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Transcription factors (TFs) are key mediators that propagate extracellular and intracellular signals through to changes in

gene expression profiles. However, the rules by which promoters decode the amount of active TF into target gene expres-

sion are not well understood. To determine the mapping between promoter DNA sequence, TF concentration, and gene

expression output, we have conducted in budding yeast a large-scale measurement of the activity of thousands of designed

promoters at six different levels of TF. We observe that maximum promoter activity is determined by TF concentration and

not by the number of binding sites. Surprisingly, the addition of an activator site often reduces expression. A thermody-

namic model that incorporates competition between neighboring binding sites for a local pool of TF molecules explains this

behavior and accurately predicts both absolute expression and the amount by which addition of a site increases or reduces

expression. Taken together, our findings support a model in which neighboring binding sites interact competitively when

TF is limiting but otherwise act additively.

[Supplemental material is available for this article.]

Cells respond to internal and external changes by controlling
their gene expression programs. A major mechanism by which
this is achieved is by modulating the activity of transcription fac-
tors (TFs) that bind to specific sites in gene promoters where
they activate or repress transcription (Struhl 1995). For example,
in the budding yeast Saccharomyces cerevisiae, almost half of the ge-
nome changes expression in response to amino acid starvation. A
single transcription factor, Gcn4, is responsible for the activation
of over 500 of these genes (Natarajan et al. 2001). While transcrip-
tome and chromatin immunoprecipitation (ChIP) studies are
useful for understanding the wiring of these large regulatory net-
works, they are not informative about how the quantitative rela-
tionship between TF and target gene expression is encoded in
the DNA. It is still not well understood how promoter architecture
determines how each target of a TF will respond to changes in the
concentration of active TF ([TF]). Furthermore, many targets of the
same transcription factor are expressed at different levels in the ab-
sence of that TF, and the fold-induction of the target is largely in-
dependent of its expression at low or high [TF] (Carey et al. 2013;
Rajkumar et al. 2013). However, the molecular mechanisms that
enable this decoupling are largely unknown.

In order to understand how promoters encode the function
that maps changes in the amount of active TF to changes in tran-
scriptional output, wemeasured the dose response curves for 6500
synthetically designed promoters. We have used a synthetic ap-
proach (Sharon et al. 2012) in which pairs of promoters differ by
a single regulatory element. This is in contrast to native promoters
that have many differences between them, preventing systematic
investigation of the effect of individual DNA sequence elements
on expression response.

Results

Promoter DNA sequence can encode a wide range of

transcriptional responses to changes in the amount of active TF

To systematically measure how transcriptional responses are en-
coded in promoter DNA sequence, we generated a novel data set
in which wemeasured the activity of 6500 designed promoters us-
ing a fluorescence reporter (Sharon et al. 2012) in six growthmedia
that each differ in their concentration of amino acids ([AA])
(Supplemental Data 16, 17; see Methods for details). The majority
of these promoters contain binding sites for Gcn4, Leu3,Met31, or
Bas1—TFs involved in amino acid biosynthesis. At high [AA], the
TFs Gcn4, Bas1, Leu3, and Met31 are mostly inactive (Struhl
1992). As [AA] decreases, the concentration of the active form of
these TFs increases (their expression and/or ability to activate
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transcription increases), and their targets increase in expression
(Gasch et al. 2000). For these four TFs, the concentration of active
TF molecules ([TF]) increases gradually in response to decreasing
[AA] (Supplemental Fig. 1; Ljungdahl and Daignan-Fornier
2012). The combinatorial fashion in which TF binding site type,
number, affinity, position, and accessibility vary in the designed
promoter set enables us to systematically investigate the mapping
between promoter DNA sequence, [TF], and the induced expres-
sion (Fig. 1A; see Methods for details).

The measurements were carried out using our previously de-
scribed method that involves FACS sorting and deep sequencing
of a barcoded pooled promoter library (Sharon et al. 2012, 2014).
Briefly, uniquely barcoded promoters that drive a YFP reporter
are FACS sorted into 12 bins of expression that subsequently re-
ceive an expression-bin barcode. Deep sequencing thus results in
reads that contain both a sequence barcode and an expression bar-
code. A computational analysis of these reads gives, for each pro-
moter and growth condition, an expression distribution, from
which themean is extracted, resulting in 6500 highly reproducible
(Supplemental Fig. 2) dose-response curves (Fig. 1B). Our promot-
ers encode a wide range of responses with a general trend in which
more TF binding sites give a greater dynamic range between low
and high [AA] (Fig. 1B). We observe that some promoter sequence
changes (e.g., addition of a polyT) (Fig. 1C) affect expression inde-
pendent of [AA], whereas others (e.g., addition of Gcn4 binding
sites) (Fig. 1C) affect expression in a manner that depends on
[AA]. We refer to the former as (active) [TF]-independent expres-
sion change, and the latter as [TF]-dependent expression change.

Decoupled [TF]-dependent and [TF]-independent expression

In order to distinguish between promoter sequence features that
affect expression in a [TF]-dependentmanner and those that affect
expression in a [TF]-independent manner, we compare expression
at high and low [AA] (seeMethods) for promoters grouped by DNA
sequence features. We find that the number of Gcn4 binding sites
affects expression in a TF-dependentmanner: Adding binding sites
results, on average, in little increase in expression at high [AA] but a
large increase at low [AA] (Fig. 2A,D), and thus an increase in the
promoter’s dynamic range (Fig. 2E). The same results are observed
for increasing the affinity of the Gcn4 binding site: Increasing the

affinity results in slightly higher expression at high [AA], much
higher expression at low [AA], and an overall increase in the dy-
namic range of the promoter (Fig. 2B,F–H). Thus, both the affinity
and number of Gcn4 sites affect a promoter’s expression in a man-
ner that depends on the [TF]. In contrast, adding an additional
polyT nucleosome disfavoring sequence results in the same fold-
change in expression at low and high [AA] and no change in the
dynamic range of the promoter (Fig. 2C,I–K). Adding a binding
site for a repressor, changing the position of the binding site, or
changing the promoter sequence context to a context with a dif-
ferent predicted nucleosome occupancy also results in no change
in the dynamic range (Supplemental Fig. 3). Thus, altering the
nucleosome occupancy results in a [TF]-independent change in
expression.

Taken together, these results show that sequence-mediated
expression changes affect the dynamic range of expression when
they change binding site affinity or number but do notmeasurably
change binding site accessibility, and that both the TF-dependent
and -independent behavior of promoters can be tuned separately.

Mutations inside binding sites affect expression in a TF-dependent

manner

While it is intriguing that addition or removal of entire promoter
sequence elements can alter expression either in a [TF]-dependent
or -independent manner, we wondered if the same independent
control could be achieved by single point mutations that are
more readily available in an evolutionary context. To determine
this, we examined a set of 21 3-bp scanningmutationsmade every
3 bp across the native HIS3 promoter. We find that 19 of these af-
fect expression in a TF-independent manner (t-test, P = 0.83) and
that mutations that increase the predicted nucleosome occupancy
over the TATA box have lower expression (Pearson R =−0.66, P =
9 × 10−4). Two of the mutations, which fall within the native
Gcn4 binding site, appeared to effectively remove response to
[AA] change (Supplemental Fig. 14).

In addition, we find that systematically mutating the Gcn4
binding site results in a change in dynamic range that is correlat-
ed with PSSM score (Supplemental Figs. 4, 14). We observe a rel-
atively small increase in expression at high [AA] (Pearson R = 0.20,

Figure 1. Measurements of TF concentration-dependent expression for thousands of designed promoters. (A) Schematic depiction of the experimental
design. A pooled library of 6500 designed promoters was transformed into yeast, and expression levels of all strains in the pooled library were measured in
minimal media at each of six different amino acid concentrations (seeMethods). (B) Promoter expressionmeasurements sorted by dynamic range. For each
promoter in the library, we obtain an expression measurement at each of the six AA concentrations. For promoters that lack Gcn4, Leu3, Bas1, or Met31
sites, expression does not change with decreasing AA concentration (top of B). For promoters with multiple Gcn4 binding sites, expression increases with
decreasing [AA]. The trans-activating transcriptional activity of these transcription factors increases with decreasing [AA]. (C) Shown are four representative
induction curves showing the effect of changing the number of Gcn4 binding sites (cyan, green, blue) or adding a polyT nucleosome disfavoring sequence
(green, red). IDs show library construct identifiers.
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P = 0.09), and a much larger increase in expression at low [AA]
(Pearson R = 0.52, P < 3 × 10−6), resulting in a net increase in
dynamic range with increasing PSSM score (Pearson R = 0.63,
P < 1.3 × 10−8 or R = 0.77, P < 3 × 10−5 when only including values
above a previously determined cutoff) (Supplemental Figs. 4, 14;
Spivak and Stormo 2012). These results are consistent with mod-
els in which low-affinity binding sites are always functional but
have a more pronounced effect at high [TF] (Carey et al. 2013).

Maximum expression is set by the amount of active TF

and is limited by competition for TF molecules

If expression were a simple nondecreasing function of the number
of bound TFmolecules (Gertz et al. 2009; Raveh-Sadka et al. 2009),
we expect expression to increasewhen either [TF] or the number of
binding sites in a promoter increases. Thus, a given expression lev-
el might be reachable by changing either one or the other, and any
promoter, given enough [TF], would be able to reach a level of
maximal expression set by the efficiency of transcription ini-
tiation. However, this is not what we observe in homotypic pro-
moters. We find that the maximum reachable expression level
is determined by [TF] and not by the number of binding sites
(Fig. 3A,B; Supplemental Fig. 5). In all conditions and for all TFs,
expression reaches its maximal level at 3–4 sites and then plateaus,

decreases, or only slightly increases, depending on the TF, suggest-
ing that this phenomenon is a general consequence of binding site
multiplicity and not specific to a particular transcription factor.

We found that, for the set of seven promoters with a single
binding site placed at one of seven positions in the promoter,
different binding site positions drive different levels of expression
(Fig. 3C). Furthermore, we found that when a binding site that
drives high expression (e.g., the site at position 51) is added to a
promoterwith two binding sites (generating a promoterwith three
sites), expression tends to increase (Fig. 3D). In contrast, when
a site that drives low expression (e.g., the site at position 93) is
added to a promoter with two sites, expression tends to decrease
if the expression of the two binding site promoter is already high
(Fig. 3E).

We hypothesized that the observed saturation behavior,
which is most pronounced at high [AA] (low [TF]) (Supplemental
Fig. 5), is a consequence of competition for limiting TF between
binding sites that drive different levels of expression. To compare
possible underlyingmechanisms, we used thermodynamicmodel-
ing of gene expression (see Supplemental Material, “Thermody-
namic model” for details). In short, for each promoter, the
model enumerates all possible binding configurations of TF and
TBP (TATA binding protein that recruits the transcriptional ma-
chinery). The weight of each configuration is based on binding

Figure 2. The effect of Gcn4 binding site number and polyT nucleosome disfavoring sequences on [TF]-dependent and -independent expression. (A–C )
Expression at high [AA] (x-axis) versus expression at low [AA] (y-axis) for various promoter sequence features. Dashed lines are the diagonal (slope = 1) line
that best fit each category of promoters. The black dashed diagonal line (Y = X) represents the regime where expression is constant across conditions. The
vertical distance from the Y = X line measures how much any one promoter changes in expression across conditions. Density plots (using ks density esti-
mation) at the x-axis and y-axis show the distributions of expression values for each promoter at high and low [AA], respectively. (D–K ) Expression and
expression fold-change (y-axis) in box plots as a function of promoter sequence features (x-axis). The dashed black lines connect the medians of each
box. Asterisks denote statistically significant (t-test, P < 0.01) changes between subsequent groups. (A) Shown are promoters grouped by the number
of Gcn4 binding sites. (B) Shown are promoters with either low- or high-affinity Gcn4 sites. (C) Shown are promoters with either one or two polyT nucle-
osome disfavoring sequences. (D,E) Box plots of the data in A. Promoters are grouped by the number of binding sites. (D) Shown is expression at high [AA]
(y-axis). (E) Shown is expression fold-change—dynamic range, log2(low [AA]/[high AA]). (F–H) Box plots of the data in B. Shown are expression at high [AA]
(F), low [AA] (G), and expression fold-change (dynamic range) (H) for promoters with low- or high-affinity binding sites. All differences are statistically
significant (t-test, P < 1 × 10−3, P < 1 × 10−5, P < 1 × 10−4 for F–H, respectively). (I–K ) Box plots of the data in C. Shown are expression at high [AA] (I),
low [AA] (J), and expression fold-change (dynamic range) (K ) for promoters with either one or two polyT sequences. Expression at high and low
[AA] shows significant change as a function of polyT number (t-test, P < 1 × 10−4, P < 1 × 10−4, respectively); however dynamic range does not change
significantly (t-test, P = 0.77).
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site affinities, Gcn4 concentration, and interactions between
bound TFmolecules and bound TBPmolecules, after which the ra-
tio between weighted TBP bound to TBP unbound configurations
determines the expression. We fitted a collection of models of in-
creasing level of complexity to the induction curves of a set of pro-
moters that only contain 0–7 high-affinity Gcn4 binding sites. We
used a 10-fold cross-validation scheme to assess each model.

A basic model, in which binding to each site is independent
and each site has either identical contribution to expression or
with position-specific driven expression, is able to explain an in-
crease in expression with increasing [TF] but does not fit the mea-
sured data very well (Fig. 3F,I,L).

We reasoned that, in order to reproduce the observed satura-
tion, there must be negative interactions between TF binding sites
within the same promoter. We examine two alternative mecha-
nisms of binding site interaction: steric hindrance and TF sharing.
The steric hindrance model accounts for a previously suggested
mechanism inwhich a boundTFmay sterically hinder the binding
of a second TF molecule at a neighboring site (Struhl 1989) by re-

ducing the weight of configurations with multiple bound sites
(Gertz et al. 2009; Raveh-Sadka et al. 2009; Giorgetti et al. 2010).
The TF sharing model implements competition between neigh-
boring binding sites by dividing the [TF] weight by the total
number of binding sites. This mechanism has been observed ex-
perimentally, and results from nonspecific binding and subse-
quent 1D sliding: Two neighboring binding sites will share their
TF capture area and as a consequence have the same effective bind-
ing rate as one site (Hammar et al. 2012; Mahmutovic et al. 2015).

We find that both interaction models can replicate the ob-
served saturation effect, in which, at all [AA], adding a fourth bind-
ing site does not result in a large increase in expression (Fig. 3).
However, quantitatively the TF sharingmodel better fits the exper-
imental data.

Taken together, our results show that activator binding sites
do not linearly contribute to expression. Our model suggests
that this is due to competition between binding sites, likely due
to neighboring binding sites sharing their capture area as a result
of most binding events coming from 1D sliding.

Figure 3. Amodel that incorporates TF sharingwith specific position-expression can best explain expression across all amino acid concentrations. (A) The
library consists of promoters with identical Gcn4 binding sites placed at one of seven locations in the promoter. (B) Shown are the measured expression
levels (y-axis) as a function of binding site number (different colors) at four AA concentrations (different groups along the x-axis) for Gcn4. Each box con-
tains data for all promoters with that number of binding sites and no other features (e.g., no nucleosome disfavoring sequences or binding sites for other
TFs). The black line shows the median expression level for all promoters with that number of binding sites. (C ) Shown is the expression for each promoter
with a single Gcn4 binding site, normalized so that all conditions have the samemean expression. (D,E) Shown is the effect of adding a third binding site (at
position 51 or position 93) to a promoter that already has two binding sites. The expression of the two binding site promoters (x-axis) is graphed against the
three binding site promoters (y-axis). (F–L) Each point shows a single promotermeasured at one of four conditions (blue, green, red, cyan in decreasing [AA]
order) (x-axis) and the predicted expression levels (y-axis) of that promoter, for the six different models, fitted in cross-validation to the data shown in A,
which are promoters with one to seven high-affinity Gcn4 binding sites (ATGACTCAT). R2 values were computed for absolute predicted expression on the
test data. Each model includes either position-specific expression (a unique weight is associated with each unique binding site position) or nonspecific ex-
pression (all binding site positions share the same weight), and either no interaction, steric hindrance (a negative weight for multiple bound configura-
tions), or TF sharing (the [TF] weight is divided by the number of sites). We note that the discretization of the y-axis in F–I is due to the fact that, in the
absence of interactions and position-specific expression, all binding sites drive equal expression.
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Activator binding sites can both increase and decrease expression

as predicted by a model of TF molecule sharing

The above observations show thatmultiple binding sites contribute
nonlinearly to expression. In order to understand the effect of
adding or removing individual activator sites in more detail, we
look at pairs of promoters that differ by only a single binding site.
Surprisingly, in 30% of cases, adding an additional Gcn4 site reduc-
es expression, and this effect is significantly stronger at high [AA]
(55% versus 5% at low [AA], when [TF] is low (Supplemental Fig.
13). However, expression reduction is never below the minimum
expression driven by the individual sites (Supplemental Fig. 6).

This suggests the following: Suppose a promoter has two sites,
A and B, with A being a stronger site (having a largermeasured abil-
ity to drive expression when added to a promoter with zero sites);
then at low [TF], adding the new site B will reduce expression.
However, if you do the reverse, start with B and add A, expression
goes up. So that with two sites, the expression tends to be interme-
diate between the individual sites, at least at low [TF], a regime in
which TF molecules are shared between neighboring sites.

A comparison of thermodynamic models shows that both
steric hindrance and TF sharing can produce expression reduction
for activator binding site additionwhen the added site drives lower
expression than the existing site. However, only the TF sharing
model shows this effect at low [TF]; steric hindrance shows reduc-
tion only when [TF] is high. Both steric hindrance and TF sharing

models predict that the negative interaction between binding sites
is stronger at closer distances. Indeed, this is the case in both ex-
pression data and in an independent measurement of the same
promoter library in which TF binding to promoters was measured
in-vitro (Supplemental Fig. 7). Consistent with the TF sharing
model, but not with steric hindrance, this interference is strongest
at low TF concentrations, both in vivo and in vitro.

The TF sharing model combined with site-specific expression
best predicts absolute expression levels aswell as synergism, i.e. the
change in expression when adding a site (Fig. 4; Supplemental
Figs. 8–11). In fact, the TF sharingmodel, given site-specific expres-
sion, is the only model tested that can explain expression reduc-
tion at high [AA] (low [TF]).

Taken together, these results show that site addition can ei-
ther increase or decrease expression. This synergism is concen-
tration-dependent. Negative synergism mostly occurs at low [TF],
likely ruling out steric hindrance. TF sharing in combination
with site-specific expression predicts the observed behavior:
More often than not, adding an activator-binding site results in a
reduction of expression at low [TF].

Discussion

In summary, we presented here a large-scale investigation of the
mapping between promoter DNA sequence and dose response

Figure 4. TF sharing but not steric hindrance can explain the decrease in expression due to activator binding site addition. (A–F) Predicted expression as a
function of binding site number for six different thermodynamicmodels, fitted in cross-validation to the Gcn4measured data. Green lines show a predicted
increase in expression upon binding site addition; red lines show a predicted decrease. R2 values were computed for absolute predicted expression on the
test data. (G–I) Measured versus predicted expression and synergism for the best model at low and high [AA].
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curves by measuring the induced gene expression of 6500 de-
signed promoters at six growth conditions in which the regulating
TFs are gradually induced.

We observe a wide range of dose-response curves in which
the dynamic range is altered by changes in the affinity or number
of binding sites, and expression level varies independent of induc-
tion (fold-change) through changes in the accessibility of the
promoter.

These results are confirmed by systematic mutations in either
the whole promoter or only at the binding site, both affecting
overall expression, but only the latter affecting the dynamic range.
This suggests that random mutations (that occur more frequently
outside of binding sites) are more likely to change overall expres-
sion and not the promoter’s response.

Our current and previous (Sharon et al. 2012) observation
that expression saturates with increasing number of activator
binding sites suggests that either TF binding or Pol2 recruitment
saturates. However, we observe that while expression cannot be
increased by adding binding sites, expression can be increased
by increasing [TF]. This argues against saturation of Pol2 recruit-
ment being the cause of the observed saturation of expression level
as a function of homotypic binding site number in each condition.
We find that a model that includes competition between binding
sites can quantitatively explain our observations.

We achieved further insight into the nonlinear mapping be-
tween promoter configuration and dose-response by comparing
pairs of promoters that differ by only a single binding site addition.
This analysis revealed that, at low [TF], adding an activator is more
likely to reduce expression than it is to increase expression, sug-
gesting that there is interaction between binding sites.

Expression of our synthetic Gcn4 targets maxes out at 3–4
binding sites. Interestingly, the vast majority of native Gcn4 tar-
gets have 3–4 binding sites (Schuldiner et al. 1998). Themechanis-
tic models proposed in this paper may explain the reason for the
distribution of binding site numbers in native promoters.

Our analysis of the observed dose response curves suggests
that they are affected mainly by competition for TF (therefore re-
ducing the effective local TF concentration “seen” by each binding
site, referred to as “TF sharing”) rather than steric hindrance
between TFmolecules. In particular, the twomodels behave differ-
ently with changing [TF]. While steric hindrance will have a stron-
ger effect at high [TF] due to the increased likelihood of bound
configurations, “TF sharing” effects are reduced at high [TF], as
the TF is no longer limiting, and this is what we observe.

To further investigate the possible mechanism that could ex-
plain themeasured reduction in expression as a function of activa-
tor binding site addition, in addition to the thermodynamicmodel
that was fit to data, we developed a toy mathematical model that
describes binding site addition from one to two sites, enabling us
to investigate the regimes in which addition will cause a reduction
in expression (see Supplemental Material, “Toymodel of activator
site addition”). This model shows that expression reduction by
steric hindrance will increase with increasing [TF], whereas reduc-
tion by TF sharing decreases with increasing [TF]. It is the latter
behavior that we observe.

We note that alternative models are possible; the TF sharing
model fits the data, butmodeling can only show that a givenmod-
el is wrong, not that a givenmodel is correct. Recently, a nonequi-
librium promoter-dynamics model was proposed in which TF
dissociation is fast and actively driven by transcription (Coulon
et al. 2013). Our results from the thermodynamic and toy models
are independent of assumptions regarding dissociation. Therefore,

our predictions are independent of whether or not TF unbinding
is an induced nonequilibrium process. One possible alternative
model that will reproduce a decrease in expression at high num-
bers of binding sites, specifically at low [TF], is a combination of ad-
ditive activation and cooperative repression in which both the
activator and repressor compete for the same binding sites. There
is evidence suggesting that the transcriptional repressor Mig1
acts cooperatively (Gertz et al. 2009). While no repressors are pre-
dicted to bind with high affinity to the Gcn4 binding site
(ATGACTCAT), Yap3 and Yap7 are predicted to bind weakly (de
Boer and Hughes 2012). We hypothesized that if the Gcn4 sites
have repressive potential, then site addition can cause expression
reduction below the level driven by the other sites. We find that,
while addition of a binding site often results in expression below
the maximum of the expression driven by the individual sites,
this expression is always greater than the minimum expression
driven by the individual sites. The added site can, at most, reduce
expression by an amount that the other sites drive and can never
repress beyond that level. In other words, we find that to remove
expression, first expression has to be added. This is a strong pre-
diction of the TF sharing model and is not predicted by the coop-
erative repression model.

A secondmodel that can explain the observation that expres-
sion reaches a maximum at around three binding sites is that
having more than three bound TF molecules does not increase re-
cruitment of RNA polymerase. It is likely that beyond some num-
ber, additional bound transcriptional activators do not contribute
to increased expression at a single promoter. However, this model
cannot qualitatively explain our observation that, for all four TFs,
the expression from three binding sites is lower at higher [AA]
(lower [TF]). The “activator saturation” model predicts that the
same maximal expression could be reached at all amino acid con-
centrations, but that it might require more binding sites at lower
[AA]. This is not what we observe. Moreover, while, on average, ex-
pression saturates at three sites, this is not always the case. Going
from three to four sites can both increase (green lines) and decrease
(red lines) expression (Fig. 4; Supplemental Figs. 10, 13); expres-
sion rarely remains constant, likely ruling out the “activator satu-
ration” model.

Taken together, we have found a strong nonlinear mapping
between promoter architecture and dose-response, that, by assum-
ing competition between binding sites, we are able to accurately
predict from DNA sequence alone. Specifically, our model points
to a reduction in effective local [TF] (per binding site) due to over-
lapping capture areas. When [TF] is limiting, the effective search
time (the time it takes for a TF to find its binding site) is not signifi-
cantly reduced when another site is added close to an existing
one, since search time is dominated by the total capture area. In
the regime where [TF] is high, more sites bind more TFs and thus
have the ability to drive higher expression.

Our model is also consistent with recent in vitro results per-
formed using the same set of promoters showing that, at low
[TF], multiple Gcn4 binding sites increase the likelihood of TF
binding but do not increase the number of TF molecules bound
to a single molecule of promoter, while at high [TF], adding
more binding sites does increase the number of bound molecules
(Levo et al. 2015).

Competition for limiting TF, in both one- and three-dimen-
sional space, may also explain some previously unexplainable re-
sults regarding titration by large arrays of extraneous TF binding
sites. Lee and Maheshri (2012) found that contiguous arrays of
tetO binding sites bind less TF than do noncontiguous arrays
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and that contiguous arrays are less efficient at titrating away TF.
Our reanalysis of their data shows that this effect is strongest at
low [TF], suggesting that TF sharing may be occurring at these ar-
rays as well, either in 1D space or in 3D space. Splitting the array
of decoy binding sites in half results in a larger decrease in expres-
sion at low [TF] than at high [TF] (Supplemental Fig. 12), as expect-
ed from a model in which large number of binding sites spread
throughout the genome (at the promoter of interest and at the
decoy sites) are sharing a limiting number of TF molecules.

The yeast genome, which has densely packed genes for a eu-
karyote, has several promoters (e.g., CLN3) that are longer than 1
kb. Yet, 20 TF binding sites could, in theory, be packed into <200
bp. Intriguingly, the GAL genes, which are highly induced by a
large and rapid increase in the active amount of Gal4, tend to
have only 1 or 2 nt between the sites. In contrast, genes activated
at the G1→S transition (e.g., CLN2) have TF binding sites that are
spaced further apart. It was recently shown that Cln3, the protein
that activates the TFs bound to the CLN2 promoter, is present in
limiting concentrations (Wang et al. 2009); the spacing between
binding sitesmay reduce the effect of sharing. Binding site spacing
is known to be influenced by physical interactions between TFs
(Kazemian et al. 2013). Here, we suggest that TF sharing between
closely spaced binding sites is an additional force acting upon
the evolution of promoters. Binding sites for some TFs, especially
those with long 1D sliding ranges (Slutsky and Mirny 2004;
Gorman and Greene 2008) may need space for maximal TF occu-
pancy at low [TF]. Dense clusters can be used to create a highly re-
sponsive behavior (large dynamic range), and less dense clusters
might create overall high expression also at low [TF]. Our results
suggest that TF sharing can play an important role in determining
the response of a promoter to changes in [TF] and therefore influ-
ence the evolution of binding site configurations.

Methods

Promoter sequence library

We used a previously described library of 6500 promoters driving
YFP expression (Sharon et al. 2012). The pooled library was grown
in synthetic media with a 211-, 26-, 24-, 23-, 22-, or 20-fold dilution
of amino acids, and gene expression driven by each promoter was
measured as previously described (Sharon et al. 2014).

Gcn4 protein measurements

A Gcn4-GFP ura3::TEFpr-mCherry strain was grown overnight in
SCD-HL, resuspended in SCD-His-Leu or SCD, and then the SCD
was serial-diluted into SCD-HL, resulting in different concentra-
tions of His and Leu. GFP and mCherry were measured using a
BD Fortessa flow cytometer using FITC and PE_TexasRed filter sets.

Expression normalization

Weobserved condition-specific expression differences that did not
appear to stem from biological differences. For example, even the
promoters that were not induced (such as Gal4 targets) varied,
though slightly, across conditions in a nonmonotonic manner
(Supplemental Fig. 15). These differences likely stem from day-
to-day and experimental variability, as each condition was a sepa-
rate batch and was sorted on different days. To correct for this
effect, we subtracted from all promoters the median expression
of all Gal4 targets, thus removing this technical variability. All
analysis was carried out on the normalized expression values
(Supplemental Data 16, 17).

Growth conditions

Because the two lowest and two highest [AA] conditions induce
similar expression, we combined them to get amore robust expres-
sion measurement. Thus, for the analyses in which we compare
low to high [AA], we use the average of the two lowest and the
average of the two highest [AA] conditions. In the analyses in
which we compare four conditions, we use the previous two plus
the middle two [AA] conditions.

Thermodynamic model of gene expression

We model the transcriptional activity of the promoters using a
thermodynamic model that enumerates all binding configura-
tions of the transcriptional activator Gcn4 as well as TBP (TATA
binding protein) to the promoter, where we assume that bound
Gcn4 recruits (modeled as cooperative binding) TBP to the pro-
moter. The ratio of bound versus unbound TBP configurations
then give the transcriptional activity of the promoter. To model
several hypothesized regulatory mechanisms, we make different
assumptions on the interaction between bound Gcn4 molecules
and their interaction with TBP (see Supplemental Material,
“Thermodynamic Model” for details).

Data access

The raw and processed sequencing data generated in this
study have been submitted to NCBI’s BioProject database (https://
www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA349780 and Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/geo/) under accession number GSE92306.
Processed expression values per condition per promoter construct
are provided in SupplementalData 16, 17.Data ofmodel fits andpa-
rameter values are provided in Supplemental Data 18–23 and
Supplemental Data 24–29, respectively.
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