
X4 Tropic Multi-Drug Resistant Quasi-Species Detected
at the Time of Primary HIV-1 Infection Remain Exclusive
or at Least Dominant Far from PHI
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Abstract

Our objective was to analyze the evolution of resistance mutations (RM) and viral tropism of multi-drug-resistant (MDR)
strains detected at primary HIV-1 infection (PHI). MDR HIV strain was defined as the presence of genotypic resistance to at
least 1 antiretroviral of the 3 classes. Tropism determinations (CCR5 or CXCR4) were performed on baseline plasma HIV-RNA
and/or PBMC-HIV-DNA samples, then during follow-up using population-based sequencing of V3 loop and phenotypic
tests. Clonal analysis was performed at baseline for env, RT and protease genes, and for HIV-DNA env gene during follow-up.
Five patients were eligible. At baseline, RT, protease and env clones from HIV-RNA and HIV-DNA were highly homogenous
for each patient; genotypic tropism was R5 in 3 (A,B,C) and X4 in 2 patients (D,E). MDR strains persisted in HIV-DNA
throughout follow-up in all patients. For patient A, tropism remained R5 with concordance between phenotypic and
genotypic tests. Clonal analysis on Month (M) 78 HIV-DNA evidenced exclusively R5 (21/21) variants. In patient B, clonal
analysis at M36 showed exclusively R5 variants (19/19) using both genotypic and phenotypic tests. In patient C, baseline
tropism was R5 by genotypic test and R5/X4 by phenotypic test. An expansion of these X4 clones was evidenced by clonal
analysis on M72 HIV-DNA (12/14 X4 and 2/14 R5 variants). In patient D, baseline tropism was X4 with concordance between
both techniques and HIV-RNA and HIV-DNA remained X4-tropic up to M72, confirmed by the clonal analysis. Patient E
harboured highly homogenous X4-using population at baseline; tropism was unchanged at M1 and M18. In all patients, the
initial MDR population was highly homogenous initially, supporting the early expansion of a monoclonal population and its
long-term persistence. X4-tropic variants present at baseline were still exclusive (patients D and E) or dominant (at least one
time point, patient C) far from PHI.
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Introduction

Sexual transmission of HIV-1 resistant strains has been well

documented [1]. The frequency of strains harbouring resistance to

at least one antiretroviral drug at the time of primary HIV-1

infection (PHI) is stable in Europe over the last decade and reaches

approximately 10–12% [2–5]. Moreover, despite a theoretically

impaired fitness [6], multi-drug resistant (MDR) viral strains can

also be transmitted via the sexual route and establish themselves as

the dominant viral population by massively fuelling the cellular

reservoir [7]. Thus, unlike HIV-1 strains developing resistance

mutations on a failing therapy during chronic disease, resistant

HIV-1 strains identified at the time of PHI persist in plasma over

time in a drug-free environment [7,8]. In addition, transmission of

X4-tropic HIV-1 strains at the time of PHI has also been

documented, and the prevalence of X4 strains at the time of PHI

reaches approximately 15% [9–11]. Long-term evolution of such

X4 strains present at the time of PHI is unknown. The clinical

implications are of serious concern since multidrug resistance as well

as X4-usage can result in treatment failure and rapid clinical

progression [12–17]. Our objective was to characterize intracellular

HIV-DNA in patients with a MDR HIV-1 strain detected at the

time of PHI and to analyze the viral tropism in such patients. We

analysed the temporal evolution of resistance patterns and viral

tropism in plasma virions and in intracellular HIV-DNA extracted

from peripheral blood mononuclear cells (PBMC). Moreover, to

analyze extensively the viral tropism, we performed a clonal analysis

at baseline and during the follow-up and we classified the virus as

X4 or R5 using both genotypic and phenotypic methods.

Results

Baseline characteristics of patients
Between 1996 and December 2009, 968 patients were included

in the ANRS PRIMO cohort. Among them, five patients (four

men who have sex with men (MSM), one woman) harbored a
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MDR strain and were included. This sub- study is exhaustive as all

the patients infected with a MDR strain and included in the

French PRIMO cohort were analyzed. Median time between

estimated date of infection and enrolment in the cohort was 33

days (range 18–71). Their immuno-virological characteristics and

resistance mutational pattern at baseline are summarised in Table

S1. Resistance mutational pattern was identical between plasma

HIV-RNA and intracellular HIV-DNA in all patients. All five

patients harboured a subtype B strain.

When using the SVMgeno2pheno algorithm or the genotypic

rule for tropism determination, three patients (A, B, C) harboured

a CCR5-using strain and the remaining two (D and E) were

infected with a CXCR4-using virus at the time of PHI. Genotypic

analysis yielded similar tropism results between HIV-RNA and

HIV-DNA at baseline. These results were concordant when

tropism determination was performed using the phenotypic assay

on PBMCs, except for patient B who harboured a R5/X4 strain at

baseline. None of the three patients harbouring an HIV-1 strain

using CXCR4 co-receptor at the time of PHI was homozygous for

deletion Delta32 in CCR5 gene (two patients were wild-type

CCR5 homozygous and one was Delta32 heterozygous).

For all five patients, clonal analysis based on reverse

transcriptase (total 148 clones), protease (total 179 clones) and

envelope (total 218 clones) genes from plasma HIV-RNA and

PBMC-HIV-DNA showed a highly homogenous viral population

(Figures 1A, 1B, 1C). Phylogenetic analysis showed intermingled

sequences obtained from circulating virions and intra-cellular

HIV-DNA. All mutations associated with NRTI and NNRTI

resistance were all linked on the same genome in 144/148 variants

and mutations associated with PI resistance were harboured on the

same genome in four patients, patient E harbouring 10/40 clones

without mutation F53L (Figure 1B).

At baseline, all variants present in plasma and in PBMC used

the same co-receptor for a given patient. Clonal analysis of C2V3

region of env gene showed extremely homogenous viral population

in each patient (A: 18/18 CCR5-using variants in HIV-RNA and

23/23 CCR5-using in HIV-DNA; B: 23/23 CCR5-using variants

in HIV-RNA and 23/23 CCR5-using in HIV-DNA; C: 21/21

CCR5-using variants in HIV-RNA and 23/23 CCR5-using in

HIV-DNA; D: 23/23 CXCR4-using variants in HIV-RNA and

21/21 CXCR4-using in HIV-DNA; E: 20/20 CXCR4-using

variants in HIV-RNA and 23/23 CXCR4-using in HIV-DNA)

(Figure 1C and Table S1).

Based on pairwise evolutionary distances, the intra-individual

variability ranged between 0.00% and 0.47% for reverse

transcriptase sequences, 0.00% and 0.75% for protease sequences

and 0.0031% and 0.94% for envelope sequences.

Longitudinal assessment of genotypic resistance tests in
plasma HIV-RNA and cell-associated HIV-DNA

Median follow-up since enrolment was 78 months (range 18–

96). Results are summarised in Table S1. All resistance mutations

persisted in plasma HIV-RNA in patient A up to Month 36 (M36)

except for mutation K103N and V118I in reverse transcriptase

gene that reverted to wild-type. This patient was successfully

treated with persistence of resistant mutations in PBMC-HIV-

DNA up to the end of follow-up (M78).

Resistance mutational pattern was unchanged in patient B in

plasma HIV-RNA and HIV-DNA up to the end of follow-up

(M36) except for mutation 184V that reverted to wild-type M184

in plasma HIV-RNA sampled at M12; this mutation persisted

however in HIV-DNA throughout the 36-month follow-up.

Reverse transcriptase mutations were unchanged in patient C up

to M24 (except for mutation V118I), genotypic resistance test

could not be performed thereafter. Patient D started HAART

early after PHI, resistance mutational pattern was unchanged

(except for mutation K70R which reverted to wild-type and

mutation T215F which shifted to T215S) in HIV-DNA up to

M72, and amplification of HIV-DNA failed on the last sample

available (M84) probably due to very low HIV-DNA load. Patient

E was rapidly treated for hepatitis C infection with pegylated

interferon a and ribavirine, both HIV-RNA and HIV-DNA fell to

undetectable levels as soon as M18.

Longitudinal assessment of viral tropism of HIV-DNA in
PBMC

Results of tropism determination with SVMgeno2pheno

algorithm, the genotypic rule and the phenotypic assay are

summarised in Table S1. For patient A, harbouring a CCR5 strain

at baseline, viral tropism determined by whole population

sequencing was unchanged in PBMC at M36 and M78. Results

were strictly concordant between genotypic and phenotypic tests at

baseline and M78. Clonal analysis of C2V3 region of env gene

from HIV-DNA extracted from available PBMC samples showed

exclusively homogenous variants, 22/22 CCR5-using variants at

M36 and 21/21 CCR5 at M78 (Figure 2A).

Patient B was infected with a highly homogenous CCR5-using

population. The follow-up of patient B revealed a CCR5 strain

determined by genotypic methods at M12, M24 and M36. Results

were strictly concordant between genotypic and phenotypic tests,

at M36. Clonal analysis revealed 19/19 CCR5-using variants at

M36 on PBMCs (Figure 2B).

Patient C was infected with a highly homogenous CCR5-using

population, determined by genotypic method, at the time of PHI.

Interestingly, the phenotype was R5/X4 at baseline while the

genotype was CCR5 both with the SVMgeno2pheno algorithm

and the genotypic rule. During follow-up, viral tropism deter-

mined by whole population sequencing showed a CCR5 virus at

M6, M24, M60. Clonal analysis of C2V3 region from PBMC-

HIV-DNA showed exclusively CCR5-using variants at M6 (23

clones), M24 (18 clones), M60 (22 clones). We observed a change

in the viral tropism in blood cells at M72 with a CXCR4 virus

determined by both genotypic techniques. At the end of the follow-

up (M96), viral tropism determined by bulk-sequencing was still

CCR5 while it was CXCR4 at M72. This result was confirmed by

the clonal analysis which revealed 12/14 clones CXCR4 and 2/14

clones CCR5 (Figure 2C).

Patient D was infected with a highly homogenous CXCR4-

using population determined by both genotypic and phenotypic

methods. Viral tropism determined by whole population sequenc-

ing was unchanged in PBMC at M48, M72 and M84. Phenotypic

test was unavailable at M84. Clonal analysis showed exclusively

homogenous variants, 23/23 CXCR4-using variants at M72

(Figure 2D).

Patient E was infected with a highly homogenous CXCR4-using

population. Viral tropism was unchanged at M1 in plasma

(determined by both genotypic and phenotypic methods) and at

M18 determined by whole population sequencing on blood cells.

Discussion

This is the first study providing longitudinal data on both

resistance mutational pattern and viral tropism of circulating and

archived viral strains in patients infected with a MDR HIV-1 as

soon as primary HIV infection. This is an exhaustive study as all

the patients infected with a MDR strain and included in the

ANRS PRIMO cohort were analyzed in this sub-study. We

confirm that HIV-1 MDR strains can be transmitted via the sexual
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route; they massively fuel the cellular reservoir at the earliest time

point after infection and establish themselves as the dominant viral

population [7]. Indeed, these five patients acquired HIV-1

through sexual intercourse and no other risk factor for HIV-1

acquisition was declared. Resistance mutations in reverse tran-

scriptase and in protease genes were evident in both circulating

virions and intra-cellular HIV-DNA after a median of 33 days

after estimated date of infection. Moreover, clonal analysis of the

reverse transcriptase and protease genes from plasma HIV-RNA

and from HIV-DNA showed a highly homogenous viral

population in all 5 patients, with no specific compartmentalization

in the cellular compartment. Resistant strains persisted in plasma

HIV-RNA and in infected blood cells in a drug-free environment,

but they also persisted in the cellular reservoir in patients with

suppressed viral replication on HAART. Despite the usual

dynamic processes affecting the pool of infected cells [18], HIV-

DNA isolated from circulating PBMC far from PHI still exhibited

the same resistance mutational pattern than at the time of PHI,

indicating that resistant viruses entering the cellular reservoir early

in infection had not been replaced. This is supported by the

detection of a highly homogenous and exclusively resistant viral

population in the cellular reservoir at the earliest time-point after

infection, with no wild-type variants to overgrow the resistant and

probably less fit variants [19]. Interestingly, mutation M184V with

deleterious impact on viral fitness [20,21] shifted rapidly to wild-

type amino-acid residue in plasma for patient E in the absence of

drug-selective pressure. Reversion of 184V acquired at the time of

PHI has already been described in plasma HIV-RNA [22,23].

However, even if no longer detectable in plasma, we showed that

this resistance mutation persisted in the cellular reservoir up to

M36, which makes rapid re-emergence possible in plasma if

lamivudine or emtricitabine were to be started. Other mutations

with low impact on replicative capacity shifted also to wild-type

amino-acid residue during follow-up and in the absence of drug-

selective pressure.

HIV-1 binds the CCR5 co-receptor early in the course of HIV

infection, and that X4-using viruses emerge later in the course of

HIV disease [24–26]. Balandya et al recently showed that semen

promotes the preferential transmission of R5 tropic HIV strains

[27]. Here we show that CXCR4-using viruses can be sexually

transmitted. Indeed, monophyletic exclusively CXCR4-using

variants were detected in plasma and archived in PBMC of two

patients (D and E) soon after infection with both genotypic and

phenotypic techniques (SVMgeno2pheno algorithm and genotypic

rule; and phenotypic assay). For patient C, we observed a

discrepancy between the genotypic algorithm/rule which classified

the virus as R5 and the phenotypic assay which identified a X4

virus. Of note, none of these three patients (C, D, E) was

homozygous for deletion Delta32 in CCR5 gene. This discordance

between phenotypic and genotypic methods in patient C could be

explained by a better sensitivity of the phenotypic assay in

detecting minor amounts of CXCR4-using viruses [28]. Moreover

during the follow-up of this patient, the clonal analysis at M72

revealed a mixture of CXCR4-using clones and CCR5-using

clones. One limitation with our cloning method is the fact that any

similar sequences coming from a single PCR reaction tube are

likely to represent PCR resampling. The single genome amplifi-

cation would have offered a more reliable approach, but this

method is sometimes difficult to perform with limited material to

start with. Interestingly, Jordan et al have recently showed that

either method is likely to provide a similar measure of population

diversity, provided that an adequate number of PCR templates is

analyzed [29]. Here we analyzed a high number of PCR templates

at baseline, and we are conscious that our method might not be

representative of all variants during follow-up in treated patients

with low plasma HIV-RNA and low intracellular HIV-DNA.

Recent reports suggest that 6–17% of patients get infected with

an CXCR4-using virus at the time of PHI [9–12,17]. This finding

is clinically relevant since X4-usage as soon as PHI has been

associated with severe and rapid progression of HIV disease

[12,13]. Indeed, CD4 cell count was low in patients D and E as

soon as the diagnosis of PHI. Of note, patients C, D and E who

harboured CXCR4-using variants at the time of PHI were also

infected with a MDR strain. In a previous study included 390

patients at the time of PHI, no association was found between the

presence of resistant virus and HIV tropism [9]. However, a trend

towards lower CD4 cell count was observed in patients infected

with a resistant X4/DM-tropic virus in comparison with patients

infected with a resistant CCR5-tropic strain. Such patients might

be at high risk of rapid disease progression [15] and most

importantly, they have limited therapeutic options as soon as PHI.

Moreover, they might be at high risk of fast decline in CD4 cell

count as it was reported in 78 subjects who completed a 12 month

follow-up without undergoing antiretroviral therapy [11]. Other

studies demonstrated an increased risk of developing a clinical

event among patients infected with X4 tropic viruses compared

with R5 viruses [30]. In the MACS cohort, HIV-1 CXCR4-using

was detected more frequently among men who developed

AIDS#11 years after seroconversion than among those who did

not [31]. In the Swiss HIV Cohort Study, the authors showed that

HIV-1 coreceptor usage and CXCR4-specific viral loads strongly

predicted disease progression during cART, independent of CD4

cell count and total viral load [32]. In our study, one patient (E)

described herein and harbouring an CXCR4-using virus at the

time of PHI was not started on HAART until M18, with no

arguments for rapid disease progression or CD4 decline. The two

other patients (patient C and patient D) harbouring an CXCR4-

using strain at the time of PHI were started on HAART at the

time of PHI until M38 and M30 respectively. After HAART

interruption, the two patients were followed until M96 and M84

without disease progression or CD4 decline. Of note, the presence

of multiple resistance mutations in key genes (reverse transcriptase

and protease) might affect viral replicative capacity, thus rendering

such a viral variant less aggressive even if it uses the CXCR4 co-

receptor. However, Markowitz et al have reported on a patient

infected with a MDR and CXCR4-using strain, who experienced

rapid CD4 decline and progression of HIV-related disease soon

after PHI [15]. Of note, as from M6 after PHI, plasma HIV-RNA

was somehow low in our patients when untreated, suggesting they

might be HIV-controllers. Less than 4% of patients enrolled in the

Figure 1. Phylogenetic analysis, based on the neighbour-joining method, of clones of HIV-1 reverse transcriptase gene sequences
(1A), protease gene sequences (1B) and envelope gene sequences (1C) from patients A–E at baseline, demonstrating highly
homogenous circulating and archived variants in each patient. Clones obtained from plasma HIV-1 RNA are in full squares and clones
obtained from PBMC-HIV-1 DNA are in white circles. Resistance mutational pattern in reverse transcriptase gene and in protease gene is shown for
each patient. Clones not harbouring all resistance mutations are indicated. HIV-1 tropism on Figure 1C is determined by genotypic test. Only
bootstrap values $700 are shown. The reference sequence HXB2 was used as an outgroup. Genetic distance is indicated at the top of the figure, and
represents the number of nucleotide substitutions per site. The numbers between brackets indicate the number of strictly identical sequences that
segregate on the same branch.
doi:10.1371/journal.pone.0023301.g001

X4-Tropic MDR Strains at the Time of PHI

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23301



X4-Tropic MDR Strains at the Time of PHI

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23301



ANRS PRIMO cohort exhibited such a spontaneous control of

HIV-1 replication [33].

In chronically HIV-1 infected antiretroviral naı̈ve patients

starting HAART, viral tropism was not modified within one year

after HAART initiation [34]. The temporal evolution of CXCR4-

using viruses acquired at the time of PHI has been poorly

documented. We determined HIV-1 tropism on cell-associated

viruses using HIV-DNA extracted from PBMC on the samples

available during the follow-up. In contrast, most studies have

carried out tropism tests on HIV-RNA extracted from the plasma.

A recent report by Raymond et al described the good agreement

between HIV-1 tropism in PBMC and in plasma at the stage of

PHI [12]. Here, we show that the viral population remained

exclusively R5 (patients A and B) or X4 (patients D and E) far from

PHI, supporting the early expansion of a monoclonal viral

population at the time of primary infection. In contrast, a mixture

of viruses was evident in patient C far from PHI. At baseline, the

original virus remained R5 with the genotypic tools while it was

found X4/R5 with the phenotypic assay. At M72, clonal analysis

evidenced a mixture of R5 and CXCR4-tropic variants. There are

four hypotheses to explain this finding. First, variants identified by

our cloning method might not be representative of all variants

present in the cellular reservoir at the time of PHI; we thus might

have missed some CXCR4-using variants in patient C. Of note,

the sensitivity of the TTT assay for detecting minor amounts of

CXCR4-using viruses was 0.5% [28]. Second, immune pressure

exerted on env gene might have promoted genetic evolution within

the V3 loop. This hypothesis is supported by the fact that, as soon

as PHI, intra-individual variability was highest in env gene than in

reverse transcriptase or protease genes. Third, the evolution of co-

receptor usage in some variants might have been promoted by

down or up regulations of the expression of these co-receptors on

the surface of target cells [35]. The fourth hypothesis would be a

recirculation of CXCR4-using strains archived at PHI in the

cellular reservoir and which persisted far from PHI. Overall, our

data suggest that CXCR4-tropic variants present at the time of

PHI remain exclusive or at least dominant far from PHI, with no

possible use of CCR5-antagonists in these patients even far from

PHI.

Despite the usual dynamic process affecting the pool of infected

cells, MDR and CXCR4-using HIV-strains archived at PHI in the

cellular reservoir persisted far from PHI throughout a median 78-

month follow-up. Overall, these data suggest that determination of

viral tropism at the time of PHI might be useful in order to closely

monitor patients harbouring a CXCR4-using strain. Further

studies are needed to assess whether the evidence of a CXCR4-

using virus during PHI can be used as a diagnostic tool with

clinical relevance rather than a prognostic marker.

Methods

Study population
Our study comprised patients presenting with PHI, enrolled in

the multicentre prospective French ANRS PRIMO Cohort

(ANRS CO6) [36–38]. The ethics committee of Cochin Hospital

approved the study and all patients gave their written informed

consent. This observational cohort does not impose guidelines for

systematic treatment of patients presenting with PHI, the decision

of initiating highly active antiretroviral therapy (HAART) or not

relying on the primary care physician in each clinical setting on

the basis of the French guidelines [39].

Primary HIV-infection was identified as previously described

[40]. Briefly, primary HIV-infection had to be assessed by: (a) a

negative or indeterminate HIV ELISA associated with a positive

antigenemia or plasma HIV RNA (b) a Western blot profile

compatible with ongoing seroconversion (incomplete WB with

absence of antibodies to pol proteins) or (c) an initially negative test

for HIV antibody followed within 6 months by a positive HIV

serology.

For all patients enrolled in the PRIMO Cohort, blood plasma

and PBMC or whole blood were collected at inclusion before any

treatment initiation. Patients enrolled in the present study were

selected if (i) they harboured HIV-1 multi-drug-resistant (MDR)

virus in plasma at inclusion defined as: resistant to at least one

nucleoside analogue reverse transcriptase inhibitor (NRTI) and

one non-nucleoside reverse transcriptase inhibitor (NNRTI) and

one protease inhibitor (PI) at time of PHI, and (ii) who had a

minimum of 18-month-follow-up with available stored blood

plasma and peripheral blood mononuclear cells (PBMC) samples.

Quantification of HIV-RNA in blood plasma
HIV RNA was quantified by using the Cobas taqMan HIV-1

v2.0 assay kit (Roche Diagnostics, Meylan, France) according to

the manufacturer’s instructions.

Quantification of HIV-DNA in peripheral blood
mononuclear cells

PBMC were isolated from fresh whole blood by centrifugation

on a one-layer Ficoll Hypaque gradient. PBMC were washed three

times in RPMI medium, then counted and kept as dry pellets at

280uC. Total DNA was extracted from 200 ml of whole blood or

from PBMC pellet using QIAamp DNA mini kit (Qiagen,

Courtaboeuf, France) and HIV-DNA quantified by real-time

PCR (HIV-DNA Biocentric kit, Bandol, France). The real-time

PCR targets a conserved consensus region in the long terminal

repeat (LTR) region of the HIV-1 major group [41,42]. Results

were expressed as log10 number of HIV-DNA copies per 106

PBMC.

Genotypic resistance tests
For all patients enrolled in the PRIMO cohort, genotypic

resistance tests were systematically performed. The HIV-1 reverse

transcriptase (RT) and protease genes were amplified from plasma

HIV-RNA and cell-associated HIV-DNA by a single RT-PCR

followed by nested PCR using published primers [43]. For HIV-

DNA, one microgram of DNA extracted from total PBMC was

amplified by PCR. PCR final products were visualized on gels

then purified using the QIAquick PCR Purification HIV kit

(Qiagen,Courtaboeuf, France.). After purification, PCR products

were sequenced using the fluorescent dideoxy-terminator method

(Big Dye Terminator kit, Applied Biosystem, Perkin Elmer, Foster

City, Calif.) on an ABI 3130 Genetic Analyser sequencer (Applied

Figure 2. Longitudinal phylogenetic analysis, based on the neighbour-joining method, of clones of HIV-1 envelope gene from
patient A (2A), B (2B), C (2C) and E (2D). Clones obtained from plasma HIV-1 RNA are in full squares and clones obtained from PBMC-HIV-1 DNA
are in white circles. The most frequent amino-acid sequence of the V3-loop is indicated for each patient in a square. Amino-acid substitutions within
the V3-loop are underlined and correspondent variants are indicated by an arrow for each patient. Only bootstrap values $700 are shown. The
reference sequence HXB2 was used as an outgroup. Genetic distance is indicated at the top of the figure, and represents the number of nucleotide
substitutions per site. The numbers between brackets indicate the number of strictly identical sequences that segregate on the same branch.
doi:10.1371/journal.pone.0023301.g002
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Biosystem). Sequences were aligned using Sequence NavigatorH
software. The amino acids at codons associated with resistance to

NRTI, NNRTI and PI were identified according to the 2010

International AIDS Society list (www.iasusa.org). HIV drug

resistance was defined according to the 2010 HIV-1 genotypic

resistance interpretation algorithm of the French National Agency

for Research on AIDS (ANRS) (www.hivfrenchresistance.org). In

this study, genotypic resistance tests were performed on paired

stored samples of plasma and PBMC or whole blood collected at

baseline, at month 6 (M6), M12, M18, M24 and then every twelve

months when available.

Genotypic methods for determining virus tropism
The env (340 bp) C2V3 regions were amplified from plasma HIV-

RNA and intra-cellular HIV-DNA as described elsewhere [9]. We

determined the HIV-1 co-receptor usage of each sample by two

genotypic methods. One was the SVMgeno2pheno algorithm

(available at: http://coreceptor.bioinf.mpi-sb.mpg.de/cgi-bin/

coreceptor.pl). We chose a false-positive rate of 5% for this test to

obtain a high specificity (95%) for the detection of CXCR4 variants.

The other was a genotypic rule based on amino acid residues at

positions 11 and 25 and the overall net charge of V3 [44–46]. One

of the following criteria was required for predicting X4 co-receptor

usage: (i) R or K at position 11 of V3 and/or K at position 25, (ii) R at

position 25 of V3 and a net charge of $+5, or (iii) a net charge of $+6

[28,47,48]. The V3 net charge was calculated by subtracting the

number of negatively charged amino acids (D and E) from the number

of positively charged ones (K and R). Viruses were classified into two

categories: those with the absence (R5) or presence of X4-tropic viruses

(X4 or X4/DM). As the genotypic tests are unable to predict if the

viruses used only the CXCR4 or both the CCR5 and the CXCR4, we

decided to call them X4 for more clarity of the paper.

HIV-1 co-receptor usage of plasma virions and cell associated

virus was determined at baseline and on HIV-DNA extracted

from PBMC samples available during follow-up.

Phenotypic method for determining virus tropism
Phenotypic characterization of HIV-1 tropism was performed

using the Toulouse Tropism Test (TTT) assay [49]. A region

spanning gp120 and the ectodomain of the gp41 env gene of

plasma HIV-RNA was amplified by reverse transcription PCR.

The phenotype of HIV-1 coreceptor usage was determined using a

recombinant virus entry assay, as previously described [28]. The

sensitivity of the assay for detecting minor amounts of CXCR4-

using viruses was 0.5% [28].

Determination of the Delta32 deletion in CCR5 gene
Determination of the Delta32 deletion in CCR5 gene was

performed in patients harbouring an HIV-1 strain using CXCR4

co-receptor at the time of PHI, as described previously [50].

Clones of HIV-RNA and HIV-DNA of reverse transcriptase,
protease and envelope genes

In order to characterize the variants present in plasma and in the

cellular blood reservoir at baseline, i.e. early after PHI, HIV-DNA

reverse transcriptase, protease and envelope genes PCR products from plasma

and PBMC samples were cloned into the pGEM-T Easy Vector

System (Promega, Charbonnières, France) and transformed into

Escherichia coli JM109 competent cells (Promega) as recommended

by the firm. After overnight incubation at 37uC, insertion was

checked by PCR with inner primers on white colonies. Each PCR

product with the correct molecular weight was purified with the

QIAquick PCR purification kit (Qiagen) and then sequenced as

described above. In addition, clones of envelope gene were performed

on intracellular HIV-DNA extracted from the latest available PBMC

sample collected during follow-up. GenBank accession numbers are

JN181579-JN181727 and JN193569-JN194125.

Phylogenetic analysis
All sequences of HIV-RNA and HIV-DNA reverse transcriptase,

protease and envelope genes were aligned with Clustal X 2.0.11 H
software. Pairwise evolutionary distances were estimated with

DNADist, using Kimura’s two-parameter method, then the phyloge-

netic trees were constructed by a neighbour joining method (neighbour

program implemented in the Phylip package) [51]. The reliability of

each tree topology was estimated from 1000 bootstrap replicates [51].

Supporting Information

Table S1 Immunological,-virological characteristics
and resistance mutation patterns at baseline and during
the follow-up. A: patient A-DSV, B: patient B-ODU, C: patient

C-CXK, D: patient D-MDB, E: patient E-ODM. D: day, M:

month, RT: reverse transcriptase, nd: not done, TTT: Toulouse

Tropism Test. TDF: tenofovir, FTC: emtricitabine, ZDV:

zidovudine, NFV: nelfinavir, EFV: efavirenz, FosAPV: fos-

amprenavir. HIV-DNA: log10 copies/106 PB.
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