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Abstract

More than twenty years ago the reverse vaccinology paradigm came to light trying to design

new vaccines based on the analysis of genomic information in order to select those patho-

gen peptides able to trigger an immune response. In this context, focusing on the proteome

of Trypanosoma cruzi, we investigated the link between the probabilities for pathogen pep-

tides to be presented on a cell surface and their distance from human self. We found a rea-

sonable but, as far as we know, undiscovered property: the farther the distance between a

peptide and the human-self the higher the probability for that peptide to be presented on a

cell surface. We also found that the most distant peptides from human self bind, on average,

a broader collection of HLAs than expected, implying a potential immunological role in a

large portion of individuals. Finally, introducing a novel quantitative indicator for a peptide to

measure its potential immunological role, we proposed a pool of peptides that could be

potential epitopes and that can be suitable for experimental testing. The software to com-

pute peptide classes according to the distance from human self is free available at http://

www.iasi.cnr.it/~dsantoni/nullomers.

1 Introduction

Trypanosoma cruzi, a protozoan parasite belonging to the phylum Euglenozoa, is the etiologic

agent of Chagas disease, a tropical pathology also known as american trypanosomiasis. [1]

According to recent statistics it affects more than eight million people and it is responsible for

more than eight thousand casualties every year in Central and South America (https://www.

who.int/chagas/epidemiology/en/). Although many efforts have been done by the scientific

community to face up this emergency a vaccine is not still available for human [2, 3]. Several

approaches have been proposed to build a vaccine, focusing on secreted or membrane
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associated proteins such as trans-sialidase family [4–6] and several studies tested promising

epitopes in mice [7] and dogs [8]. Others studies [9, 10] proposed a computational approach

based on whole genome screening, according to the reverse vaccinology paradigm [11, 12].

In the postgenomic era the wide availability of genomic data and the development of accu-

rate tools make possible the use of bioinformatics for a broader evaluation of potential epi-

topes. Several papers focused on the computational identification of potential epitopes for

vaccine design [13–18]. Usually those works considered different features that peptides have to

show to be epitopes, including epitope conservancy analysis, epitope toxicity prediction, bind-

ing stability and in some cases molecular docking with specific Human Leukocyte Antigen

(HLA). The focal point anyway is the prediction of binding to the Major Histocompatibility

Complex (MHC) estimated through validated and solid predictive algorithm (see the review of

Schirle and colleagues for reference [19]). In particular He and colleagues developed a Web-

Based Vaccine Design tool called Vaxign, applied to more than 70 genomes [20]. Vaxign pipe-

line takes into consideration several features including protein subcellular location, transmem-

brane helices, adhesin probability, conservation to human and/or mouse proteins, sequence

exclusion from genomes of nonpathogenic strains, and epitope binding to MHC class I and

class II.

According to the self/non-self paradigm, the overwhelming majority of microorganisms

peptides are not shared with human and only a small percentage of peptides are in common

(approximately 0.2% [21])). Therefore the most part of pathogen peptides can be defined as

nullomers of human proteome. The word nullomer, indicating an absent word for a given ref-

erence sequence, has been introduced for the first time by Hampikian and Andersen in 2007

[22]. To date, there are several works dealing with the study of absent words in biological

sequences, focusing both on DNA [23–25] and protein sequences [26, 27]. Vergni and Santoni

[28] in 2016 introduced an extension of nullomers, namely high order nullomers, i.e., absent

words whose mutated sequences are still absent. In the present paper nullomer classes have

been defined by introducing a distance between a given peptide and human self in terms of the

minimal number of mutation steps needed to transform the peptide into a human one.

Focusing on the proteome of Trypanosoma cruzi, the relationship between the likelihood of

a peptide to be presented on the cell surface and its distance from human self has been investi-

gated. This study ideally follows the work of Santoni [29] where it has been highlighted, con-

sidering the proteomes of Human Immunodeficiency Virus type 1 (HIV1) and Human herpes

simplex virus 1 (HHV1), that peptides far from human self more than three mutation steps

show a strong propensity to bind the MHC class I molecules. MHC class I molecules (MHC-I)

play a focal role in adaptive immune system. They are highly polymorphic proteins able to

bind antigenic peptides and present them to T cells. The complex formed by an immunogenic

peptide and an element in MHC-I is exposed on nucleated cells surface and can be recognized

by cytotoxic CD8+ T cells activating them and triggering the immune response. Moreover, in

the wake of the medical crisis caused by the covid-19 pandemic, a short report in which similar

methodologies have been applied to the search of potential epitopes of the SARS-CoV-2 virus

has been proposed [30]. In this work we deepen and extend those results detailing how the use

of high order nullomers can be influential in the search for potential epitopes. The idea is to

partition exogenous peptides in different nullomer classes through their distance from human

proteome, discriminating between peptides that can be considered farther or closer to human

self. This approach can contribute to extend the self/non-self paradigm by associating to far-

ther peptide a strong non-self status while to closer peptide a weak non-self status. By using

tested and accurate bioinformatics tools (netMHC [31–34] and NetCTL [34–37], for the pre-

diction of i) Proteasome Cleavage (CLE), ii) Transporter Associated with Antigen Processing

(TAP) and iii) MHC-I binding) we are able to reproduce in silico the whole pipeline that
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brings a peptide to be presented on the cell surface. A high co-evolution among those three

steps is highlighted, particularly for farthest from human peptides, extending already known

results [21] to all available HLAs. We also show even more strong co-evolution factors when

considering the most distant peptides from human self. Moreover we discuss how distant pep-

tides from human self tend to bind a higher number of HLAs than expected, so that they can

trigger an immune response in a large portion of population. Using a novel methodology we

identified two different sets of peptides that could be considered potential epitopes and which

may be suitable for experimental tests in order to validate their immunogenicity. Finally infor-

mation content analysis, performed on the considered pool of promising peptides, revealed an

evident aminoacid pattern and a minor sequence complexity. This implied strong sequence

constraints for the best promising peptides.

2 Methods

2.1 Proteomes

The proteome of Homo sapiens (HSA) GRCh38, has been downloaded from Ensembl web site

(http://ftp.ensembl.org/pub/current_fasta/homo_sapiens/pep/). Available strain protein

sequences of Trypanosoma cruzi (TC)—44,512 sequences (3703 from TC model organism—

NCBI taxonomy 5693, 10213 from TCmarinkellei—NCBI taxonomy 85056, 19244 from

TC CL Brener—NCBI taxonomy 353153 and 11352 from TC Dm28c—NCBI taxonomy

1416333)—have been downloaded from UNIPROT site (http://www.uniprot.org/uniprot/).

Ad hoc python scripts have been designed in order to extract all unique 9-mers from the

sequences of the considered organisms, removing all those 9-mers containing other than the

20 standard aminoacids. We formally define the following peptide sets:

• HSA9: unique 9-mers occurring in reference human proteome;

• TC9: unique 9-mers occurring in available Trypanosoma cruzi proteins.

In the following, for the sake of simplicity, we will omit the superscript 9, since we will

always refer to 9-mers. We will also refer toHSA as human self, even if peptide size is limited

to 9.

2.2 Peptide classes: Distance from human self

Let p� (p1, p2, � � �, p9) and q� (q1, q2, � � �, q9) be two 9-mers, p 2 TC and q 2 HSA, and B(i) be

the mutation indicator function that assumes the value 1 if at position i (i = 1, .., 9) the aminoa-

cids pi and qi are different

BðiÞ ¼

(
0 pi ¼ qi

1 pi 6¼ qi
: ð1Þ

Using the function B(i) it is easy to define the distance between p and q in terms of number

of mutations between them as:

Dðp; qÞ ¼
X9

i¼1

BðiÞ : ð2Þ
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D(p, q) is the Hamming distance between the two peptides. Using the distance D it is possi-

ble to define the distance between a peptide p 2 TC and the entire human selfHSA as follows:

MðpÞ ¼ min
q2HSA

fDðp; qÞg ð3Þ

By definition ifM(p) is equal tom no human 9-mer can be obtain from p by mutating a

number of aminocids smaller thanm. According to the distanceM we define different disjoint

subsets of TC:

• the common class, C, as:

C ¼ fp 2 TC j MðpÞ ¼ 0g ð4Þ

i.e., the subset of TC peptide in common with HSA;

• a first class of absent peptides,W1, as

W1 ¼ fp 2 TC j MðpÞ ¼ 1g ð5Þ

containing peptides that are not present inHSA but that can be changed in at least one

human 9-mer with a single mutation step;

• a second class of absent peptides,W2, as

W2 ¼ fp 2 TC j MðpÞ ¼ 2g ð6Þ

containing peptides that are not present inHSA, as well as every 9-mer obtained by single

mutation of them, but they can be changed in at least one human 9-mer with two mutation

steps;

• generalizing, anm-th class of absent peptides,Wm, as

Wm ¼ fp 2 TC j MðpÞ ¼ mg: ð7Þ

It follows that a peptide belonging to classWm needsmmutation steps (not less thanm) in

order to be changed in at least one human peptide.

In the following we will also refer to peptides belonging to setW1 as nullomers, i.e., absent

words in the sequence HSA, while to peptides belonging to classWi (with i> 1) as high order

nullomers.

Those classes naturally induce a partition of TC in disjoint subsets:

TC ¼ C [W1 [W2 [ ::: [W9

where C \Wi ¼ ; 8i and Wi \Wj ¼ ; 8i 6¼ j :
ð8Þ

Unlike [28] in which nullomers and high order nullomers are gathered in non-disjoint sets,

in this work we preferred to use disjoint classes of nullomers,Wi, in order to characterize in a

clearer way the differences among peptides with different distance from human self.

2.3 Prediction softwares

2.3.1 Peptide-MHC-I interaction prediction score: NetMHC. The software NetMHC

(version 4.0) [31] has been used to predict the interaction of peptides with the MHC-I complex

in terms of binding scores, taking into account 81 available different HLAs (36 class A, 34 class
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B, 10 class C and 1 class E). NetMHC provides for every 9-mer p 2 TC and for any given HLA

hi a binding score, that we call αi(p) for i = 1, 2, .., 81.

According to NetMHC software three possible interval scores are defined:

• NB—No Bind: score higher than 2;

• WB—Weak Bind: score higher than 0.5 and equal or smaller than 2;

• SB—Strong Bind: score equal or smaller than 0.5.

Since we are interested in those peptides that are likely to be presented on a cell surface, we

focus on strong bind defining and indicator function �i(p) as

�iðpÞ ¼

(
1 aiðpÞ � 0:5

0 otherwise
ð9Þ

for i = 1, 2, .., 81.

Considering the entire set of HLAs included in NetMHC, some useful properties associated

to a given peptide can be defined as follows

• The best score function, α(p), namely the smallest score out of all the 81 ones

aðpÞ ¼ min
i¼1;2;::;81

faiðpÞg ; ð10Þ

• The indicator function, �(p), whose value is 1 if the peptide p strongly binds at least one

HLA:

�ðpÞ ¼

(
1 aðpÞ � 0:5

0 otherwise
; ð11Þ

• The total number of HLAs, N(p), that strongly bind a peptide as

NðpÞ ¼
X81

i¼1

�iðpÞ : ð12Þ

2.3.2 Proteasome cleavage and TAP transport prediction scores: NetCTL. The software

NetCTL (version 1.2) [34–37] has been used to predict proteasome cleavage probability and

TAP Transport scores associated to considered peptides. The cleavage prediction is provided

in terms of probability, where 0 indicates no probability to be cleaved and 1 indicates certainty

to be cleaved, while TAP Transport prediction is provided as a score, not mapped into a proba-

bility. According to [35] a significant threshold for the score was identified: it was assessed that

only 1.5% of epitopes have a score smaller than −1. We associated to every considered peptide,

p, the related TAP Transport score, TAP(p) and the best proteasome cleavage score (since the

cleavage site changes depending on the sequence context) CLE(p).
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2.4 Statistical analysis

In order to statistically assess the tendency of peptides farther from human self to strongly

bind MHC-I, hypergeometric tests were applied to perform enrichment analysis [38]. In other

words we used hypergeometric test to evaluate whether the number of strong bind peptides in

the classes of 9-mers farther from human self was significantly higher than expected (with

respect to the number of strong bind peptides in the whole set of TC 9-mers). Hypergeometric

tests were run through R scripts, providing the P-value of the test.

3 Results

We analyzed peptide classes defined above (C,W1,W2, . . .) to investigate whether the distance

from human self, that is the criterion we used to partition peptides in classes, affects the likeli-

hood of peptides to be presented on a cell surface. In the next subsections we will firstly com-

pare binding affinity of peptide classes to MHC-I showing that peptides with higher distance

from human self have an average binding score smaller than peptides closer to human self and

that they tend to strongly bind a higher number of HLAs. We will also take into consideration

proteasome cleavage and TAP transport as further selective steps to identify those peptide that

are more likely to be presented on a cell surface. Finally we will provide two sets of peptides,

related to TC andW4, respectively, with the highest probability to be presented on a cell sur-

face showing how the best promising peptides present regularities in their sequence according

to a Shannon entropy measure.

3.1 Peptide classes and MHC-I binding scores

First of all we built peptide classes defined above, C,W1,W2,W3 andW4, according to the dis-

tance functionM(p).

No peptide resulted to beW5, in other words four steps mutations are sufficient to obtain

from every peptide in TC at least one peptide inHSA. Such a result is not surprising consider-

ing the huge number of peptides that can be obtained by permitting up to four mutations in

the set of TC containing almost nine millions of peptides. The number and percentage of pep-

tides in each class are reported in Table 1.

In Table 2 for each class (C,W1,W2,W3 andW4) the numbers and the percentages of

strong, weak an no bind peptides are reported while Fig 1 shows the composition of the classes

Table 1. Number and percentage of unique peptides of Trypanosoma cruzi (TC) are reported together with the partition in disjoint classes C, W1, W2, W3 and W4.

TC C W1 W2 W3 W4

# peptides 8,937,165 19,966 303,662 4,663,994 3,939,218 10,325

Percentage 100 0.22 3.40 52.19 44.08 0.11

https://doi.org/10.1371/journal.pone.0243285.t001

Table 2. Number (percentages with respect to the total number of peptides in the class) of strong, weak and no

bind peptides for peptide classes C, W1, W2, W3 and W4.

SB WB NB
All 2,824,849 (32%) 2,693,897(30%) 3,418,419(38%)

C 5,317(27%) 6,029(30%) 8,620(43%)

W1 81,738(27%) 92,048(30%) 129,876(43%)

W2 1,383,655(30%) 1,410,721(30%) 1,869,618(40%)

W3 1,348,296(34%) 1,182,385(30%) 1,408357(36%)

W4 5,843(57%) 2,714(26%) 1,768(17%)

https://doi.org/10.1371/journal.pone.0243285.t002
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in terms of strong bind (SB), weak bind (WB) and no bind (NB) expressed as percentages. The

histograms clearly show thatW4 (black bars) has a peculiar behaviour with respect to other

classes: the composition percentage are directly correlated to the binding class, i.e. the stronger

the bind the higher the percentage ofW4 peptides in that class, while there is an inverse corre-

lation for sets C andW1 and there is no clear correlation for setsW2 andW3.

In other words peptides farther from human self show a clear tendency to strongly bind

HLAs, observing on average a significantly higher strong bind percentage with respect to other

peptides. As can be observed in Table 2 the percentages of strong bind peptides is significantly

higher than expected in those classes (W3 and in particular W4) whose peptides are farther

from human self. On the contrary, the number (and the percentage) of no bind peptides is sig-

nificantly higher than expected in those classes (C, W1 and W2) whose peptides are closer to

self. Hypergeometric tests were performed to statistically evaluate whether peptide classes (C,

W1, W2, W3 and W4) were significantly enriched in strong bind peptides with respect the

whole set of TC 9-mers. Obtained test results confirmed that peptides farther from human self

(W3 and W4) show a significant tendency to strongly bind MHC class I complex while pep-

tides close to human self (C, W1 and W2) show a number of strong bind 9-mers close to

expected. Enrichment analysis provided very significant P-values, practically 0 (Pvalue� 10−10)

for W4 and W3, and P-values very close to 1 (Pvalue> 0.99) for C, W1 and W2.

In order to better characterize peptides belonging to the different sets, we studied two other

quantities previously introduced in section 2.3.1, i.e., the best score, α(p), and the numbers of

HLAs a given peptide strongly binds, N(p).

In Fig 2 it is reported the average of those quantities in the different sets, i.e. hα(p)ip 2 P and

hN(p)ip2P where P = (C,W1,W2,W3,W4). Fig 2 clearly shows that peptides belonging toW4

set have on average a lower best score than other classes and they strongly bind an average

number of HLAs that is more than three times higher than those of C,W1 andW2 (2.7 against

0.8, 0.8 and 0.9) and more than two times higher than that ofW3 (2.7 against 1.18). This last

Fig 1. Percentages of MHC-I bound types (no bind, weak bind and strong bind) in the various peptide classes (C,

W1, W2, W3 and W4) for Trypanosoma cruzi (TC) unique peptides.

https://doi.org/10.1371/journal.pone.0243285.g001
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finding is particularly interesting in the view of selecting peptides able to trigger an immune

response since it highlights that peptides far from human not only tend to have higher binding

probability but they can also strongly bind a broader collection of HLAs, so that they can play

an immunological role in a large portion of individuals.

The percentages of SB peptides for each HLA have been computed forW4 and forW1 [W2

[W3� O (Others), and reported in Fig 3. To be more specific, we computed for classes P =

(O,W4) the quantity

fiðPÞ ¼
P

p2P�iðpÞ
#ðPÞ

ð13Þ

where the numerator accounts for the number of peptides in the class P that strongly bind the

HLA hi and the denominator (P) indicates the number of elements in the class P.

As one can observe in the lower panel of Fig 3, the percentages related to the 81 HLAs for

W4 (black bars) are clearly higher (with a few exceptions) with respect to the ones of O (red

bars). The highest percentages forW4 are reached by HLA-A3215 (fA3215(W4) = 0.12, i.e., 1284

SB peptides out of 10235, the total number of peptides inW4), HLA-A6823 (fA6823(W4) = 0.11,

i.e. 1137 SB peptides) and HLA-A3207 (fA3207(W4) = 0.10, i.e., 993 SB peptides). On the other

side the highest percentages for O reach a bit more than 0.02. In the upper panel of the figure

the log2 ratios betweenW4 and O percentages for each HLA are reported, i.e. log2(fi(W4)/

fi(O)), to have an at-a-glance view of the whole scenario. Once again also Fig 3 shows that, on

Fig 2. The average of both best score function, α(p), and numbers of HLAs a given peptide strongly binds, N(p), are reported

for each peptide classes.

https://doi.org/10.1371/journal.pone.0243285.g002
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average, peptides belonging toW4 class bind much more HLAs than peptides belonging to

other classes.

3.2 In silico pipeline: Proteasome cleavage—TAP transport—MHC-I

binding

As reported in Materials and Methods by means of NetCTL package, the score associated to

the probabilities that a given 9-mer can be obtained by proteasome cleavage and can be trans-

ported by TAP were computed. In this way we aimed at reproducing in silico the whole pipe-

line made of three steps that brings a peptide to be presented on cell surface: Proteasome

cleavage, TAP Transport and MHC-I binding.

In order to investigate the dependence of the three steps, we set cutoff scores (�0.5 for

cleavage, �0 for TAP and�0.5 for MHC-I) and we computed the numbers of peptides

predicted to pass the different steps (a similar analysis limited to only two different

HLAs has been presented in [21]). Results are reported in Tables 3 and 4 for W (where

W = W1 [W2 [W3 [W4) and W4 classes, respectively.

In each row of the two tables we can observe the flow of the numbers (and percentages) of

peptides passing the steps. From left to right the numbers and percentages are derived from

the set of peptides related to the previous (left) non-empty cell. For example in the first row of

Fig 3. The percentage of strong binding peptides for sets W4 (black bars) and O = W1 U W2 U W3 (red bars) are reported in the lower panel for

each HLA considered in the present paper. The graph shows that in the W4 set there are a much larger number of strong binding peptides than in the

O set. In the upper panel the logarithmic ratio between the two percentages are shown in order to evidentiate the difference in amplitude of the

percentages.

https://doi.org/10.1371/journal.pone.0243285.g003
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Table 3, we considered all absent peptides of TC,W, and we selected among them those pep-

tides with a cleavage score higher than 0.5 obtaining 2,903,390 ones (32%).

Starting from this set we then selected those peptides with a TAP score higher than 0

obtaining 2,388,082 ones (82% of already cleaved peptides). We finally applied MHC-I filter

(at least one HLA with a binding score smaller or equal to 0.5), obtaining 1,603,821 peptides

(67% of the already TAP transported). In the second row of Table 3 we started from the same

set of peptidesW but selected them with TAP threshold (jumping cleavage step) obtaining

3,985,392 peptide (45% ofW), then we applied MHC-I filter obtaining 2,171,288 (54% of

already TAP transported). In the last row we directly applied MHC-I filter obtaining 2,819,532

peptides (32% ofW).

It is worth noting that the percentages occurring in the corresponding columns decrease

(from top to bottom), meaning that the three steps are not independent on each other, and a

co-evolutive pressure acted on them. In fact the percentage of cleaved peptides that are pre-

dicted to be TAP transported is around 82% while the percentage of a any peptides belonging

toW predicted to be TAP transported is only 45%. The same holds for the MHC-I filter with

respect to TAP selective step. By applying to anyW peptide MHC-I filter we obtain a percent-

age of 32% while by applying the filter to already TAP transported peptides we obtain a signifi-

cantly higher percentage of 54% that reaches 67% when applied to already cleaved and TAP

transported peptides.

Table 4 was built in the same way than the previous one considering onlyW4 peptides. As

can be observed the associated percentages are higher than those occurring in Table 3, suggest-

ing a stronger co-evolutive pressure acting on peptides farther from human self. It is worth

noting that 90% of peptides already cleaved are predicted to be TAP transported (with respect

to 58% of allW4 peptides). 88% ofW4 peptides strongly bind at least one HLA when protea-

some cleavage and TAP transport filter steps are already applied instead of 76%, when only

TAP filter is applied, and 57% when no previous filter is applied. It is important to point out

that by changing the values of the cutoff scores the numerical values reported in the tables are

modified but the highlighted cross-dependence among the selective steps still yields.

Finally, in order to test the reliability of the results, we carried out a specific study to investi-

gate whether a strong bind between MHC-I and a given peptide predicted by netMHC was

also a stable bind. We computed binding stability through NetMHCstab [39] choosing, among

Table 4. Numbers of unique peptides and percentages for Trypanosoma cruzi related to selection steps: Protea-

some cleavage (CLE) higher than or equal to 0.5, TAP transport (TAP) higher than or equal to 0 and MHC-I bind-

ing (MHC-I SB) smaller than or equal to 0.5 for W4.

W4 CLE (%) TAP (%) MHC-I SB (%)

10,325 3,217 (31) 2,903 (90) 2,563 (88)

10,325 — 5,994 (58) 4,526 (76)

10,325 — — 5,843 (57)

https://doi.org/10.1371/journal.pone.0243285.t004

Table 3. Numbers of unique peptides and percentages for Trypanosoma cruzi related to selection steps: Protea-

some cleavage (CLE) higher than or equal to 0.5, TAP transport (TAP) higher than or equal to 0 and MHC-I bind-

ing (MHC-I SB) smaller than or equal to 0.5 for W = W1 [W2 [W3 [W4.

W CLE (%) TAP (%) MHC-I SB (%)

8,917,199 2,903,390 (32) 2,388,082 (82) 1,603,821 (67)

8,917,199 — 3,985,392 (45) 2,171,288 (54)

8,917,199 — — 2,819,532 (32)

https://doi.org/10.1371/journal.pone.0243285.t003
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the list of available HLAs, the HLA B1501, that is the one with the highest number of peptides

in the training set, i.e. the most reliable since other alleles were trained on smaller training pep-

tide set. We selected 133 W4 peptides that were predicted through NetMHC to strongly bind

B1501 HLA. 74 peptides out of 133 W4 were predicted through NetMHCstab to have a high

binding stability with B1501 HLA and 124 a weak binding stability. This is a very good per-

centage with respect to average expected binding stability, guaranteeng robustness of our

analysis.

3.3 Promising peptide

In this section we introduce a methodology able to select peptides with the highest probability

to be presented on a cell surface according to previously discussed results. We considered the

cleavage probability, fundamental first step for a peptide to be presented on a cell surface, and

the number of HLAs that a peptide strongly binds. This last property is an important element

for a peptide to have a good chance of being recognized by a large portion of population, since

the greater the number of HLAs that strongly bind the peptide the larger the portion of popula-

tion in which the peptide can trigger an immune response. As further discussed below, the

TAP score is not determinant for the selection of the most promising peptides since its value is

always well above -1 for those peptides having a high cleavage probability and a large number

of HLAs they strongly bind.

Let N(p) be the number of HLAs that strongly bind a given peptide, NH = 81 be the total

number of considered HLAs, and r be the number of HLAs expressed by an individual, (typi-

cally r = 6 [40]), the “recognition probability”, i.e., the probability that at least one of the HLAs

expressed by an individual strongly binds the peptide of interest, is given by the formula

RðpÞ ¼ 1 � PHyperðk ¼ 0Þ ¼ 1 �

NðpÞ
0

� �
NH � NðpÞ

r

� �

NH

r

� �

where PHyper(k = 0) is the probability (given by the hyper-geometric distribution) that taken

r = 6 out of NH = 81 HLAs none of them strongly binds the peptide.

The hyper-geometric distribution should be used when the probability for an individual to

have a given HLA is independent from that HLA, but HLA alleles distribution is not uniform

in the human population, moreover different human populations have different distributions

of HLA. In this work, as a first approximation we used the hyper-geometric distribution. How-

ever, if one is interested in a specific population it is possible to consider their peculiar HLA

frequency distribution to provide a more correct value of recognition probability. Considering

as independent the cleavage probability, CLE(p), and the recognition probability, R(p), one

can obtain the overall probability to be cleaved and recognized for a peptide by l(p) = CLE(p) �

R(p). This approximation underestimates the overall probability (an indication of dependency

between CLE(p) and R(p) arises from Table 3) therefore the obtained probability is certainly

lower than the actual probability.

In Tables 5 and 6 are reported the best ranking peptides (with respect to measure l(p))

selected from the whole set TC and from the setW4, respectively.

Table 5 highlights there are only twoW4 peptides in the first ten positions, in the sixth and

tenth positions. Anyway, it is worth noting that the number ofW4 peptides in the high ranking

positions has to be weighted with respect to the total number of elements in the set. To be

more specific, defining NW4
ðrankÞ (and NnotW4

ðrankÞ) as the number ofW4 peptides (and not

W4 peptides) in the ranking up to position “rank”, Fig 4 shows the plot of the ratio between
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NW4
ðrankÞ and NnotW4

ðrankÞ normalized by the sizes ofW4 and notW4 sets, respectively:

sðrankÞ ¼
NW4
ðrankÞ=#ðW4Þ

NnotW4
ðrankÞ=ð#ðTCÞ � #ðW4ÞÞ

:

This result again confirmsW4 peptide propensity to be exposed and, in our opinion, they

could be extremely interesting in the view of vaccine design. It can be hypothesized thatW4

exposed peptides could have, on average, a higher number of potential antibodies able to rec-

ognize them due to the cross-reactivity mechanism. Cross-reactivity occurs when an antibody

recognizes and binds antigens that are not specific for that antibody. In the original negative

selection process, when an antibody targets a self peptide it is negatively selected and removed.

Thus antibodies that target a peptide close to self-peptides, such as W1 peptides, are likely to

react also with self peptides so that they have a higher probability to be negatively selected. On

the contrary antibodies targeting a peptide far from self, such as W4 peptides, have a very low

probability to cross-react with self peptides, so that they have a smaller probability to be

Table 5. Ranking of the most promising peptides for Trypanosoma cruzi.

Peptide CLE TAP N R is W4 l

FVYDFFYTL 0.9778 1.08 44 0.992836684 No 0.97079571

YVFEWFAAL 0.978 1.195 43 0.991493563 No 0.969680704

YMYSGGWTL 0.9753 1.252 43 0.991493563 No 0.967003672

FLFGFTYPL 0.9785 1.038 40 0.98614536 No 0.964943234

YMFAGTYSF 0.9781 2.757 40 0.98614536 No 0.964548776

YMMGWCYTL 0.976 1.253 41 0.988172868 Yes 0.964456719

FTFNYSAPL 0.9759 1.051 41 0.988172868 No 0.964357902

FMYDVLYAL 0.9758 1.119 41 0.988172868 No 0.964259085

FLFPFFYSL 0.9792 0.984 39 0.983836253 No 0.963372459

FMMGWCYTL 0.9769 1.2 40 0.98614536 Yes 0.963365402

In the first column the peptide sequence is reported. Second and third columns report the CLE(p) and TAP(p) scores, respectively. Fourth column reports the number of

HLAs the given peptide strongly binds while in the fifth column the recognition probability, R(p), is reported. The sixth column indicates whether the peptide belongs

or not to the W4 class. Finally, in the last column, the overall probability, l(p), is reported.

https://doi.org/10.1371/journal.pone.0243285.t005

Table 6. Ranking of the most promising peptides selected from the set W4 for Trypanosoma cruzi.

Peptide CLE TAP H R l

YMMGWCYTL 0.9760 1.2530 41 0.988172867919703 0.96445671908963

FMMGWCYTL 0.9769 1.2000 40 0.986145359563081 0.963365401757174

FMFGWCYTL 0.9780 1.1030 39 0.983836252823595 0.962191855261475

YMMGWCHTM 0.9717 0.4810 37 0.97824906852222 0.950564619883041

YMVGWCYTM 0.9741 0.4540 35 0.971138187077561 0.945985708032252

MMWEESMTM 0.9780 0.6150 33 0.962188008157362 0.9410198719779

FMIGWCYTM 0.9685 0.4480 35 0.971138187077561 0.940547334184618

YMHPISFKM 0.9775 0.3840 32 0.956911916272343 0.935381398156215

FTWPHYFYY 0.9749 2.8750 29 0.937269654125084 0.913744185806544

YIYWRHMWL 0.9727 1.2590 29 0.937269654125084 0.911682192567469

The labels in the columns are the same of Table 5.

https://doi.org/10.1371/journal.pone.0243285.t006
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negatively selected and removed. This leads to a higher potential number of antibodies that

can recognize peptides far from self with respect to peptides close to self.

Finally we studied the aminoacid frequencies for each of the nine positions in the sequence

for the top ranking peptides. Logo plot for the most promising 100 peptides (selected consider-

ing the whole set TC) has been obtained by online tool WebLogo 3 [41].

As can be observed in the inset of Fig 5 the selected 100 peptides show a pattern that is par-

ticularly evident in the initial (1 and 2) and terminal (9) positions of the 9-mers. We hypothe-

sized a relationship between the score, l(p), and the presence of a pattern, in other words the

higher the score, that is to say the higher the probability to be a potential epitope, the stronger

the constraints on the peptide, especially in the initial and terminal positions.

This hypothesis was supported by an information content analysis. We considered the set

of best ranking peptides increasingly ordered with respect to the score l(p) (ranging from 0.71

to 0.97, where 0.71 refers to the minimum score in the top hundredW4 peptides and 0.97 is

the maximum score in TC) in total 17700 peptides that we divided in 177 groups, namely S1,

S2, . . ., Sk, . . ., S177, of 100 sequences according to their scores. We defined an overall entropy

(OE) value for each set of 100 peptides, Sk (with k = 1. . .177) as the sum of the entropies of the

frequency distribution of aminoacids for each position, formally:

OEðSkÞ ¼
X9

i¼1

X20

j¼1

pijlog2ðp
i
jÞ ð14Þ

where pij is the frequency of j-th aminoacid in the i-th position for the considered set Sk.
In Fig 5 the overall entropy, OE(S), of each set is plotted as a function of its average score,

l(S). As can be observed there is a clear dependency of the overall entropy of peptide sets on

their average scores. We remind that the maximum entropy value for each position is

log2(20)�4.32 and consequently the maximum OE is�38.90. It is worth noting that the differ-

ence between OE related to the highest score set (around 23) and OE related to lower scores

Fig 4. The ratio between the relative number of peptides W4 and not W4 for Trypanosoma cruzi up to position

“rank” is shown.

https://doi.org/10.1371/journal.pone.0243285.g004
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(OE in the range of 28 and 32) is extremely significant, indicating a strong consensus pattern

for selected sequences.

Moreover, overall entropy values associated to the 100 top rankingW4 (we call this setWh
4

with scores ranging from 0.71 to 0.96, black point Fig 5) is comparable to the overall entropy

values associated to sets Sk providing that lðSkÞ � lðWh
4
Þ. This property indicates that the infor-

mation content is strictly linked to the average score of the set.

4 Conclusions and discussions

Recognition of potential pathogens attacking the human body is the first step to activate an

immune response. Recognition is based on the ability of immune system to distinguish exoge-

nous from endogenous peptides, according to the self/non-self paradigm. However, the mech-

anisms underlying the immune response show a high level of complexity that we still don’t

completely understand. In this context, identification of potential epitopes, exogenous peptides

able to trigger an immune response, is crucial in the view of designing new generation vac-

cines, following the strategy of reverse vaccinology.

In this work we analyzed the relationship between the distance from human self of given

peptides and their probability to be presented on a cell surface, revealing higher value of that

probability for peptides farther from human self. This kind of relationship is reasonable and

coherent with the self/non-self paradigm but, as far as we know, it was never directly observed

before. In particular peptides in the classW4 strongly bound a significantly higher number of

HLAs with respect to peptides closer to human self. This result could be extremely favorable

for the design of vaccines that would be suitable for large portion of population.

We studied the three steps leading a peptide to be presented on the cell surface, i.e., protea-

some cleavage, TAP transport and MHC-I binding, revealing a significant strong co-evolution

Fig 5. Overall entropy values, OE(S), for disjoint peptides set of Trypanosoma cruzi, S, (increasingly ordered

according to the score l) plotted against the average score in the set, l(S). The black point is the entropy value

associated to the 100 top rankingW4 peptides of Trypanosoma cruzi while the circled point at the bottom right

represents the entropy value associated to the most promising 100 peptides selected from the whole set TC. In the

associated inset it is shown the logo plot for this last set.

https://doi.org/10.1371/journal.pone.0243285.g005
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among them. A similar analysis was performed by Burroughs in 2004 [21] considering only

two HLAs. Here we confirmed their results extending the analysis to all 81 available HLAs and

we additionally showed that the observed co-evolution is even stronger whenW4 peptides are

considered.

Moreover, using the overall probability to be cleaved and the number of HLAs a peptide

strongly binds, we identified two sets of promising epitopes, from TC and fromW4, that are

suitable for experimental tests to validate their immunogenicity.

An information content analysis performed on the set of 100 most promising peptides indi-

cates an evident aminoacid pattern, reported through logo plot. Moreover the analysis,

extended to a larger set of best ranking peptides, reveals that the overall entropy decreases as

the average score increases.

In our opinion the identification ofW4 peptides is extremely interesting in the view of vac-

cine design for several reasons. Firstly W4 peptides show a higher probability to be exposed

and they can be presented on cell surface by a higher number of HLAs than expected. Sec-

ondly it can be hypothesized, due to a large cross-reactivity of W4 presented peptides, that

they should have on average a higher number of potential antibodies able to recognize them

and consequently trigger an immune response. Thirdly the use ofW4 peptides as vaccine can-

didates avoids the risk of autoimmunity because of the low sequence similarity with human

self.

Finally results obtained in this work can be read from two different points of view. The for-

mer is theoretical: the finding that the distance of a peptide from human self affects its likeli-

hood to be an epitope can contribute to add new knowledge on the self/non-self paradigm.

The latter is practical: those findings can provide a further selective criterion to epitope search

in designing potential vaccines. Moreover, W4 peptides have at least three different amino

acids from every self peptide, so if we align them with human protein sequences we will obtain

a sequence identity always smaller than 66% in the blast best scores and this guarantees a very

small probability of the induced antibody to cross-react with human self and to cause autoim-

munity. As a case study we applied our methodology to Trypanosoma cruzi, the etiologic agent

of Chagas disease, but the whole pipeline described in this work can be easily applied to any

pathogen simply starting from its proteome. Nullomer peptide classes can be obtained through

the free software available at http://www.iasi.cnr.it/~dsantoni/nullomers.
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