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Pseudouridine synthase binds to uridine sites and catalyzes the conversion of uridine to pseudouridine
(W). This binding takes place in a specific context and in the conformation of nucleotides. Most
machine-learning methods for W site classification use nucleotide frequency as a feature, which may
not fully depict the relevant conformation around a W site. Using the power of deep learning and raw
sequence, as well as secondary structure features, our tool MU-PseUDeep is designed to capture both
the sequence and secondary structure context, which inputs the raw RNA sequence and the predicted
secondary structure to two sets of convolutional neural networks. It has shown considerable improve-
ment in W site prediction over existing tools, XG-PseU, PseUI, and iRNA-PseU for both balanced and
imbalanced datasets. To the best of our knowledge, this is the most accurate tool for W site prediction.
We also used MU-PseUDeep to scan the human transcriptome, which shows that the genes with pre-
dictedW sites are enriched in nucleotide and protein binding, as well as in neurodegeneration pathways.
The tool is open source, available at https://github.com/smk5g5/MU-PseUDeep.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Pseudouridine (W) is one of the most abundant RNA modifica-
tions in a cell [1]. W is also known as the fifth nucleotide base of
RNA [2]. It results from the isomerization of a uridine base. This
process of isomerization is a post-transcriptional mechanism
known as pseudouridylation [3,4], which is catalyzed by pseu-
douridine synthases (PUS) [5–8]. W has significant functional and
disease implications. For some types of cancers,W provides impor-
tant biomarkers [9–13]. The sequencing method (Pseudo-seq) can
identify W sites on a large scale at a single nucleotide resolution,
but it requires a high sequencing depth as well as multiple biolog-
ical replicates in order to do so accurately; thus, Pseudo-seq can be
very costly [14,15]. A low-cost alternative is predicting W sites
using machine learning. Most machine learning methods devel-
oped so far use traditional approaches like support vector machi-
nes (SVM). For instance, PPUS, an SVM based method uses
nucleotides aroundW as features [16]. In contrast, iRNA-PseU uses
the pseudo-nucleotide composition, including a combination of
physicochemical properties of nucleotides and nucleotide densities
as features for SVM [17]. Another method, pseudo-uridine (W)
identification (PseUI) uses five different kinds of features including
nucleotide composition (NC), dinucleotide composition (DC),
pseudo dinucleotide composition (pseDNC), position-specific
nucleotide composition (PSNP) and position-specific dinucleotide
propensity (PSDP), followed by a sequential forward selection
strategy to select features for SVM classification of mRNA frag-
ments [18]. While these methods have reasonable performance,
there is considerable room for improvement. These tools do not
benefit from the latest deep learning techniques, which pose sev-
eral advantages in comparison to traditional machine learning
methods. First, deep learning has been demonstrated to signifi-
cantly outperform traditional machine-learning methods in multi-
ple domains. Secondly, deep learning reduces the need for feature
engineering. Lately, there has been an upsurge in the development
of deep learning methods in genomics [19]. Some of these predic-
tion methods have been in the area of RNA modification prediction
[20–22].

We have developed a deep learning convolutional neural net-
work for the identification of W sites, called MU-PseUDeep. Fig. 1
summarizes the deep learning architecture of MU-PseUDeep used
for the classification of W sites. Unlike previous methods employ-
ing nucleotide composition and physico-chemical properties, the
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Fig. 1. Deep learning architecture for MU-PseUDeep. There are two input layers for sequence and secondary structure. Both layers are one-of-K encoding of a 51-base pair
RNA fragment and its secondary structure context. Feature maps for each encoding are generated using two convolutional layers for each of the two encodings. Feature maps
are then concatenated and fed into the 512-neuron dense layer. The Final layer is a 2-neuron dense layer with a softmax binary output.
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novelty in this work is to use the secondary structure context of an
mRNA fragment as an input feature in addition to the sequence for
the input to our deep learning model. W modification plays an
important role in stabilizing the secondary structure of RNA.
Ribonucleoproteins depend strongly on the structural context of
RNA when they catalyze the isomerization of uridine to W [23].
Thus, it is reasonable to hypothesize that the secondary structure
is crucial for the identification ofW sites. To the best of our knowl-
edge, secondary structure context has never been used for this
problem, although deep learning approaches do exist, which utilize
a secondary structure context to predict RNA-protein sequence and
structure binding [18]. By including secondary structure features,
we significantly improved the prediction of W sites in comparison
to other available methods. Very recently, a new study explored a
deep learning approach to predict W sites called iPseU-CNN [24].
Since no source code or webserver was available for this approach,
a direct comparison is impossible; however, we have compared our
method with a sequence-only CNN, the architecture of which clo-
sely resembles that of iPseU-CNN. Compared to the sequence-only
CNN which only uses RNA sequence fragment encoded with One-
of-K encoding, our method which combines both sequence and
secondary structure information shows significant improvements.
We have made predictions using the MU-PseUDeep model for
human, mouse and yeast datasets. We have also identified poten-
tial W sites by conducting a transcriptome-wide prediction of a
human transcriptome at >0.99 precision threshold, to explore the
functional importance of W in mRNA. These predicted W sites
may provide useful hypotheses for experimental validations.
2. Materials and methods

2.1. Data collection and pre-processing

TheW site information was downloaded from RMBase v2.0 [23]
for all three species, namely human, mouse, and yeast. For each of
the three species, we extracted the W and surrounding 25 bases
upstream and downstream nucleotides using BEDTools [24] with
reference files of three species, hg19 (human), mm10 (mouse),
and sacCer3 (yeast). To create the negative dataset, we collected
those regions of RNA that did not contain any experimentally val-
idatedW sites. Since in nature,W sites are relatively rare, the num-
ber of negative samples in our data is 10 times larger than the
number of positive samples, which is a classical imbalance
machine learning problem. We did a 10-fold stratified split of pos-
itive and negative RNA samples into an 80:20 ratio for training and
testing data to maintain the same class ratio in training and testing
sets using pandas and Scikit-learn [25]. We reduced the sequence
identity between training and testing sets for each fold using cd-
hit-est-2d with a minimum sequence identity threshold (0.8) (al-
lowed by cd-hit for RNA sequence with a word length of 4) [26].
To further reduce the sequence identity, we globally aligned the
remaining training set against the test set using the Needleman-
Wunsch algorithm and removed the sequences from the training
set that had >60% sequence identity with the test set. The high
sequence identity was further removed within the test set using
cd-hit-est at the above-defined sequence identity threshold and
word size.

For the processed sequence data, the abstract secondary struc-
ture dot-bracket notation was generated using the RNAshapes
package [27,28]. The dot-bracket notation was further converted

into secondary structure context using EDeN (https://

github.com/fabriziocosta/EDeN), a neighborhood subgraph pair-
wise distance kernel-based method for explicit feature representa-
tion of graphs. The RNA secondary structure context is represented
by six generic sub-shapes, namely Stem (S), multi-loops (M), hair-
pins (H), internal loop (I), dangling start (F), and dangling end (T).
Each 51 bp RNA fragment was coded into a secondary structure
context, where each nucleotide was coded into one of the above-
mentioned sub shapes. Sequence data was converted into a one-
of-K encoding binary matrix of size 51 � 4, where 51 is the length
of the fragment of 4 nucleotides. Similarly, the secondary structure
was encoded into a one-of-K encoding binary matrix of size 51 � 6,
where 51 is the length of the fragment with six sub-shapes of the
RNA fragment.

https://github.com/fabriziocosta/EDeN
https://github.com/fabriziocosta/EDeN


S.M. Khan et al. / Computational and Structural Biotechnology Journal 18 (2020) 1877–1883 1879
2.2. Deep learning architecture of MU-PseUDeep

For each input (sequence and secondary structure), a pair of 1D
CNN was used. The first layer of sequence input (seq_1) and sec-
ondary structure input (sec_1) both have a filter size of 5 and a ker-
nel size of 10. Similarly, the second 1D CNN layer for both sequence
input (seq_2) and secondary structure input (sec_2) has a filter size
of 9 and a kernel size of 4. The kernel initializer for each 1D CNN
layer was ‘glorot_normal.’ The kernel regularizer weight for each
layer (rounded to four decimal places) followed 0.0321 (seq_1),
0.01608 (seq_2), 0.00109 (sec_1) and 0.0340 (sec_2). Dropout rate
for each layer was as follows: 66.5% (seq_1), 3.8% (seq_2), 74.5%
(sec_1) and 36.9% (sec_2). All layers had a ‘PRelu’ activation func-
tion. All layers were concatenated and fed into the dense layer with
a ‘softplus’ activation function. A stochastic gradient was used as
the optimization algorithm with a learning rate of 0.0137. A binary
cross-entropy was used as a loss function with an early-stop
patience of 20 and a model checkpoint serving as a callback for fit-
ting the model. The batch size was 32 and the number of epochs
was set to 500. The total number of trainable parameters in the
network was 661,118. The model was implemented in Keras ver-
sion 2.2.2 with a Tensorflow (1.10.1) backend [29].

2.3. Hyperparameter optimization

A hyperparameter optimization of various hyperparameters

was carried out using Hyperas (https://github.com/max-

pumperla/hyperas), a convenience wrapper for Hyperopt (https://

github.com/hyperopt/hyperopt), and a distributed asynchronous
hyperparameter optimization library. A tree-structured Parzen
estimator approach was used to optimize the models by maximiz-
ing each model’s F1-score on validation data for a single fold [30].
We optimized several hyperparameters of our deep learning archi-
tecture including ‘‘dropout-rate,” ‘‘kernel regularizer weight,” ‘‘op-
timization algorithm,” and ‘‘learning rate for the optimizer.” The
performance of the top 10 hyperparameter-optimized models on
our test data is shown in Supplementary Fig. S1.

2.4. Bootstrapping

A bootstrapping approach was applied, like the one used by
Wang et al. (2017). In this case, we divided our negative samples
into N bins. Each bin was the same size as the number of samples
in the positive class and was iterated when training the model with
the positive class. The final results were calculated by averaging
the results from each iteration of every fold [31–33].

2.5. Transfer learning

A bootstrapped hyperparameter optimized human model was
further finetuned for transfer learning on yeast and mouse data.
All layers were kept fixed/untrainable except for each of the two
1D CNN layers and dense 512 neuron layers. The learning rate of
the stochastic gradient descent algorithm was reduced from
0.0137 to 0.0086.

2.6. Human transcriptome scanning

The human transcriptome was obtained using BedTools from
the hg19 genome and gencode gtf file. The coding sequences were
converted from DNA to RNA based on their strand. The positive
pseudouridine sites from RMBase were masked with BedTools
along with the 25 bases flanking upstream and downstream. Run-
ning windows of 51 base pair fragments were generated using Seq-
Kit [34]. Only those fragments with uridine at their center were
considered for further prediction. A precision threshold of >0.99
was used to predict whether the uridine site is a potential W site.
The GO, pathway, and disease enrichment was performed for genes
containing the predicted sites using clusterProfiler [35]. Network
construction was based on GO semantic similarity with each edge
representing the semantic similarity score between two genes. The
GO semantic similarity scores were calculated using GOSemSim
[36], and the network construction was done using Cytoscape
[37] and a ClueGO plugin [38]. Motif visualization was based on
ggseqlogo [39].
3. Results

We compared MU-PseUDeep, which used both sequence and
secondary structure context as features, with the one using the
sequence-only context (a deep learning model which closely
resembles iPseU-CNN) or only the secondary structure context as
input. The results of MU-PseUDeep indicate a significant improve-
ment in performance in comparison to either only-sequence CNN
or only secondary structure CNN. The improvement was by 3–4%
for accuracy and F1 and up to 9% for sensitivity in the balanced
dataset in comparison to sequence CNN (which had proved to be
better than a secondary CNN structure). Similarly, for the imbal-
anced dataset, our combined model outperformed the sequence
CNN with a 2% accuracy. The improvement was also 2% for F1,
up to 4% for MCC, and up to almost 7% for sensitivity as shown
in Table S1. Fig. 2 shows the Precision-recall curves of the opti-
mized models for all three species for both balanced and imbal-
anced test data.
3.1. Comparing MU-PseUDeep with other methods

Our MU-PseUDeep method with both sequence and secondary
structure context features was further compared with the pub-
lished W site prediction methods namely PseUI (He et al., 2018),
iRNA-PseU (Chen et al., 2016) and XG-PseU (Liu et. al., 2019) for
human, mouse, and yeast datasets, respectively. For each species,
the average 10-fold comparison results are shown in Table 1 for
both balanced and imbalanced datasets. For balanced human data,
the performance metrics of our model in comparison to PseUI [18]
improved on average by 7% for accuracy, 10% for F1 score, 46% for
MCC, 5% for sensitivity, and 19% for specificity. Similarly, in com-
parison to iRNA-PseU [17], the performance metrics of our model
improved by 8% for accuracy, 14% for F1, 53% for MCC, and 13%
for sensitivity and specificity. Likewise for XG-PseU [40], the accu-
racy improved by 11%, F1 score by 14%, MCC by 69.5%, sensitivity
by 9.2%, and specificity by 22.9%. For the imbalanced data, the per-
formance metrics improved in comparison to PseUI by 30% for
accuracy, 41% for F1, 64% for MCC, 5% for sensitivity, and 18% for
specificity. In comparison to iRNA-PseU, our method improved by
24% for accuracy, 37% for F1, 61% for MCC, 13% for sensitivity,
and 11% for specificity as shown in Table 1 and Fig. 3. Correspond-
ingly, in comparison to XG-PSeU, we saw improvements in accu-
racy by 35.6%, F1 score by 54.2%, MCC score by around 94.2%,
and specificity by 23.4%. Similar improvements were noticed for
both the mouse and yeast data as well, as shown in Table 1 and Fig-
ures S2–S6. The performance of the MU-PseUDeep model was fur-
ther assessed by visualizing t-SNE plots of the feature map of the
deep learning model. Fig. 4(a) and (b) shows a good separation
between positive and negative classes. Similar results were
observed for mouse and yeast datasets as shown in Figs. S7 and
S8. We clustered the last feature map of our deep learning model
on the whole positive dataset as shown in Fig. S9. Subtle differ-
ences can be seen between clusters of fragments for nucleotides
surrounding the W site within the positive class as shown in
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Fig. 2. Precision recall Curves. Mean Precision recall curves over 10 folds for (a) balanced and (b) imbalanced data for human, yeast and mouse, respectively.

Table 1
Prediction performance of MU-PseUDeep against other available methods.

Data type Species Method Accuracy F1 MCC Sensitivity Specificity

Balanced Human MU-PseUDeep 0.726 ± 0.0203 0.745 ± 0.041 0.524 ± 0.043 0.709 ± 0.061 0.810 ± 0.0203
PSEUI 0.678 ± 0.017 0.677 ± 0.018 0.357 ± 0.034 0.675 ± 0.026 0.681 ± 0.0250
iRNA-PseU 0.670 ± 0.017 0.654 ± 0.019 0.341 ± 0.034 0.625 ± 0.024 0.715 ± 0.0205
XG-PseU 0.654 ± 0.013 0.653 ± 0.012 0.309 ± 0.027 0.649 ± 0.019 0.659 ± 0.028

Imbalanced MU-PseUDeep 0.894 ± 0.0108 0.415 ± 0.028 0.369 ± 0.029 0.709 ± 0.0617 0.815 ± 0.0275
PSEUI 0.685 ± 0.007 0.293 ± 0.015 0.225 ± 0.018 0.675 ± 0.0263 0.686 ± 0.0076
iRNA-PseU 0.720 ± 0.0074 0.301 ± 0.0131 0.228 ± 0.0154 0.625 ± 0.0250 0.730 ± 0.0087
XG-PseU 0.659 ± 0.008 0.269 ± 0.012 0.190 ± 0.012 0.649 ± 0.019 0.660 ± 0.009

Balanced Mouse MU-PseUDeep 0.760 ± 0.0306 0.771 ± 0.0338 0.537 ± 0.0524 0.800 ± 0.0791 0.730 ± 0.0826
PSEUI 0.737 ± 0.0135 0.748 ± 0.0102 0.477 ± 0.0259 0.779 ± 0.0114 0.696 ± 0.0291
iRNA-PseU 0.713 ± 0.0208 0.733 ± 0.0160 0.432 ± 0.0398 0.788 ± 0.0152 0.638 ± 0.0404
XG-PseU 0.726 ± 0.009 0.742 ± 0.008 0.456 ± 0.018 0.788 ± 0.013 0.664 ± 0.021

Imbalanced MU-PseUDeep 0.854 ± 0.0191 0.4355 ± 0.0355 0.378 ± 0.0307 0.800 ± 0.0791 0.734 ± 0.0651
PSEUI 0.704 ± 0.0060 0.3914 ± 0.0155 0.3218 ± 0.0135 0.779 ± 0.0113 0.6934 ± 0.006
iRNA-PseU 0.662 ± 0.0078 0.363 ± 0.0154 0.288 ± 0.0152 0.788 ± 0.0159 0.644 ± 0.007
XG-PseU 0.683 ± 0.007 0.377 ± 0.017 0.306 ± 0.014 0.788 ± 0.013 0.668 ± 0.007

Balanced Yeast MU-PseUDeep 0.768 ± 0.0256 0.762 ± 0.0296 0.546 ± 0.036 0.742 ± 0.0667 0.798 ± 0.0560
PSEUI 0.716 ± 0.0192 0.732 ± 0.0167 0.436 ± 0.0378 0.777 ± 0.0234 0.655 ± 0.0355
iRNA-PseU 0.742 ± 0.0202 0.750 ± 0.0178 0.485 ± 0.04007 0.775 ± 0.0137 0.708 ± 0.0295
XG-PseU 0.749 ± 0.0206 0.755 ± 0.0194 0.499 ± 0.0412 0.773 ± 0.0262 0.724 ± 0.0355

Imbalanced MU-PseUDeep 0.869 ± 0.0193 0.397 ± 0.0389 0.360 ± 0.0302 0.742 ± 0.0667 0.788 ± 0.0525
PSEUI 0.665 ± 0.0080 0.299 ± 0.0175 0.255 ± 0.0149 0.776 ± 0.0235 0.654 ± 0.0104
iRNA-PseU 0.707 ± 0.0099 0.327 ± 0.0193 0.289 ± 0.0162 0.774 ± 0.0129 0.700 ± 0.0104
XG-PseU 0.714 ± 0.0106 0.332 ± 0.0208 0.294 ± 0.0219 0.773 ± 0.0262 0.708 ± 0.0103

Fig. 3. Performance Comparison. This deep learning model was compared with three available methods forW site classification over various performance metrics. The deep
learning model performance shows significant improvements over other methods with respect to the various performance metrics for both (a) balanced data and (b)
imbalanced data.
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Fig. 4. t-SNE plots. Feature map of the last layer of deep learning network. (a) shows the t-SNE plot, which represents the model’s classification efficacy in separating the
positive (green) and negative (blue) classes on the balanced test data and (b) the t-SNE plot, which represents the last feature map of the deep learning network on the
imbalanced test data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Positive class sequence logos. Positive class sequences were clustered based on the output of the last feature map of deep learning model into 5 clusters using k-means
clustering. Only the 10 bases upstream and downstream ofW are shown where index 0 is the W site. In the above sequence logo figure, the y-axis represents the entropy or
Bits which represent the total information content for a particular position depending on the size of the logos.
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Fig. 5, and Figs. S10 and S11 for human, mouse and yeast, respec-
tively. Furthermore, using secondary structure context, we
improved the sensitivity of our model.

3.2. Identification of W sites in human transcriptome

We applied MU-PseUDeep to scan the protein-coding genes in
the human transcriptome, which identified 2441 genes with one
or more predicted W site at the >0.99 precision threshold (details
about genomic region can be found in the supplemental Excel file,
‘‘Supplemental_table2.csv”). Among them, 284 genes already had
one or more known W site as documented in the RMBase. Func-
tional enrichment of all 2441 genes indicated a few interesting cat-
egories, namely ‘guanyl-nucleotide exchange factor activity,’ ‘DNA-
binding,’ ‘Protein-binding,’ as shown in Fig. 6. Likewise, the KEGG
pathway enrichment against the whole gene-set background
resulted in several enriched pathways namely ‘Cushing syndrome,’
‘cortisol synthesis,’ and ‘Hippo signaling pathway.’ Network visual-
ization of some of the most functionally similar genes based on GO
semantic similarity score >0.9 indicates how some of the genes
which contain known as well as predictedW sites are strongly con-
nected with the ones which have one or more predicted W site.
Some of these genes belong to a specific functional/pathway cate-
gory as shown in Fig. 5, and Supplementary Figs. S12 and S13.



Fig. 6. Pathway enrichment of predictedW site containing genes. After transcriptome scan the genes containing one or moreW sites were examined for gene enrichment in
pathways, GO ontology and disease enrichment (Fig. S12) (a) the KEGG pathway enrichment of genes containing one or more predictedW sites at >0.99 prediction threshold
and (b) gene ontology (GO) molecular function enrichment of genes containing one or more predicted W sites.
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Some of these genes are enriched in signaling pathways that have
potentially an important role to play in brain functions. Our predic-
tion results justify our hypothesis of the potential importance of
RNA secondary structure that is critical for PUS (pseudouridine
synthase) to successfully catalyze the Pseudouridylation reaction.

4. Discussion and conclusion

Our transcriptome scanning results indicate how most genes
enriched for predictedW sites have a role in nucleotide and protein
binding. In addition, enrichment of these genes in certain cancer
pathways, cholinergic pathways, and calcium and potassium gated
ion channel activity implies their potential involvement in some
types of cancers as well as brain disorders, which has already been
demonstrated for W in t-RNAs and r-RNAs.

Literature mining for W along with any of the PubMed search
terms related to enriched pathways, diseases, and molecular func-
tions, as well as biological components and cellular compartments
revealed some interesting relationships between W and insulin
secretion [41]. One of the enriched molecular function terms is
the ‘‘guanyl-nucleotide exchange factor” activity. It is known that
W and other modified ribonucleosides play an important role in
inter-nucleotide bond formation by means of guanyl-specific
ribonucleases [42]. W is also known to bind protein phosphatase
in some bacterial species [43–45]. Previous research has also indi-
cated the importance of W in regulating neuronal functions [46],
which is corroborated by the enrichment of biological processes
shown in Fig. S12(a) and (b). Disease gene network enrichment
articles have shown a relationship of W to brain disorders as
shown in Fig. S12(c), which is consistent with an earlier study sug-
gesting that W has a role in mental retardation [12]. Other evi-
dence of W’s role in neural disorders is by elevated levels of W in
the urine of mild to moderate-severe Alzheimer patients [47].
Pseudouridylation has also been linked to high oxidative stress,
which is known to be one of the risk factors for increased neurode-
generation [48]. W modification has also been linked to myotonic
dystrophy [49], a type of genetic neuromuscular disease, which is
associated with intellectual disability—another enriched term from
the disease gene network database for our list of genes containing
putative W sites.

This is perhaps the only method that utilizes RNA secondary
structure context along with sequence as featured inW site predic-
tion using a deep learning architecture. We significantly improved
upon the performance of existing methods by incorporating both
secondary structure and sequence information. Our method has
shown considerable improvement in terms of accuracy, F1 score,
MCC, sensitivity, and specificity for both balanced and imbalanced
datasets over the existing tools including PseUI and iRNA-PseU.
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