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Oncogenic activation of RAS isoforms leads tumor initiation and progression in many

types of cancers and is gaining increasing interest as target for novel therapeutic

strategies. In sharp contrast with other types of cancer, the importance of RAS in

breast tumorigenesis has long been undermined by the low frequency of its oncogenic

mutation in human breast lesions. Nevertheless, a wealth of studies over the last years

have revealed how the engagement of RAS function might be mandatory downstream

varied oncogenic alterations for the progression, metastatic dissemination, and therapy

resistance in breast cancers. We review herein the major studies over the last three

decades which have explored the controversial role of RAS proteins and their mutation

status in breast tumorigenesis and have contributed to reveal their role as supporting

actors, instead of as primary cause, in breast cancer.
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INTRODUCTION

RASG-proteins mediate the signal transduction through the transmembrane receptors. In humans,
there are four highly homologous ≈21 KDa RAS isoforms: HRAS, encoded by the Harvey rat
sarcoma viral oncogene homolog (HRAS), NRAS, encoded by neuroblastoma RAS viral (v-ras)
oncogene homolog (NRAS), and KRAS4A and KRAS4B, alternative splice variants of the Kristen
rat sarcoma viral oncogene homolog (KRAS). RAS proteins function as binary switches that cycle
between an active (“on”) GDP-bound to an inactive (“off”) GTP-bound state depending on the
activation status of the upstream receptors. The switch between “on” and “off” states is modulated
by the complementary action of enzymes that promote either the GDP to GTP exchange (guanine
exchange factors, GEFs) or the conversion back to GDP-bound form (GTPase-activating proteins,
GAPs). The multiplicity of GTPases and GAPs allows the function of RAS to be finely regulated
depending on the variety of extracellular and intracellular signal inputs. RAS proteins activate
a hierarchical cascade of intersecting pathways which modulate biological functions such as cell
proliferation, apoptosis, motility, metabolism, immune evasion. Dysregulation of RAS function is
largely associated with tumorigenesis. This may rely either on genomic mutations which alter the
RAS-intrinsic structure or on alteration of RAS regulating factors, which enhances RAS expression
and activity.

This review is an effort to recapitulate more than 30 years of studies on RAS oncogenes and
breast cancer, with the aim to reconcile two apparently conflicting evidences arisen by these studies:
(1) experimental studies on cancer cells andmurinemodels have demonstrated that RAS oncogenes
and their mutations have a strong potential in breast cancer initiation and progression as it does
in other type of cancers; (2) clinical studies have demonstrated that, actually, the incidence of
tumorigenic RASmutations in human breast cancers is marginal, in sharp contrast with other types
of cancer.
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ONCOGENIC MUTATIONS OF RAS IN
HUMAN CANCERS

RAS genes were the first mutated genes identified in human
cancer (1–3). The discovery in the late 1970s that their
gain-of-function mutations were able to trigger tumorigenesis
inaugurated the modern molecular oncology and posed the
basis of the molecularly targeted anticancer drug discovery (4).
To date, hundreds of genes have been identified which harbor
oncogenic mutations, but the RAS genes still remain amongst
the most frequently mutated oncogene families in cancer. The
oncogenic activation of RAS genes is usually caused by a single
point mutation (5–7) which impair the RAS responsiveness
to the GAP-mediated modulation and locks RAS and their
downstream pathways in a persistently active state. Traditional
studies (first carried out for the HRAS oncogenic allele) have
shown that a single oncogenic RAS gene could transform cells
in vitro and could provide them with the ability to induce
tumors in mice (3). Twenty five percent of human cancers
display missense gain-of-function mutations in at least one of
the RAS genes and in 98% of the cases mutations are found at
one of the mutational hotspots G12, G13, and Q61 (COSMIC
v75). Not all RAS isoforms are mutated equally, with KRAS
displaying the highest frequency. Also, mutations of specific RAS
isoforms exhibit marked preferences for different tumor types
and different impact on clinical outcome (Figure 1).

ONCOGENIC ACTIVATION OF RAS IN
BREAST CANCER

Mammary cell lines have served as tumor models for many
seminal studies which demonstrated the tumorigenic potential of
RAS oncogenes. These studies have shown that oncogenic RAS
mutations constitutively enhance mammary cell interaction with
basement membrane, alter the tridimensional growth in collagen
gel, induce anchorage-independent phenotype, invasiveness,
tumorigenic potential, secretion of TGF-β and IGF-1, activation
of EGFR, mitogen-activated protein kinase (MAPK), and
estrogen-insensitivity (9–18). Single copies of mutant KRAS
cooperate with mutant PIK3CA to induce tumor transformation
in immortalized human epithelial cells (19). Conditional
expression of Ki-RasG12V in the mammary cells induces
estrogen receptor alpha (ERα)-positive adenocarcinoma in mice
(20), while HRAS Q61 drives breast adenomyoepitheliomas (21).

Several pathways and downstream effectors have been
identified which mediate the tumorigenic phenotype induced
by oncogenic RAS mutations in mammary cells. Activated
NRAS oncogene and its homolog NRAS proto-oncogene act
through the same pathway for in vivo tumorigenesis (22).
Oncogenic RAS mutations support cancer progression and
metastatic dissemination through the modulation of the 1Np63,
a amino-terminal truncated isoform of p63, a member of the
p53 family of transcription factors (23, 24). Oncogenic RAS
mutations promotes TFG-β-induced epithelial-mesenchymal
transition through the activation of leukotriene B4 receptor-2-
linked cascade (25). Mutated RAS associates with the induction

of cyclooxygenase-2 (COX-2) expression in human breast
cancer cell lines (26). Activated HRAS induces the invasive
phenotype in breast epithelial cell lines through the recruitment
of p38 (27, 28). Invasion of breast carcinoma cells also
relies on activated Ras-mediated stimulation of E2F and a
consequent E2F-mediated modulation of integrin α6β4 (29).
Oncogenic RAS mutation regulates the activity of CXCL10
and its receptor splice variant CXCR-B (30). Id1 and activated
RAS cooperate to subvert the cellular senescence response and
to induce metastatic dissemination in mammary carcinoma
(31). Focal adhesion kinase signaling is required for activated
RAS and PI3K-dependent breast tumorigenesis in mice and
humans (32). Dominant negative Ras activates the Raf-Mek-Erk
signal transduction pathway and induces lactogenic hormone-
induced differentiation (33). Activated RAS signals centrosome
amplification through cyclin D1/Cdk4 andNek2 (34). Autophagy
is critically implicated in malignant transformation by oncogenic
KRAS mutations and is promoted by the reactive-oxygen
species-mediated JNK activation through up-regulation of
ATG5 and ATG7 (35). RAS oncogenesis is accelerated by
p21WAF1/CIP1 depletion in mammary cancer (36), while
p21CIP attenuates RAS- and c-MYC-dependent epithelial-to-
mesenchymal transition and cancer stem cell-like transcriptional
profile in vivo (37). Gadd45a induces apoptosis and senescence in
Ras-driven mammary cancers through activation of c-jun NH2-
terminal kinase and p38 stress signaling (38). HMGA1a regulates
genes involved in the RAS/ERK mitogenic signaling pathway,
including KIT ligand and caveolin 1 and 2 (39). Oncogenic RAS
mutations induce metabolic rearrangement in breast cancer as
part of their tumorigenic program. Activated c-ha-Ras induces
loss of fatty-acid delta desaturating ability in human mammary
epithelial cells (40). Moderate restriction of energy intake
hampers v-Ha-ras-induced mammary tumorigenesis (41). PI3K
and KRAS cooperate to stimulate de novo lipid synthesis through
mTORC1 and SREBP (42).

RAS HYPERFUNCTION IN BREAST
CANCER

After the first identification of the tumorigenic potential of
oncogenic RAS mutations in vitro, a great effort has been made
in search for RAS mutations in human cancers, and their role
in driving tumorigenesis (43). The most remarkable finding was
the discovery of the stricking incidence of oncogenic KRAS
mutations in colon (44, 45), lung (46), and pancreatic carcinomas
(47) (Figure 1). According to what found in other tumor types,
KRAS confirms to be the most frequently mutated RAS isoform
in breast cancer (Figure 2A) and its mutation, unlike mutations
of HRAS and NRAS, is strongly associated with the poor
clinical outcome (Figure 2B). Nevertheless, the frequency of RAS
mutations in human breast cancer proven to be much lower than
expected (49) (Figures 1, 2). This stands against a critical role
of RAS oncogenic activation as the primary driver of the breast
cancer initiation and progression in humans and has discouraged
for many years the effort to investigate RAS proteins as potential
targets for breast cancer therapies (Figure 2A). Also, human RAS
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FIGURE 1 | Frequency of genomic alterations (mutation, fusion, amplification, deep deletion, multiple alterations) of the RAS genes (HRAS, KRAS, NRAS) across

different tumor types of the MSK-IMPACT Clinical Sequencing Cohort (8). Data have been accessed through cBioportal for Cancer Genomics website (https://www.

cbioportal.org).
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oncogene, unlike their retroviral counterpart, cannot transform
primary cells without the cooperation by a second oncogene such
as MYC or adenovirus E1A.

However, the oncogenic function of RAS proteins does not
rely completely on gene mutations. RAS protein overexpression,
hyperactivation of upstream RAS activators, such as receptor
tyrosine kinases, perturbation in the activity of RAS regulators,
such as GEFs and GAPS, all may contribute to promote and
sustain tumorigenicity (50, 51).

RAS Hyperfunction Induced by Upstream
Tumorigenic Effectors
There are a wealth of evidence that stratified over the last 3
decades which have established a role of RAS as supporting
actor in breast cancer downstream the dysregulated action of
oncogenic pathways and effectors. RAS proteins serve as hub
of the major intracellular signaling pathways which govern cell
growth, motility, angiogenesis, immune escape. Hence, it is quite
clear that the engagement of RAS function is mandatory for
many oncogenic factors to be able to propagate their signals
and execute their aberrant programs, while its inhibition may
dampen upstream tumorigenic signals. Studies in the early 1990s
reported that in 71% of human breast cancers the expression
of RAS proteins was higher than in normal breast tissues
and correlated with that of p185/HER-2. Interestingly, NRAS
and HRAS result to be overexpressed in basal-like and HER2
tumors, the most aggressive subtypes of breast cancer (52, 53)
(Figure 2A). HER2, as well as its cognate epidermal growth
factor receptor (EGFR), is coupled to the Ras signaling by
interaction with the adaptor protein Grb2, and Sos, a Ras GDP-
GTP exchange factor. The overexpression of these receptors in
breast cancer cells amplifies the RAS signaling pathway (54).
Consistently, the tyrosine kinase inhibitors have been shown
to hamper breast cancer cell proliferation at least in part
by the inhibition of signal transduction processes potentially
mediated through RAS (55). RAS overexpression associates with
p53 loss, HER2 amplification/overexpression and aneuploidy
in infiltrating ductal carcinomas (56). RAS is required also
for the mammary tumorigenesis induced by the oncogene
MYC, although in an inducible mouse model of c-MYC-
driven mammary tumorigenesis the spontaneous occurrence
of secondary RAS mutations was necessary to prevent the
full regression of tumors upon c-MYC deinduction (57). Pin1,
a prolyl isomerase which regulates the conformation of a
subset of phosphorylated Ser/Thr-Pro motifs, is overexpressed
in human tumors and interacts with Ras signaling in increasing
c-Jun transcriptional activity toward cyclin D1 (58). Breast
cancer displays the downregulation of the RAS/MAPK inhibitor
proteins sprouty 1 and 2 (59). RAS functions downstream Rab-
coupling protein RCP (also known as RAB11FIP1), a breast
cancer-related oncogene (60). Bone Morphogenetic Protein 1
(BMP1) cooperates with HRAS to induce metastatic breast
cancer (61). RAS signaling amplification has been reported to
play a crucial role in metastatic progression and poor clinical
outcome of luminal breast cancer patients (62). MicroRNA-
382-5p accelerates breast cancer progression by modulating

the RERG/RAS/ERK signaling axis (63). Pharmacological
inhibition of SHP2 phosphatase has been recently shown
to reduce the proliferation rate of receptor-tyrosine-kinase-
driven human cancer cells in vitro and in vivo through
the inhibition of the RAS-MAPK signaling (64). BCL-XL
directly modulates RAS signaling to favor cancer cell stem-like
phenotype (65).

RAS Hyperfunction Induced by Altered
Activity of RAS Regulators
RAS hyperfunction with tumorigenic effects can be induced
by the altered activity of RAS-specific regulators. R-RasGTPase
activating protein mediates the interaction between estrogen
and insulin signaling pathways in breast cancer cells (66)
and affects the motile phenotype of breast epithelial cells
through the modulation of Rho/Rho-kinase (67). On the
other hand, RAS-GTPase inhibition promotes apoptosis in
tumor cells (68). The RasGAP gene, RASAL2, functions
as a tumor and metastasis suppressor in human luminal
breast cancer (69) but promote triple-negative breast cancer
progression through RAC1 activation (70). The Rho GTPase
Rnd1 dampens mammary tumor progression and EMT
by restraining RAS-MAPK signaling (71, 72). R-Ras2, a
transforming GTPase that shares downstream effector with Ras
proteins, promotes tumor progression in a PI3K-dependent
and signaling autonomous manner although its prometastatic
role requires other priming oncogenic signals and downstream
effectors (73). Transposon insertion in one of two RASGAP
genes, neurofibromin1 (Nf1) and RAS p21 protein activator
(Rasa1), might function as the causal role of the mammary
tumor development in a tumor mouse model generated by the
activation of a mutagenic T2Onc2 transposon via expression of
a transposase driven by the keratin K5 promoter in a p53+/−

background (74).

RAS IN TRIPLE-NEGATIVE/BASAL-LIKE
BREAST CANCER

Triple negative breast cancer (TNBC) is a heterogeneous group
of tumors defined on the basis of their negativity for Estrogen
receptor, Progesterone Receptor and HER2. They account for
≈15% of breast tumors and are statistically associated to poor
prognosis. TNBC phenotype and clinical outcome partially
overlap those of the basal-like breast cancer subtype previously
identified on the basis of the gene expression profiling (52, 53),
although the identification between these two categories of breast
tumors is controversial (75). RAS activity and its regulators have
been reported to play a role in the progression of TNBC/basal-
like tumors. A 3

′

-untranslated region of KRAS variant has
been identified which regulates the development of TNBC (76).
KRAS(G12D) provides human mammary basal cells and luminal
progenitors with the ability to produce serially transplantable,
polyclonal, invasive ductal carcinomas into immunodeficient
mice, which display a dramatic clonal diversification (77). miR-
143/145 loss-of-function amplifies the tumorigenic potential of
PTEN-deficient basal-like breast tumor cells at least partially
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FIGURE 2 | (A) Frequency of genomic alterations and heatmap of gene expression of the RAS genes (HRAS, KRAS, NRAS) across 2,509 breast tumor samples of

the METABRIC cohort (48), assigned to the major intrinsic subtypes (on the basis of the PAM50 profile). (B) The fraction of breast tumors (cases) with genomic

alterations (METABRIC cohort, 2,509 breast tumors) of the RAS genes are reported in comparison with the fraction of tumor with genomic alteration in a pan-tumor

cohort (MSK-IMPACT, 10945). Kaplan-Mayer curve are reported for each RAS isoform comparing the overall survival of the breast tumors with or without genomic

alterations (METABRIC cohort, 2,509 breast tumors). (C) Gene expression level of RAS isoforms across the different subtypes of breast cancer are compared and

statistically evaluated by ANOVA t-test (Turkey post-hoc) *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Data have been accessed through cBioportal for

Cancer Genomics website (https://www.cbioportal.org).

through the induction of RAS signaling. In humans, miR-145
deficiency correlates with enhanced RAS-pathway activity in
basal-like breast cancer, and patient with combined PTEN/miR-
145 loss or PTEN-loss/high RAS-pathway activity exhibit poor
clinical outcome (78). Also, wild-type NRAS, upregulated in

basal-like breast cancer (Figure 2A), promotes tumorigenesis
through IL-8 secretion via JAK2 activation (79). RAS-MAPK
pathway activation promotes immune-evasion in triple negative
breast cancer (80). High level of ERK1/2 phosphorylation,
a readout of Ras signaling activation, has been found in
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metastatic sites relative to primary breast tumors and is
more common in TNBC/basal-like cancers (81). Transcriptional
signature of RAS/MAPK pathway activation is highly prevalent
in TNBC/basal-like cancers compared to other subtypes of breast
cancer (82, 83).

RAS IN BREAST CANCER THERAPY

Other than being a potent mediator of tumor transformation
and progression, RAS might also confer resistance to therapies
in breast cancer (84). RAS induces resistance to Cis-platinum by
increasing GST-pi expression (85) and ERCC1 (86). Oncogenic
RAS mutations cause resistance to the growth inhibitor insulin-
like growth factor binding protein-3 (IGFBP-3) (87). Also, RAS
induces resistance to lapatinib whichmight be overcome byMEK
inhibition (88). RAS/Raf-1/MAPK pathway affects response to
tamoxifen but not chemotherapy in breast cancer patients
(89). Raf-1 functions as an effector of RAS in the radiation-
response (90).

The role of RAS in breast tumorigenesis and resistance to
therapies provides the rationale to assess RAS as target in
breast cancer treatment. Three decades of studies contributed
to rise the notion that RAS oncogenes are “undruggable,” due
to its conformational architecture, which lacks of pockets to
facilitate the binding of small inhibitors, and its picomolar
affinity for the nucleotide substrate. However, recent technologies
and approaches have renewed the challenge to thwart cancer
by targeting RAS directly or through its downstream signaling
pathways. Direct approaches currently under investigation are
addressed to enhance GTP hydrolytic activity of RAS, to inhibit
its nucleotide exchange function or to prevent its interaction with
downstream effectors (91, 92). These approaches are providing
encouraging results at preclinical stages, but none of them have
entered clinical practice thus far.

A reliable alternative approach consists in blocking the
RAS downstream pathways (93). As for breast cancer, it
holds great promise the therapeutic use of inhibitors of the
Ras/MAPK pathway. FDA-approved Inhibitors of MEK,
a central node in the Ras/MAPK pathway, specifically
inhibit proliferation of TNBC/Basal-like cancer cell lines
(83) and may complement chemotherapeutic treatments in
xenograft models (82). MEK inhibition has been shown to
prevent epithelial-mesenchymal transition and metastatic
potential of tumor cells by targeting cancer stem cell
compartment (94). Although the phase I studies have shown
a scarce efficacy of MEK in humans, the combination with
neoadjuvant or post-operative treatments might represents a
promising alternative (95, 96).

CONCLUDING REMARKS

Decades of studies have contributed to unveil the primary
role of RAS oncogenes in leading tumor initiation in many
types of cancers. For reasons that are still unknown, breast
cancer is not amongst them. Although oncogenic RAS is able
to transform mammary cancer cell lines in vitro, the marginal
incidence of RASmutations in clinics does not support a primary
role of RAS proteins in breast tumor etiology. Nevertheless,
a wealth of studies over many years have demonstrated the
importance of RAS function in the progression, metastatic
dissemination and therapy resistance in breast cancers, regardless
the molecular trigger they are initiated by, thus contributing to
draw for RAS proteins a crucial role as supporting actors in
breast tumorigenesis.
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