharmacological potential of WEFT was subsequently investigated using an OVX
mouse model. This is a sex steroid deficiency-induced osteoporosis model with a sig-
nificant disruption of trabecular microstructure and a decrease in bone mineral density
(BMD) [25,26]. After 6 weeks of WEFT administration, micro-computed tomography (µ-
CT) analysis of the femur revealed a remarkable trabecular loss in OVX mice compared
with sham mice (Figure 4A). However, this was reverted by WEFT administration at a
low dose (100 mg/kg/day, WEFT-L) and a high dose (300 mg/kg/day, WEFT-H). When
BMD and four parameters of bone microstructure were analyzed and quantified, WEFT-L
increased BMD by approximately 22%, bone volume per tissue volume (BV/TV) by 61%,
trabecular number (Tb.N) by 48%, and trabecular thickness (Tb.Th) by 13%, but decreased
trabecular separation (Tb.Sp) by 20% compared to the OVX group (Figure 4B). There was
no statistical difference observed between WEFT-L and WEFT-H, suggesting that this is
the optimal concentration of WEFT inhibition in OVX-induced osteoporosis. Estrogenic
deficiency upregulates RANKL expression by osteocytes or stromal cells, which increases
bone resorption activity and accelerates bone turnover rate [27]. Estrogenic deficiency also
diminishes osteoblastic Fas ligand-induced apoptosis of osteoclasts, thereby increasing
osteoclast survival [28]. To elucidate the in vivo effects of WEFT on bone resorption and
formation, we measured the serum concentrations of C-terminal cross-linked telopeptides
of type I collagen (CTX-I, a marker of bone resorption) and procollagen type I N-terminal
propeptide (PINP, a marker of bone formation). At the end of the experimental period, OVX
mice displayed lower PINP levels than sham mice, whereas the CTX-I levels were similar
to sham mice. WEFT-H decreased CTX-I levels without affecting PINP levels compared to
the OVX group (Figure 4C). These results suggest that the inhibition of osteoclast-mediated
bone resorption might mainly contribute to the bone protective effect of WEFT. However,
the precise mechanisms underlying the anti-osteoporotic effect of WEFT remain to be
further elucidated because, unlike WEFT-H, WEFT-L inhibited OVX-induced bone loss
without affecting CTX-I levels at the experimental endpoint.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 13 
 

 

normalized to total each MAPK and β-actin levels, respectively. (D) BMMs were treated as in A, 
and the mRNA expression of c-Tm7sf4, Atp6v0d2, Mafb, and Irf8 was analyzed using qPCR at day 
0, 1, 2, and 3. * p < 0.05, ** p < 0.01 vs. vehicle. 

2.3. WEFT Attenuates OVX-Induced Bone Loss in Mice 
Given WEFT’s inhibition of RANKL-induced osteoclastogenesis using BMMs, the in 

vivo pharmacological potential of WEFT was subsequently investigated using an OVX 
mouse model. This is a sex steroid deficiency-induced osteoporosis model with a signifi-
cant disruption of trabecular microstructure and a decrease in bone mineral density 
(BMD) [25,26]. After 6 weeks of WEFT administration, micro-computed tomography (µ-
CT) analysis of the femur revealed a remarkable trabecular loss in OVX mice compared 
with sham mice (Figure 4A). However, this was reverted by WEFT administration at a 
low dose (100 mg/kg/day, WEFT-L) and a high dose (300 mg/kg/day, WEFT-H). When 
BMD and four parameters of bone microstructure were analyzed and quantified, WEFT-
L increased BMD by approximately 22%, bone volume per tissue volume (BV/TV) by 61%, 
trabecular number (Tb.N) by 48%, and trabecular thickness (Tb.Th) by 13%, but decreased 
trabecular separation (Tb.Sp) by 20% compared to the OVX group (Figure 4B). There was 
no statistical difference observed between WEFT-L and WEFT-H, suggesting that this is 
the optimal concentration of WEFT inhibition in OVX-induced osteoporosis. Estrogenic 
deficiency upregulates RANKL expression by osteocytes or stromal cells, which increases 
bone resorption activity and accelerates bone turnover rate [27]. Estrogenic deficiency also 
diminishes osteoblastic Fas ligand-induced apoptosis of osteoclasts, thereby increasing 
osteoclast survival [28]. To elucidate the in vivo effects of WEFT on bone resorption and 
formation, we measured the serum concentrations of C-terminal cross-linked telopeptides 
of type I collagen (CTX-I, a marker of bone resorption) and procollagen type I N-terminal 
propeptide (PINP, a marker of bone formation). At the end of the experimental period, 
OVX mice displayed lower PINP levels than sham mice, whereas the CTX-I levels were 
similar to sham mice. WEFT-H decreased CTX-I levels without affecting PINP levels com-
pared to the OVX group (Figure 4C). These results suggest that the inhibition of osteoclast-
mediated bone resorption might mainly contribute to the bone protective effect of WEFT. 
However, the precise mechanisms underlying the anti-osteoporotic effect of WEFT remain 
to be further elucidated because, unlike WEFT-H, WEFT-L inhibited OVX-induced bone 
loss without affecting CTX-I levels at the experimental endpoint. 

 
Figure 4. WEFT inhibits OVX-induced trabecular bone loss. Femora of OVX or sham mice were 
isolated and fixed in 10% neutral formalin after 6 weeks of sample administration (WEFT-L, 100 
mg/kg/day; WEFT-H, 300 mg/kg/day) following sham or OVX. (A) Typical µ-CT images of trabec-

Figure 4. WEFT inhibits OVX-induced trabecular bone loss. Femora of OVX or sham mice
were isolated and fixed in 10% neutral formalin after 6 weeks of sample administration (WEFT-
L, 100 mg/kg/day; WEFT-H, 300 mg/kg/day) following sham or OVX. (A) Typical µ-CT images of
trabecular bone in the distal femur of each group. (B) BMD and four microstructural parameters in
trabecular bone were analyzed for quantification. (C) Serum levels of CTX-I and PINP were measured.
BMD, bone mineral density; BV/TV, bone volume per tissue volume; Tb.N, trabecular number; Tb.Sp,
trabecular separation; Tb.Th, trabecular thickness; CTX-I, C-terminal cross-linked telopeptides of
type I collagen; PINP, procollagen type I N-terminal propeptide. * p < 0.05, ** p < 0.01 vs. OVX group.
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In addition to bone loss, OVX induced an increase in body weight gain, gonadal fat
weight (Figure 5A), and fat deposits in the bone marrow and liver (Figure 5B,C) compared
to sham-operated mice (p < 0.01). This is consistent with a previous study showing that
estrogen deficiency deregulates the balance of energy metabolism and increases adipose
tissue deposition in bone marrow [29,30]. It has also been suggested that fat accumulation
in bone marrow due to the preference of mesenchymal stromal cells to adipocytes over
osteoblasts increases fracture risk and decreases fracture repair [31,32]. We found that
WEFT significantly ameliorated OVX-induced weight gain and fat accumulation without
changes in uterine weight. These results suggest that WEFT might be a useful candidate for
the prevention of osteoporosis and fat accumulation in postmenopausal women without
hormonal side effects. However, the molecular mechanisms by which WEFT suppresses fat
accumulation in tissues should be investigated in further studies.
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Figure 5. WEFT reduces OVX-induced fat accumulation in live and bone marrow. (A) Body weight
gain, gonadal fat weight, and uterine weight in each group were measured after 6 weeks of sample
administration (WEFT-L, 100 mg/kg/day; WEFT-H, 300 mg/kg/day) following sham or OVX.
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2.4. Phytochemical Profiles of WEFT

High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)
is one of the most accurate and critical analyses for the characterization of active con-
stituents in herb material by providing extensive chemical profiling prior to its isolation
and purification [33]. To understand the molecular basis for the bone protective effects of
WEFT, we characterized the constituents of WEFT using an ultrahigh-performance liquid
chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Alkaloids are
the fundamental components of F. thunbergii bulbus [12,34]. Seven alkaloids (peimisine
glucoside, yibeissine, peiminoside, sipeimine glucoside, peimisine, peimine, and peiminine)
were identified in WEFT (Figure 6 and Table 1) by using the retention time and mass spectral
data of reference standards and previous studies [35,36]. These alkaloids are characterized
by a cevane skeleton, which is composed of an isosteroid structure with a quinolizidine
system. It has also been suggested that peiminine shares the same pharmacophore as
peimine [37]. Peiminine has been shown to inhibit LPS-induced NF-κB activation and
interleukin-1β-induced MAPK activation [38,39]. The activation of NF-κB and MAPK
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pathways plays key roles in osteoclastogenesis and bone resorption in inflammatory bone
loss [40,41]. Recently, it was reported that peiminine suppresses OVX-induced bone loss by
inhibiting osteoclastogenesis through the suppression of RANKL-induced NFATc1, ERK,
and NF-κB signaling pathways [42]. In this study, we found that WEFT suppressed osteo-
clastogenesis by inhibiting NFATc1, MAPK (ERK and JNK), and NF-κB signaling pathways.
Therefore, the phytochemical constituents of WEFT, including peiminine, may account for
the pharmacological activity of WEFT against osteoclastogenesis or OVX-induced osteo-
porosis, although further studies are needed to elucidate the key active components in
WEFT in the near future.
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and negative ionization modes on UHPLC-MS/MS. (B) Extracted ion chromatogram of identified
phytochemicals eluted at 6.0–9.0 min. 1, peimisine glucoside; 2, yibeissine; 3. peiminoside; 4,
sipeimine glucoside; 5, peimisine; 6, peimine; 7, peiminine.

Table 1. Phytochemicals identified in WEFT by UHPLC-MS/MS.

No Rt
(Min)

Calculated
(m/z)

Estimated
(m/z) Adducts Error

(ppm)
Elemental

Composition

MS/MS
Fragments

(m/z)
Identifications

1 6.25 590.3687 590.3686 [M + H]+ −0.259 C33H51NO8 590.3686, 572.3564 Peimisine
glucoside [35]

2 6.49 444.3108 444.3105 [M + H]+ −0.718 C27H41NO4
444.3105, 426.301,

114.0915 Yibeissine *

3 7.10 594.4000 594.3998 [M + H]+ −0.444 C33H55NO8 594.3998, 576.3887 Peiminoside [35]

4 7.19 592.3844 592.3840 [M + H]+ −0.609 C33H53NO8 592.384, 574.373 Sipeimine
Glucoside *

5 7.57 428.3159 428.3157 [M + H]+ −0.504 C27H41NO3 428.3156, 410.3038 Peimisine *

6 7.85 432.3472 432.3469 [M + H]+ −0.757 C27H45NO3 432.3469, 414.3364 Peimine [35]

7 8.22 430.3316 430.3314 [M + H]+ −0.488 C27H43NO3 430.3311, 412.3201 Peiminine *

* Compared with the retention time (Rt) and mass spectral data of reference standards.

3. Materials and Methods
3.1. Materials

Cell culture medium, fetal bovine serum (FBS), Enzyme Free Cell Dissociation Solu-
tion, and VitD3 were obtained from Thermo Fisher Scientific (Waltham, MA, USA). All
antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA), except
for β-actin, c-Fos, and NFATc1 from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Re-
combinant human M-CSF and recombinant GST-tagged human RANKL were obtained as
previously described [43]. Reference standards (yibeissine, sipeimine glucoside, peimisine,
and peiminine) for UHPLC-MS/MS analysis were obtained from Targetmol (Wellesley
Hills, MA, USA). WEFT was purchased from the National Development Institute of Korean
Medicine (Gyeongsan, Korea). In brief, WEFT was prepared from F. thunbergii bulbus by
reflux extraction for 3 h. The extract was filtered and dried in a vacuum freeze dryer.
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3.2. BMM Preparation

Bone marrow cells were obtained from the bone marrow of the femur and tibia of
7-week-old male C57BL/6J mice. After the ends of both bones were cut using surgical
scissors, the bone marrow was removed by PBS flushing using a 1-gauge needle syringe.
Red blood cells in the emitted PBS were lysed using RBC lysis buffer for 3 min and then
centrifuged for 5 min at 2000 rpm. The collected cells were suspended and filtered using
a cell strainer (70 µm), and then the cells were incubated in a cell culture plate with M-
CSF (20 ng/mL) for 24 h. Suspended cells were collected and cultured in non-coated
cell culture plates for five consecutive days with M-CSF (60 ng/mL). After reaching 90%
confluency, BMMs that remained adhered to the plate were dissociated using Enzyme Free
Cell Dissociation Solution and then collected using a cell scraper.

3.3. Cell Culture

MLO-Y4 cells, a murine osteocyte-like cell line, were cultured in α-MEM supplemented
with 2.5% FBS, 2.5% calf serum, and 1% penicillin/streptomycin on type I collagen-coated
plates. The passage number of MLO-Y4 cells was maintained at 40 passages (Kerafast,
Boston, MA, USA). Phenotypic criteria, including characteristics such as star-shaped with
dendritic extensions and low alkaline phosphatase expression for osteocytes, were used
to maintain the cell line. BMMs were cultured in α-MEM containing 10% FBS, 1% peni-
cillin/streptomycin, and M-CSF (60 ng/mL).

3.4. Cell Viability

BMMs were seeded in 96-well microplates at a density of 2 × 104 cells/well. Twelve
hours later, the cells were treated with vehicle or different concentrations of WEFT (11.1,
33.3, 100, and 200 µg/mL) for 1 d. Cell viability was determined by using a CellTiter-Glo
luminescent cell viability assay according to the manufacturer’s instructions (Promega,
Madison, WI, USA)

3.5. Osteoclast Differentiation

For the co-culture differentiation of osteoclasts, MLO-Y4 cells were cultured in a 96-
well plate at a density of 1 × 103 cells per well in α-MEM medium containing 10% FBS
for 1 day. BMMs (4 × 104 cells/well) were combined with the culture of MLO-Y4, and
VitD3 (10 nM) was added as a differentiation inducer in the co-culture plate for 5 days. For
the single culture for osteoclast differentiation, BMMs were seeded in a 96-well plate at
a density of 1 × 104 cells/well and cultured for four consecutive days in the presence of
M-CSF (60 ng/mL) and RANKL (50 ng/mL). Vehicle or different concentrations of WEFT
(11.1, 33.3, 100, and 200 µg/mL) were added to each plate on day 0.

3.6. TRAP Activity and Staining

TRAP activity was examined by a phosphatase reaction with p-nitrophenyl phosphate
as a substrate in a sodium acetate buffer. After formalin fixation and permeabilization, the
cells were incubated in a TRAP assay solution (0.05 M sodium tartrate, 120 mM sodium
acetate, and p-nitrophenyl phosphate, pH 5.2) for 15 min at 25 ◦C. When dephosphorylated
yellow products were generated by phosphatase, the reaction solution was transferred to a
new plate and terminated by adding 0.1N NaOH. The visible color of the reaction product
was measured at a wavelength of 405 nm (BD Versamax). After the TRAP activity assay,
the remaining cells were stained using naphthol AS-MX phosphate and Fast Red Violet LB
salt as a substrate in sodium tartrate buffer (50 mM, pH 5.2). TRAP-positive stained cells
harboring more than three nuclei were counted as osteoclasts.

3.7. Western Blot Analysis

Total protein lysates were obtained from BMMs using RIPA lysis buffer by repeated
vortexing and low temperature-incubation (iNtRON Biotechnology, Sungnam, Korea).
Protein concentrations were determined from the absorbance of standard BSA reacted with
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bicinchoninic acid (BCA) reagent (Thermo Fisher Scientific, Waltham, MA, USA). The total
proteins were separated on a 10% SDS-PAGE gel, which was semi-electronically transferred
to a polyvinylidene fluoride membrane. To reduce the non-specific binding of antibodies,
the membranes were blocked with 5% skim milk for 2 h. Specific primary antibodies (1:1000
dilution) against each target protein and horseradish peroxidase-conjugated secondary
antibodies (1:5000 dilution) were incubated with the membranes for at least 1 h. Tris-
buffered saline with 0.1% Tween 20 (TBST) washing in-between antibody reactions was
performed three times. Chemiluminescent bands at the expected molecular weight were
detected using SuperSignal® West Pico Chemiluminescent Substrate under the ChemiDoc
Imaging System (Bio-Rad, Hercules, CA, USA). All Western blots were performed in three
independent experiments. The protein bands were quantified by densitometry using Image
Lab software version 5.2.1 (Bio-Rad, Hercules, CA, USA), and the levels of MAPK (ERK,
JNK, and p38) phosphorylation and IκBα degradation were normalized to total each MAPK
and β-actin, respectively.

3.8. qPCR Analysis

Total RNA was extracted using a spin-column-based nucleotide isolation protocol (iN-
tRON Biotechnology, Sungnam, Korea) according to the manufacturer’s instructions. RNA
purity and concentration were measured using a NanoDrop spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). For cDNA synthesis, total RNA (1 µg) was reacted
with cDNA reverse transcriptase using a High-Capacity cDNA Reverse Transcription
Kit (Thermo Fisher Scientific, Waltham, MA, USA). The generated cDNA was ampli-
fied using TaqMan Universal Master Mix II (Applied Biosystems, Foster City, CA, USA)
and TaqMan probes for target genes in an ABI 7500 Real-Time PCR Instrument (Applied
Biosystems). The TaqMan probes for NFATc1 (Mm00479445_m1), c-Fos (Mm00487425_m1),
Tnfsf11 (Mm00441908_m1), Tnfrsf11b (Mm0043542_m1), Csf1 (Mm00432686_m1), MafB,
(Mm00627481_s1), Irf8 (Mm00492567_m1), and 18S (Mm99999915_g1) were applied for
qPCR reactions in this study. The relative mRNA expression of target genes was calculated
by the ∆∆Ct method, which is represented as fold change.

3.9. In Vivo Study

The Institutional Animal Care and Use Committee (IACUC) at Knotus (Guri, Korea)
reviewed the ethnic and scientific judgment of animal experiments and approved the study
(approval number: 19-KE-216). Female C57BL/6J mice (6 weeks old) were housed in a
temperature-controlled room (22–24 ◦C, 55% humidity) with an illumination cycle (12 h
light/dark cycle) under specific pathogen-free conditions. For OVX operation, animals
were anesthetized with a Zoletil/Rumpun mixture, and then the bilateral ovaries were
removed through a < 1 cm dorsal incision. A week after OVX or sham operation, healthy
mice that recovered from the surgery were selected and randomly assigned into four
groups (n = 6): sham group + distilled water, OVX group + distilled water, OVX + WEFT
100 mg/kg/day treatment group (WEFT-L), and OVX + WEFT 300 mg/kg/day treatment
group (WEFT-H). A commercial normal-fat diet (Research Diet, New Brunswick, NJ, USA)
and water were provided ad libitum. For pharmacological studies, distilled water or
WEFT was administered once daily by oral gavage for 6 weeks. The body weight of
the mice was measured once a week. Body weight change between the final and initial
body weight was expressed as a percent change relative to the initial body weight. At the
experimental endpoint, the serum levels of CTX-I and PINP were measured using ELISA
kits (Immunodiagnostic Systems Ltd., London, UK).

3.10. Trabecular Bone Analysis

The distal femurs of the mice were fixed in 10% neutral buffered formalin for 2 days.
A µ-CT imaging system (SkyScan 1276, Bruker, Kontich, Belgium) was used for tissue
scanning. The original images of the femur were reconstructed and analyzed using SkyScan
NRecon and CTAn software, respectively. The volume of interest started at 80 µm below
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the lower end of the growth plate and extended 1.2 mm in height proximally. Trabecular
morphometric parameters including BMD, BV/TV, Tb.N, Tb.Sp, and Tb.Th were calculated.

3.11. Histological Analysis

The tissues were fixed in 10% neutral buffered formalin for 48 h at 25◦C. After de-
hydration using a series of ethanol dilutions (70–100%), the tissues were embedded in
paraffin and sectioned into a 5 µm thick block. RDO Gold (RDO, Aurora, IL, USA) was
used to decalcify bone tissue for 1 week between fixation and dehydration. Tissue sections
were stained with hematoxylin and eosin. Lipid droplet areas in representative images
were obtained under a light microscope and analyzed using Image J software (National
Institutes of Health, Bethesda, MD, USA).

3.12. UHPLC-MS/MS Analysis

A Dionex UltiMate 3000 HPLC system assembled with a Thermo Q-Exactive mass
spectrometer was used to analyze the WEFT. An Acquity BEH C18 column (100 × 2.1 mm,
1.7 µm) was used for stationary phase chromatography separation. A gradient mixture of
0.1% formic acid in water (A) and acetonitrile (B) was used for the mobile phase, with a
flow rate of 0.25 mL/min. The gradient setting was 3% B for 0–1 min, 3–15% B for 1–2 min,
15–50% B for 2–13 min, 50–100% B for 13–20 min, 100% B for 20–23 min, and 3% B for
23.5–27.5 min. The Q-Exactive mass spectrometer equipped with a heated electrospray
ionization source was operated in the positive and negative ionization switching modes,
according to a previous study [36]. Data acquisition and analysis were performed using
Xcalibur v.3.0 and Tracefinder v.3.2 software (Thermo Fisher Scientific, Waltham, MA, USA).
The phytochemicals in WEFT were identified by comparing the retention time and mass
spectral pattern of reference standards or according to a previous report [35].

3.13. Statistical Analysis

In Vitro data are represented as mean and standard deviation, and in vivo data are
presented as the mean and standard error of the mean. Group comparisons were per-
formed using a one-way or two-way analysis of variance (ANOVA). Post-hoc analysis was
performed with Dunnett’s or Bonferroni’s post hoc test. Statistical significance was set at
p < 0.05.

4. Conclusions

This study is the first to show the potential pharmacological effects of WEFT on
menopausal bone health. WEFT inhibited osteoclast differentiation by suppressing RANK
signaling and NFATc1 induction in osteoclast precursor cells. In the OVX mouse model,
WEFT prevented estrogen deficiency-induced bone loss and weight gain without promoting
uterine hypertrophy. Additionally, we identified seven alkaloids in the phytochemical
profiling of WEFT that might contribute to the anti-osteoclastogenic or anti-osteoporotic
properties of WEFT. Altogether, these results suggest that WEFT is a promising herbal
candidate that can be applied to prevent or treat postmenopausal osteoporosis.
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