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Abstract: Interactions with cell surface receptors enhance the therapeutic properties of many im-
portant antibodies, including the low-affinity Fc γ Receptors (FcγRs). These interactions require
proper processing of the immunoglobulin G Fc N-glycan, and eliminating the N-glycan abolishes
binding, restricting antibody production to mammalian expression platforms. Yeasts, for example,
generate extensively mannosylated N-glycans that are unsuitable for therapeutics. However, Fc with
a specifically truncated N-glycan still engages receptors with considerable affinity. Here we describe
the creation and applications of a novel Saccharomyces cerevisiae strain that specifically modifies the
IgG1 Fc domain with an N-glycan consisting of a single N-acetylglucosamine residue. This strain
displayed glycoengineered Fc on its surface for screening yeast surface display libraries and also
served as an alternative platform to produce glycoengineered Rituximab. An IgG-specific endo-
glycosidase (EndoS2) truncates the IgG1 Fc N-glycan. EndoS2 was targeted to the yeast ER using
the signal peptide from the yeast protein disulfide isomerase (PDI) and a yeast ER retention signal
(HDEL). Furthermore, >99% of the yeast expressed Rituximab displayed the truncated glycoform as
determined by SDS-PAGE and ESI-MS analyses. Lastly, the yeast expressed Rituximab engaged the
FcγRIIIa with the expected affinity (KD = 2.0 ± 0.5 µM) and bound CD20 on Raji B cells.

Keywords: human immunoglobulin 1 (hIgG1); human Fc gamma receptor IIIa (FcγIIIa); EndoS2;
truncated N-glycan

1. Introduction

Monoclonal antibodies have revolutionized the treatment of many cancers, autoim-
mune diseases and infectious diseases with notable high-profile examples targeting Ebola
virus and COVID-19 [1–4]. Due to the strict requirement of proper post-translational
modification, commercial antibodies are predominantly expressed using mammalian cells
including Chinese Hamster Ovary (CHO) cells. Mammalian expression platforms produce
glycoproteins with appropriate processing including asparagine(N)-linked carbohydrates
(glycans) at Asn 297 of the IgG1 heavy chain that is required for interactions with the Fc γ re-
ceptors (FcγRs). These interactions trigger antibody-dependent cell-mediated cytotoxicity
(ADCC) and antibody-dependent cellular phagocytosis (ADCP) that participate in clearing
diseased tissue and pathogens [5,6]. N-glycosylation is a co-translational modification that
also affects complement activation by antibodies and half-life in the serum [7–10]. Despite
superior processing capabilities, mammalian expression systems require more specialized
equipment and more complex growth media.

Alternative microbial expression platforms have the potential to surmount limitations
associated with mammalian systems. Among these, yeasts provide a distinct advantage
as eukaryotes capable of N-glycosylation as well as other eukaryotic post-translational
modifications (Figure 1) [11]. Unfortunately, antibodies produced in yeast contain oligo-
mannose N-glycans which are rapidly cleared in the peripheral compartment [12]. Ideal
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expression platforms generate antibodies with N-glycan compositions similar to serum IgG,
which include highly processed forms with extensive modification of the non-reducing
termini [13]. It is notable that commercial mammalian antibody expression systems are
imperfect and can produce undesirable amounts of oligomannose glycoforms (5–15%) that
cannot be completely prevented by adjusting growth conditions [14].
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end products are substantially different with yeasts capable of extensive mannosylation. The dashed
line indicates the site of endoglycosidase (endo) cleavage; EndoS and EndoS2 cleave IgG1 N-glycans.
OST—oligosaccharyltransferase; dol-dP—dolichol diphosphate.

It is possible to produce highly homogeneous protein N-glycans with alternative
expression systems by enzymatic remodeling. As an alternative, several groups have
attempted to introduce the glycan processing machinery into engineered yeast strains, with
varying levels of success [15–20] though more successful attempts are reported in Pichia
pastoris as compared to Saccharomyces cerevisiae [15,20,21]. However, competing mannosyl-
transferases in the Golgi lead to undesirable glycoforms in glycoengineered yeast strains
and lower amounts of the glycoform of interest. Alternatively, Endoglycosidase F (Endo F)
and EndoH remove the majority of the yeast N-glycan, which can extend to hundreds of
residues in contrast to the ~8–11 IgG N-glycan residues in human serum (Figure 1) [22,23].
These enzymes hydrolyze N-glycans leaving a single N-acetylglucosamine residue that is
identical in N-glycans produced by both yeast and mammals. A comparable effort targeted
EndoH to the ER in a plant, Nicotiana benthamiana, resulting in N-glycan cleavage with
no notable growth defects, though plants appear less dependent on N-glycosylation than
mammalian cells [24]. This aspect allowed for an approach entailing in-vivo deglyco-
sylation of Rituximab with EndoH in Nicotiana benthamiana followed by the subsequent
addition of a complex-type glycan using an EndoS2 transglycosylase variant [25].

Surprisingly, antibodies and antibody fragments displaying this single-residue N-
acetylglucosamine N-glycan bind FcγRIIIa with only a 10-fold reduction in affinity and
elicit FcγR-mediated cellular immune responses [26,27]. The immunoglobulin-specific en-
doglycosidases Endo S and EndoS2 provide an alternative approach to generate antibodies
with homogeneous mammalian N-glycans [28,29]. EndoS2 cleaves N-glycans from IgG1
with a broader range of N-glycan substrates including complex, oligomannose and hybrid
type N-glycans [30].

Here we report the development of a yeast expression system for antibody expression.
Combining the protein-expressing capabilities of S. cerevisiae with glycan remodeling into a
single cell is expected to provide a cost benefit over post-purification protein remodeling
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and also provides antibody expression with inexpensive medium conditions using a host
organism widely used for commercial production [31]. Another advantage of utilizing
Saccharomyces cerevisiae over Pichia pastoris to create this dual application strain is the library
size that can be achieved is far larger and less cumbersome to create [32]. The Saccharomyces
cerevisiae strain described here is additionally capable of displaying the IgG1 Fc fragment on
the surface, a required component of protein engineering using a yeast surface display [33].

2. Materials and Methods
2.1. Material

All materials were purchased from Millipore Sigma unless otherwise noted. GFP-
FcγRIIIa was prepared as previously described [34].

2.2. Strain and Media

The S. cerevisiae strain EBY100 (GAL1-AGA1:URA3 ura3-52 trp1 leu2∆1 his3 ∆200
pep4: HIS2 prb1 ∆1.6R can1 GAL) was purchased from the American Type Culture
Collection (ATCC-MYA4941). EBY100 cells were grown in YPD rich medium. EBY100-
EndoS2 yeasts were grown in minimal medium supplemented with tryptophan (Trp;
YNB-Dropout + Trp = 6.7 g/L Yeast Nitrogen Base Without Amino Acids and 1.5 g/L Yeast
Synthetic Drop Out Medium Supplements without Uracil, Tryptophan and Leucine along
with 2 mg/mL L-Trp). EBY100-EndoS2 + pYD1-Fc yeast cells were grown in a minimal
medium lacking leucine and tryptophan (YNB-Dropout = 0.67 g/L Yeast Nitrogen Base
Without Amino Acids and 0.15 g/L Yeast Synthetic Drop Out Medium Supplements with-
out Uracil, Tryptophan and Leucine). Protein expression was induced in YPGal = 10 g/L
Yeast Extract + 20 g/L Peptone + 2% Galactose (w/v).

2.3. Cloning of Fc into the Yeast Surface Display Plasmid pYD1

pYD1 was purchased from Addgene. A codon optimized Fc insert for expression in
S. cerevisiae was ordered from IDT. This insert was cloned into the pYD1 plasmid using
restriction sites Nhe1 and EcoR1. The final plasmid pYD1-Fc was validated through DNA
sequencing (Eurofins).

2.4. Creation and Validation of the EBY100-EndoS2 Strains

The construct encoding the app8 signal peptide with EndoS2, a Flag tag followed by
the HDEL sequence was synthesized by IDT, then cloned into the Yeast Integrating Plasmid
(YIP) pAG305 (Addgene) to integrate EndoS2 into the LEU2 site in the yeast genome. Once
the sequence was validated through DNA Sequencing, the plasmid was linearized and
used to transform EBY100. The integration was validated through yeast colony PCR. The
positive cells were then transformed with the pYD1-IgG1 Fc yeast surface display plasmid.
This transformation was again validated through a PCR-based colony screen using primers
listed in Table S1. To determine whether the endogenous EndoS2 can cleave the N-glycan
off Fc, the cells were first grown in YNB-Dropout medium [6.7 g/L Yeast Nitrogen Base
without amino acids and ammonium sulfate (Sigma Y1251) and 1.5 g/L Yeast Synthetic
Dropout Medium Supplement (Sigma Y1771)] supplemented with 2% glucose and then
induced in YNB-Dropout supplemented with 2% galactose for 24 h. The OD600 of the
culture was measured and a volume of culture corresponding to ~2 × 108 colony-forming
units was taken to prepare protein samples for a Western blot (0.1 OD600~106 cells).

2.5. Protein Sample Preparation

Protein samples for Western blots were prepared by concentrating cells with centrifu-
gation for 2 min at 1500× g. The pellet was then washed three times with 100 µL of 1× PBS,
followed by an incubation in 100 µL of 0.1 M NaOH and incubation at RT for 5 min. The
cells were then spun down at 1500 g for 2 min, then resuspended in 50 µL of 2× SDS
PAGE sample buffer. The cells were incubated at 95 ◦C for 5 min. The sample was then
centrifuged for 10 min at 1500× g. Supernatant (10 µL) was diluted 1:1 using 2× SDS
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PAGE sample buffer and was loaded onto a 12% SDS polyacrylamide gel. The protein
was transferred to a polyvinylidene difluoride (PVDF) membrane using the Invitrogen
Power Blotter (PB0010). The membrane was blocked in TBS + Tween20 (TBST) with 5%
dry milk for one hour at room temperature on an orbital shaker. This was followed by
incubation with rabbit anti-hIgG primary antibody (Target: IgG; Rabbit IgG; AB_228410
ThermoFisher) in 5% dry milk in 1× TBST overnight at 4 ◦C on an orbital shaker. The
membrane was washed three times for 5 min with TBST buffer, followed by incubation
with secondary HRP conjugated antirabbit antibody (Target: Rabbit IgG Clone: Polyclonal
Goat IgG; Research and Diagnostic Systems, dilution 1:2000) in 5% milk in 1× TBST buffer
for 2 h at room temperature on an orbital shaker. The membrane was washed three times
with 1× TBST buffer for 5 min and then imaged using ChemiDoc XRS + Image System
(Bio-Rad, Hercules, CA, USA) using the ECL Western Blotting Substrate (Thermo Fisher
Scientific, Waltham, MA, USA).

2.6. Flow Cytometry to Determine Fc Surface Expression

EBY100-EndoS2 + pYD1-Fc cells were first grown in YNB-Dropout + 2% glucose
overnight, pelleted by centrifugation and then induced in YNB-Dropout + 2% galactose for
24 h at 30 ◦C with shaking. Cells (~106) from this culture were used to prepare samples
for flow cytometry. The pellet was washed with 100 µL of 1× PBS and then washed with
100 µL of 1× PBSA (1× PBS + 1% Bovine Serum Albumin). The cells were incubated with
rabbit anti-hIgG on ice for 45–60 min in the dark. The cells were then washed with 100 µL
of 1× PBSA. The cell pellet was then incubated with phycoerythrin-conjugated antirabbit
IgG on ice for 45–60 min in the dark. The cell pellet was then washed twice with 100 µL
1× PBS. Similarly, for GFP-FcγRIIIa staining, a cell pellet ~106 cells were incubated with 50
µL of ~2 mM GFP-FcγRIIIa for 1 h at 4 ◦C in the dark. The samples were analyzed with a
FACSCanto to determine Fc surface expression and receptor FcγRIIIa binding.

2.7. Expression and Purification of IgG1 Fc and Rituximab

A single yeast clone verified through the colony screen was inoculated into a 5 mL
YNB-Dropout medium supplemented with 2% glucose and incubated with shaking at
30 ◦C for 16 h. This culture was then added to 100 mL YNB-Dropout supplemented
with 2% galactose, then incubated with shaking for 24 h at 30 ◦C. The culture was then
centrifuged for 10 min at 3000× g. The supernatant was discarded. The cell pellet was then
resuspended with 100 or 500 mL YPGal and was incubated with shaking for 72 h at 20 ◦C.
This culture was then centrifuged twice at 3000× g for 10 min to remove cell debris. The
supernatant was diluted 2-fold with 25 mM MOPS 100 mM NaCl, pH 7.4 (Buffer A) and
then loaded onto a Protein A column (2 mL). The column was then washed with 12 mL of
Buffer A. Protein was eluted in 1 mL fractions of 100 mM glycine, pH 3.0 and was collected
in tubes containing 500 µL of 1 M Tris pH 8 to immediately neutralize it. The protein
samples were then loaded onto a 12% SDS-PAGE gel to be analyzed. For samples analyzed
with size exclusion chromatography: 8–10 mL of concentrated sample was applied to a
Superdex 200 column using an ÄKTA Go FPLC (Cytiva) prewashed with Buffer A and
eluted with Buffer A.

2.8. Purification Using Concanavalin A Column

Concanavalin A Sepharose resin (1 mL) was washed with 5 column volumes of
Equilibration Buffer. Purified IgG1 Fc was diluted 1:1 with Equilibration Buffer (1× PBS
pH 7.4, 0.1 M NaCl, 1 mM MnCl2 and 1 mM CaCl2), then loaded onto the column by
gravity. The column was then washed twice using 5 mL of Equilibration Buffer. The protein
was then eluted from the column as 1 mL fractions using Elution Buffer (1× PBS pH 7.4,
0.2 M D-mannose). Each fraction (10 µL) was analyzed using a 12% SDS-polyacrylamide
gel that was stained with Coomassie brilliant blue.
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2.9. Cloning the Heavy Chain and Light Chain of Rituximab into pESC-TRP1

The constructs for the app8-heavy chain and app8-light chain were synthesized by
IDT. These constructs were then inserted into pESC-TRP1 (Agilent) through restriction
endonuclease cloning using Sal1 and Nhe1 (heavy chain) and EcoRI and Nhe1 (light chain)
and ligated with T4 DNA Ligase according to the manufacturer’s directions. The completed
sequence was validated through DNA sequencing (Eurofins).

2.10. Mass Spectrometry

Purified Rituximab (5 µg) from the EBY100-(GPD) EndoS2 strain was resuspended in
50 mM ammonium carbonate pH 8.0, 10% methanol, boiled for 5 min at 95 ◦C, then cooled
on ice for 5 min. The sample was then treated with 5 mM dithiothreitol and incubated
at 37 ◦C for 1 h, then 14 mM iodoacetamide was added and the sample incubated in the
dark for 30 min at room temperature before adding trypsin (~1.8 µg) and incubating at
37 ◦C overnight. The samples were then lyophilized. The samples were then resuspended
in binding buffer (15 mM ammonium acetate, 85% acetonitrile, pH 3.5). This solution
was loaded onto a Cellulose/HILIC column, which was then washed three times with
10 µL of binding solution. Glycopeptides were eluted with 15 mM ammonium acetate, 10%
acetonitrile, pH 3.5 to collect three elution fractions (10 µL each).

2.11. Surface Plasmon Resonance

Rituximab was immobilized on a CM5 chip (Cytiva) as previously described in [35]
using a BiaCore T200 instrument (Cytiva). Increasing concentrations of GFP-FcγRIIIa
were applied to the chip surface and each concentration was continuously applied until
equilibrium was reached. Affinity constants were calculated using the T200 system software
after double normalization (first to the surface-deactivated reference channel and then to
a sample with zero concentration collected using the lane of interest) and a 1:1 binding
model with time zero = zero response units. Data were averaged from a 5 s window after
equilibrium was reached. Reported errors indicate errors of the curve fitting procedure.

2.12. Flow Cytometry for Fab Functionality with Raji B-Cells

Raji B-cells (5 × 105) were washed with 1× PBS. Antibody dilutions were prepared in
1× PBS + 1% FBS. The cells were spun down at 400 g for 5 min. The cells were blocked with
90 µL 1× PBS + 1% FBS + 10 µL human serum and incubated for 5 min on ice. Antibody
dilutions of the yeast-derived Rituximab and commercial Rituximab were added to the cells
as separate samples. The cells were incubated on ice for 1 h. The cells were centrifuged at
400× g for 5 min and resuspended in 100 µL of 1× PBS twice. This was followed by another
blocking step with human serum described above and the addition of 1 µg per sample
of rabbit anti-hIgG1 antibody (Target: Human IgG; Clone: Rabbit; RRID: AB_228410).
This incubation was carried out on ice for 30 min. The cells were centrifuged at 400× g
for 5 min twice and resuspended in 100 µL of 1× PBS twice. This was followed by another
blocking step with human serum described above followed by the addition of a secondary
PE-conjugated donkey antirabbit antibody (Target: Human IgG; Clone: Donkey: RRID:
AB_2563484). This incubation was carried out on ice for 30 min. The cells were centrifuged
at 400× g for 5 min and resuspended in 100 µL of 1× PBS twice. The samples were then
blocked with 1× PBS + 1% paraformaldehyde for 20 min at RT. The samples were then run
on the CytoFLEX and analyzed.

3. Results
3.1. IgG1 Fc with a Hydrolyzed N-Glycan Expressed on Yeast Binds GFP-FcγRIIIa

We integrated endoH into S. cerevisiae (EBY100) and fused DNA encoding a signal
peptide from the yeast protein disulfide isomerase (PDI) gene and a yeast ER retention
signal (HDEL) [36]. We selected the HO locus because integration at this site occurs with
high efficiency and negligible impact on cell growth [37]. EndoH expression in this strain is
controlled by the GAL1 promoter to minimize deleterious effects on cell growth. Unfortu-
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nately, this strain exhibited growth defects and inefficient N-glycan cleavage (Supplemental
Figure S1). It is possible that because EndoH cleaves all N-glycosylated yeast proteins,
growth was inhibited by off-target cleavage of glycans on proteins that are important
for proper cell function, therefore we pursued incorporating an IgG-specific N-glycan
hydrolase.

We integrated endoS2 into the yeast LEU2 locus [38]. This inserted construct likewise
targeted EndoS2 to the ER and included an ER retention tag, as described for EndoH, above
(Figure 2). We observed a shift in mobility of yeast surface displayed IgG1 Fc expressed in
the EBY100-(GAL1) EndoS2 comparable to the aglycosylated version of the same protein
(Figure 3E). This result suggests that endogenously produced EndoS2 efficiently cleaved
the Fc N-glycan. However, this strain showed low surface expression of IgG1 Fc and low
GFP-FcγRIIIa binding (Figure 3C,H). It is possible that utilizing the GAL1 promoter for
expressing both the EndoS2 and IgG1 Fc resulted in lowered expression of both proteins.

To overcome reduced expression, we next incorporated endoS2 with a constitutive
GPD promoter into the EBY100 strain and continued to express IgG1 Fc from pYD1 with
the GAL1 promoter. These promoters reportedly permitted high levels of simultaneous
expression [29]. The EBY100-(GPD) EndoS2 strain resulted in superior Fc surface expression
and GFP-FcγRIIIa surface staining (Figure 3D,I). Furthermore, we observed efficient N-
glycan cleavage (Figure 3J).
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3.2. IgG1 Fc with a Truncated N-Glycan Is Secreted by EBY100-(GPD) EndoS2

We attempted to extract IgG1 Fc to further validate the glycoform produced by the
EBY100-(GPD) EndoS2 strain. The Aga2p-Fc expressed from the pYD1-Fc plasmid is
anchored onto the yeast surface through disulfide bonds with the yeast cell wall protein
Aga1p [33]. We failed to break these bonds using dithiothreitol and recover a sufficient
amount of sample for analysis [39,40]. Furthermore, the Aga2p-fused IgG1 Fc appears as
two bands in SDS-PAGE with the upper band likely resulting from Aga2p O-glycosylation
(Figure 3C,F). As an alternative, we prepared a plasmid to secrete IgG1 Fc into the medium
by appending the engineered N-terminal app8 secretion factor in place of the Aga2p
fusion [41].

We purified IgG1 Fc secreted by both the EBY100 and EBY100-(GPD) EndoS2 strain
from the spent culture medium using Protein A chromatography [42]. Protein A, a cell wall
component of Streptococcus aureus, binds the IgG1 Fc domain [43]. The IgG1 Fc proteins
isolated from both yeast strains bound Protein A and were eluted using 100 mM glycine,
pH 3.0 (the single N-acetylglucosamine form is shown in Figures 4A and S2).

We next probed the secreted IgG1 Fc for the presence of oligomannose-type N-glycans
using a concanavalin A-sepharose resin. IgG1 Fc isolated from wildtype EBY100 cells is
expected to possess an oligomannose glycoform, and we observed binding of the majority
of this protein to the concanavalin A column (Figure 5A). A small amount of Coomassie
stained material is observed at a substantially lower molecular weight in the flow-through
fraction. This may represent a contaminating protein in the preparation or aglycosy-
lated Fc. Furthermore, we observed that the majority of the IgG1 Fc isolated from our
glycoengineered EBY100-(GPD) EndoS2 strain did not bind the concanavalin A column,
which is consistent with the EndoS2-catalyzed removal of the N-glycan leaving a single
N-acetylglucosamine residue (Figure 5B).
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3.3. Glycoengineered Rituximab Expressed with EBY100-(GPD) EndoS2

We next determined whether the EBY100-(GPD) EndoS2 strain would produce a
full-length glycoengineered antibody and serve as an alternative antibody expression
platform. Wong and coworkers created glycoengineered antibodies with glycoengineered
Pichia pastoris and utilized a bidirectional promoter to produce both heavy chain and light
chain from a single construct [44]. We adopted a similar approach using the pESC-TRP1
plasmid with a bidirectional GAL1-GAL10 promoter to express Rituximab (Figure 2). We
chose to use the GAL1 promoter for expressing the heavy chain based on the reported
stronger expression compared to GAL10 [45]. Similar to the IgG1 Fc expression construct,
we appended the app8 secretion factor at the N-termini of both the heavy chain and light
chain. The pESC-TRP1-app8RTXhc-app8RTXlc was transformed into the EBY100-(GPD)
EndoS2 strain. A positive colony was then grown and induced to produce full-length
Rituximab.

3.4. Purification of Full-Length Rituximab from the EBY100-(GPD) EndoS2 Strain

We purified full-length Rituximab from the spent medium of an induced yeast culture
using a Protein A column. Rituximab isolated from the EBY100-(GPD) EndoS2 strain
bound protein A, signifying that the antibody was properly folded, and eluted with
100 mM glycine, pH 3.0, as is expected for IgG1 (Figure 4C).

Yeast-expressed Rituximab eluted from a Superdex 200 column at 140 mL as shown
in Figure 4D. This retention time is between the peaks for catalase (206 kDa) and 3G8 (a
mouse IgG1; 145 kDa, Figure 4B,D) and is consistent with a heterotetrameric assembly
containing two heavy chains and two light chains with an expected molecular mass of
145 kDa. Additionally, we noted the presence of IgG1 Fc in the purified sample that is
likely the result of proteolysis during Rituximab expression and retained during the protein
A separation step (Figure 4D). We also observed some minor peaks in Rituximab likely
resulting from aggregation and proteolysis (Figure 4D). We recovered 0.24 mg of purified
Rituximab from a 500 mL culture at a yield of 0.48 mg/L, which was more than twice the
amount of Rituximab we were able to recover from our unmodified yeast strain (0.2 mg/L).

We characterized the purified yeast-expressed Rituximab by electrospray ionization
tandem mass spectrometry (Figure 6). The most predominant glycopeptide peak belonged
to the N297-containing tryptic peptide modified with a single N-acetylhexosamine residue.
An MS2 spectrum of this species identified individual peaks following collision-induced
degradation, including the loss of a single N-acetylhexosamine residue coincident with the
loss of N297, indicating N297 as the likely site of the carbohydrate addition (Figure 6B).
Based on comparing the relative intensity of MS1 peaks for the N297-containing species,
glycopeptides with a single N-acetylglucosamine (99.36%) appeared as the most abundant
form with lesser amounts of Man9 (0.04%), Man10 (0.29%), Man11 (0.24%), Man12 (0.06%)
and Man13 (0.01%; Figure 6A). Furthermore, we identified peptides covering 93.9 and 100%
of the heavy and light chain sequences, respectively, and found no spectra corresponding to
the app8 secretion tag on the light chain and 24 app8 peptides out of 1845 total for the heavy
chain, indicating a high level of app8 cleavage during antibody secretion (Supplemental
MSExcel worksheet). The high rate of EndoS2-catalyzed N-glycan cleavage determined
by MS is consistent with the high level of IgG1 Fc processing observed in SDS-PAGE and
concanavalin A binding (Figures 3 and 5). These results demonstrate that the endogenous
EndoS2 efficiently cleaved the N-glycan from Rituximab and IgG1 Fc.
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3.5. Functionality of Rituximab Isolated from EBY100-(GPD) EndoS2

We next assessed the functionality of the EBY100-(GPD) EndoS2 expressed Rituximab.
First, we analyzed binding to GFP-FcγRIIIa using surface plasmon resonance (SPR) by
immobilizing Rituximab to a chip and flowing over various amounts of GFP-FcγRIIIa
(Figure 6C). We determined a KD of 2.0 ± 0.5 µM which was slightly lower than the 5.8 µM
value previously reported for an identical glycoform of IgG1 Fc [27]. Rituximab with the
non-truncated yeast N-glycan shows ~4-fold greater affinity (Figure 6D), which is identical
to previous measurements of IgG1 Fc with an oligomannose N-glycan [27].

We next tested the ability of the EBY100-(GPD) EndoS2 expressed anti-CD20 Rituximab
to bind CD20-expressing Raji B-cells by incubating this antibody with Raji B-cells and
detecting the amount of Rituximab on the cell surface using flow cytometry. We saw a clear
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increase in anti-IgG staining following this treatment that was comparable to a commercial
Rituximab preparation, indicating both Rituximab antibodies efficiently bound Raji B cells
a ta concentration of 40 nM (Figure 7). Furthermore, we observed the same amount of
staining for both the commercial and yeast derived Rituximab at 400 nM (Supplemental
Figure S3) [46].

Antibodies 2021, 10, x FOR PEER REVIEW 11 of 15 
 

 

Figure 6. Yeast-expressed Rituximab composition and receptor binding. (A) Total ion current from 
ESI-MS spectra of trypsinized Rituximab expressed from the EBY100-(GPD) EndoS2 strain summed 
from 11–15 min; doubly charged ions corresponding to oligomannose N-glycoforms were not ob-
served. Isobaric ions were not distinguished, thus each cartoon represents multiple possible config-
urations. (B) ESI-MS/MS of the (1) GlcNAc glycopeptide from panel A showing a single GlcNAc 
residue at N297. Rituximab displaying either truncated (C) or yeast N-glycans (D) binding to high 
affinity FcγRIIIa (V158) variant as determined by surface plasmon resonance. 

3.5. Functionality of Rituximab Isolated from EBY100-(GPD) EndoS2 
We next assessed the functionality of the EBY100-(GPD) EndoS2 expressed Rituxi-

mab. First, we analyzed binding to GFP-FcγRIIIa using surface plasmon resonance (SPR) 
by immobilizing Rituximab to a chip and flowing over various amounts of GFP-FcγRIIIa 
(Figure 6C). We determined a KD of 2.0 ± 0.5 μM which was slightly lower than the 5.8 μM 
value previously reported for an identical glycoform of IgG1 Fc [27]. Rituximab with the 
non-truncated yeast N-glycan shows ~4-fold greater affinity (Figure 6D), which is identi-
cal to previous measurements of IgG1 Fc with an oligomannose N-glycan [27]. 

We next tested the ability of the EBY100-(GPD) EndoS2 expressed anti-CD20 Rituxi-
mab to bind CD20-expressing Raji B-cells by incubating this antibody with Raji B-cells and 
detecting the amount of Rituximab on the cell surface using flow cytometry. We saw a 
clear increase in anti-IgG staining following this treatment that was comparable to a com-
mercial Rituximab preparation, indicating both Rituximab antibodies efficiently bound 
Raji B cells a ta concentration of 40 nM (Figure 7). Furthermore, we observed the same 
amount of staining for both the commercial and yeast derived Rituximab at 400 nM (Sup-
plemental Figure S3) [46]. 

 
Figure 7. Binding of yeast-expressed Rituximab to Raji B cells. (A) Schematic diagram of the detection strategy. Flow 
cytometry analysis of Raji B cells incubated with the two detection antibodies shown in panel A, with or without commer-
cially sourced Rituximab (B) or EBY100-(GPD) EndoS2 expressed Rituximab(C). 

4. Discussion 
The IgG1 Fc N-glycan plays a crucial role in the interaction between IgG1 and 

FcγRIIIa. The IgG1 Fc N-glycan does not directly engage the receptor; however, it has been 
shown to stabilize the C’E loop that interacts with the receptor [27]. The IgG1 Fc N-glycan 
also forms contacts with aromatic amino acids on the Fc domain through CH-π bonds, 
providing further stabilization [27]. The composition of the N-glycan has also been shown 
to influence FcγRIIIa binding affinity [47,48]. Removal of this N-glycan abolishes receptor 
binding; however, our group demonstrated that trimming the Fc N-glycan to a single N-
acetylglucosamine residue still allows for receptor engagement (10-fold lower affinity 
compared to wildtype interaction) [27]. The efficacy of this truncated glycoform has like-
wise been shown through cell-based assays [49]. Therefore, we sought to create a yeast 

Figure 7. Binding of yeast-expressed Rituximab to Raji B cells. (A) Schematic diagram of the detection strategy. Flow cytom-
etry analysis of Raji B cells incubated with the two detection antibodies shown in panel A, with or without commercially
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4. Discussion

The IgG1 Fc N-glycan plays a crucial role in the interaction between IgG1 and FcγRIIIa.
The IgG1 Fc N-glycan does not directly engage the receptor; however, it has been shown
to stabilize the C’E loop that interacts with the receptor [27]. The IgG1 Fc N-glycan
also forms contacts with aromatic amino acids on the Fc domain through CH-π bonds,
providing further stabilization [27]. The composition of the N-glycan has also been shown
to influence FcγRIIIa binding affinity [47,48]. Removal of this N-glycan abolishes receptor
binding; however, our group demonstrated that trimming the Fc N-glycan to a single
N-acetylglucosamine residue still allows for receptor engagement (10-fold lower affinity
compared to wildtype interaction) [27]. The efficacy of this truncated glycoform has
likewise been shown through cell-based assays [49]. Therefore, we sought to create a yeast
strain that could produce antibodies with the single N-acetylglucosamine glycoform to
achieve the two goals of (i) preserving FcγRIIIa binding and (ii) removing the oligomannose
glycoforms that promote clearance.

One approach to creating this strain would be to knockout ER and Golgi resident
mannosyltransferases to trim down the N-glycan. However, such knockout strains have
shown defects in morphology and several growth defects that are expected to reduce
commercial viability [50]. Therefore, we pursued a targeted approach that would allow
us to specifically trim the IgG1 Fc N-glycan without causing growth defects in yeast. We
achieved this through the creation of the EBY100-(GPD) EndoS2 strain. In this strain, the
use of EndoS2 specifically cleaves the N-glycan from Fc and eliminates off-target effects.
We observed a high level of N-glycan processing (>90%) in Rituximab produced by this
strain through mass spectrometry experiments. This result surmounts previous efforts that
report substantial difficulty glycoengineering S. cerevisiae [21].

The EBY100-(GPD) EndoS2 strain also proved effective to express full-length func-
tional Rituximab. Previously, full-length antibodies were produced in S. cerevisiae at very
low levels of 50 µg/L [51]. Work performed by Wittrup and co-workers lead to the
development of the app8 secretion tag that has allowed for enhancement in antibody
production [41]. Utilizing this secretion tag, we were able to recover ~500 µg/L of highly
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processed Rituximab with a high level of processing and complete removal of the app8 se-
cretion tag. Though it is unlikely that this yeast platform will affect commercial therapeutic
antibody manufacture that utilizes highly optimized CHO cells and boasts yields > 2 g/L,
there is substantial potential to improve yield in this strain with further strain engineering
and promote laboratory-scale antibody development efforts [11,52].

Antibodies expressed with the EBY100-(GPD) EndoS2 strain are likewise ideal sub-
strates for post-purification glycan remodeling. Novel transglycosylase EndoS and EndoS2
variants are available for modification of antibodies and require antibodies with an N-
glycan consisting of only a single N-acetylglucosamine residue and a synthetic sugar
donor [53,54]. These reactions boast a high level of efficiency [55]. One antibody N-glycan
remodeling approach entailed a combination of glycoengineered yeast strains and chemoen-
zymatic reactions to engineer Herceptin with a complex-type N-glycoform. This method
required producing Herceptin in knock-out Pichia pastoris strains, followed by the removal
of the N-glycan using an endoglycosidase and then adding the N-glycan back using transg-
lycosylase EndoS2 variants [44]. The EBY100-(GPD) EndoS2 strain can be used to replace
separate expression and in vitro truncation steps and reduce cost considerably due to its
high efficiency of N-glycan cleavage. The antibody produced by the EBY100-(GDP) EndoS2
strain can then be remodeled following purification to have the desired glycoform using
any of these transglycosylase enzyme variants.

In addition to antibody expression, the EBY100-(GPD) EndoS2 strain displays glyco-
engineered Fc on the yeast surface, can be used to screen yeast surface display libraries,
and offers an inexpensive alternative platform to produce glycoengineered antibodies.

In summary, we report the development and characterization of a novel S. cerevisiae
that efficiently expresses antibodies and antibody fragments that contain a truncated N297
glycan.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antib10040038/s1, Figure S1: Western blot showing Aga2p-Fc fusion mobility in the EBY100-
(GAL1)-Endo H strain compared to an aglycosylated control (T299A), Figure S2: Fc purification using
Protein A starting with protein expressed from (A) the unmodified yeast strain EBY100 and (B) the
glycoengineered yeast strain EBY100-(GPD)-EndoS2. Smearing in E2 in panel A likely represents
extensive N-glycan processing, Figure S3: Rituximab binding to Raji B cells (A) 400 nM commercial
Rituximab (B) 400 nM Rituximab from the EBY100-(GPD) EndoS2 strain, Table S1: List of primers
used for strain creation.
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