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Abstract

Background: Most genes are not affected when any transcription factor (TF) is knocked out,
indicating that they have robust transcriptional regulatory program. Yet the mechanism underlying
robust transcriptional regulatory program is less clear.

Results: Here, we studied the cause and effect of robust transcriptional regulatory program. We
found that cooperative TFs in the robust transcriptional regulatory program regulate their
common target genes in an activity-redundant fashion, and they are able to compensate for each
other's loss. As a result, their target genes are insensitive to their single perturbation. We next
revealed that the degree of robustness of transcriptional regulatory program influences gene
expression variability. Genes with fragile (unrobust) transcriptional regulatory program under
normal growth condition could be readily reprogrammed to significantly modulate gene expression
upon changing conditions. They also have high evolutionary rates of gene expression. We further
showed that the fragile transcriptional regulatory program is a major source of expression
variability.

Conclusion: We showed that activity-redundant TFs guarantee the robustness of transcriptional
regulatory programs, and the fragility of transcriptional regulatory program plays a major role in
gene expression variability. These findings reveal the mechanisms underlying robust transcription
and expression variability.

Background

Proper control of gene expression is critical for the com-
plex function of a living cell. Although gene expression
can be regulated at multiple levels, one of the most impor-
tant regulatory mechanisms is at the transcriptional level.
The transcriptional program is regulated by binding of
transcription factors (TFs) to the specific DNA sequences
in regulatory regions of the genes. TFs are thus fundamen-
tal to the regulation of gene expression. However, several
studies on specific TFs have observed that only a small

fraction of genes that were bound by a TF were differen-
tially expressed after that factor was knocked out or
knocked down [1-4]. Recently, a genome-wide study has
carried out knockout experiments to determine knockout
target genes (i.e. differentially expressed genes) for 269
budding yeast TFs under normal growth condition [5].
Further analysis showed that there is only a low overlap
(~3%) between the knockout targets and the binding tar-
gets identified by chromatin immunoprecipitation
(ChIP)-chip [6].
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There are several possible explanations for the small over-
lap between knockout and binding targets. First, the large-
scale ChIP-chip data set could be more likely to be
affected by experimental noise [5]. The overlap between
Rap1 knockout and binding targets from a different high-
quality ChIP-chip data set [7] is as twice as that for the
large-scale ChIP-chip data set [6]. Second, binding and
knockout experiments could capture distinct features of
the transcriptional regulatory program [8]. Binding exper-
iments show a preference to uncover long-range interac-
tions between telomeres and transcription factors, while
knockout experiments tend to reveal downstream effects
of interference with ribosome biogenesis. Third, mere TF
binding is not sufficient to guarantee its regulation. The
effect of bound TFs on target genes' expression might
depend on the presence of other proteins. The location,
orientation and spacing of transcription factor binding
sites (TFBSs) also affect the regulatory function of TFs on
their target genes [9,10]. Finally, the knockout targets
could include both direct and indirect targets. The overlap
between the knockout and the binding targets indeed sig-
nificantly improved after the elimination of the indirect
targets [5].

The small overlap between knockout and binding targets
might be indicative of redundant TFs which mask the TF
knockout effect. Most eukaryotic genes are regulated by a
combination of TFs [11-13]. Some TFs might work in a
redundant fashion [14], and they could compensate for
each other's loss [15,16]. The compensation among TFs
should lead to the insensitivity of binding targets to the
knockout of single TF. We referred to this insensitivity to
the knockout of single TF as the robustness of transcrip-
tional regulatory program. An interesting question arises
concerning how the TFs involved in robust transcriptional
regulatory program work in a redundant fashion. In addi-
tion, it is intuitive that this robustness should influence
gene expression, but evidence for the effects remains to be
elucidated.

In this study, we first distinguished between robust and
fragile (unrobust) transcriptional regulatory programs
according to their degrees of sensitivity to the knockout of
TFs under normal growth condition. We referred to TFs
involved in robust or fragile transcriptional regulatory
program as robust or fragile TFs, and referred to genes hav-
ing robust or fragile transcriptional regulatory program as
robust or fragile genes. We found that robust cooperative
TFs show significantly higher co-activity than fragile coop-
erative TFs. This result indicates that robust TFs regulate
their common target genes in an activity-redundant fash-
ion. We further revealed that fragile genes have high
capacity to modulate gene expression upon changing con-
ditions and have high evolutionary rates of genes expres-
sion. Paralogs provide backup mechanisms for expression
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variability of fragile genes. We compared the fragility of
transcriptional regulatory program with other determi-
nants of expression variability, and showed that the fragil-
ity is an important source of expression variability.

Results

Identification of robust and fragile TFs

We first identified robust and fragile TFs by using genome-
wide TF binding data [6], TF knockout data [5] and gene
expression data [17-19]. For the gene expression data sets
[17-19], we refined the data measured under normal
growth condition, the condition at which the TF binding
and knockout data were generated. If a given TF is
involved in the robust transcriptional regulatory program,
the expression of its binding target genes (i.e. the TF
cohort) should not be affected by any TF knockouts. How-
ever, some TFs might merely bind promoters without any
regulatory function, and their single knockout should not
affect the expression of their cohort genes regardless of
robust or fragile transcriptional regulatory program. We
should identify these TFs and exclude them for analysis. If
the TF regulates expression of its cohort genes, the pair-
wise Pearson correlation coefficients among expression
profiles of its cohort genes should be significantly higher
than genome-wide level. Accordingly, we focused our
analysis on TFs whose cohort genes have significantly
higher pair-wise Pearson correlation coefficients in
expression profiles. If a given TF is involved in the fragile
transcriptional regulatory program, the expression of its
cohort genes should be significantly affected by its knock-
out. We used the Kolmogorov-Smirnov (K-S) statistical
test to measure the discrepancy in the distribution of TF-
knockout gene expression values between a given TF
cohort and the rest of the genes. Our test generated 70
robust TFs whose cohort genes are not differentially
expressed upon any TF knockouts (P > 0.05, K-S test), and
13 fragile TFs whose cohort genes are differentially
expressed upon their knockouts (Bonferroni corrected P <
0.01, K-S test; see Materials and Methods) (Additional file
1). The big difference in the numbers of robust and fragile
TFs is consistent with the small overlap between knockout
and binding targets [5]. In addition, the robust cohort
genes are also less sensitive to the changes in expression of
their associated TFs: robust TFs are significantly less co-
expressed with their cohort genes than fragile TFs (P < 10
35, Mann-Whitney U-test; Additional file 2). Together,
these results show that our identified robust cohort genes
are relatively insensitive to the perturbation of their asso-
ciated TFs.

As transcription regulation in most eukaryotic genes is not
controlled by a single TF but by multiple TFs, we next
identified cooperative TFs for each robust or fragile TF.
Given a TF A, if another TF B works together with A, the A
cohort should be significantly enriched with the B bind-
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ing target genes. We used the Mann-Whitney U-test to
evaluate the difference in the medians of experimentally
measured B binding affinities between the A cohort and
the rest of the genes. 62 out of 70 robust TFs, and 12 out
of 13 fragile TFs have at least one cooperative TF (Addi-
tional file 1), that is, the binding affinities of the TF cohort
genes are significantly higher than those of the other genes
for at least one other TF (Bonferroni corrected P < 0.01,
Mann-Whitney U-test). In addition, there is no significant
difference in the number of cooperative TFs between
robust and fragile TFs (P = 0.95, Mann-Whitney U-test).

Robust cooperative TFs show high co-activity

We next asked how cooperative TFs contribute to the
robustness of transcriptional regulatory program. Cooper-
ative TFs work in concert to regulate a set of genes. In the
robust transcriptional regulatory program, cooperative
TFs could compensate for each other's loss. We speculated
that there might be redundancy in TF activity level in the
robust transcriptional regulatory program. Like the
method in a previous study [20], we used gene expression
profile as a close approximation to activity level. Using
gene expression profiles under normal growth condition
[17-19], we found that cooperative TFs in the robust tran-
scriptional regulatory program are significantly more co-
expressed than those in the fragile program (P < 10-18,
Mann-Whitney U-test; Figure 1A). Conversely, we exam-
ined whether TFs that are more co-expressed with the
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other TFs tend to be involved in the robust transcriptional
regulatory program. We found that TFs that are signifi-
cantly more co-expressed with the other TFs show a four-
fold decrease in the overlap between their knockout and
binding targets compared with TFs that are significantly
less co-expressed with the other TFs (Figure 1B). A low
overlap between knockout and binding targets for a given
TF reflects the high insensitivity of TF binding targets to
the TF knockout (i.e. robust transcriptional regulatory
program). While this manuscript was in preparation, a
study has revealed that TFs with more similar TF paralogs
had lower overlap between their binding and knockout
targets [21]. Our identified TFs that are significantly more
co-expressed with the other TFs show a low overlap with
the TFs having the most similar TF paralogs identified in
that study (hyper-geometric P = 0.07). This result suggests
that TF paralogs and TF co-activity (i.e. co-expression) are
different mechanisms underlying the robust transcrip-
tional regulatory program.

Fragile genes have high transcriptional plasticity

We have analyzed robust and fragile transcriptional regu-
latory programs in terms of their TFs, and next would turn
our analysis to robust or fragile genes (i.e. genes with
robust or fragile transcriptional regulatory program).
Using the refined transcriptional regulatory network with-
out indirect regulatory interactions constructed from the
TF knockout data [5], we denoted the transcriptional reg-
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The difference between robust and fragile transcriptional regulatory programs in TF co-activity. (A) We calcu-
lated pair-wise Pearson correlation coefficient in expression profiles between robust cooperative TFs or fragile cooperative
TFs. Distributions of resulting correlation coefficient values are presented for robust cooperative TFs (green) and fragile coop-
erative TFs (red). Higher positive correlation indicates high co-activity (co-expressed). Robust cooperative TFs show higher
co-activity than fragile cooperative TFs. (B) The binding and knockout overlap for all TFs and two subsets of TFs (see Materials
and Methods). TFs that are more co-expressed (co-activity) with all other TFs have lower overlap, while TFs that are less co-
expressed with all other TFs have greater overlap. Low overlap indicates robust transcriptional regulatory program.
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ulatory program as 'k fragility (the degree of fragility)' to a
specific gene according to the number & of TF knockouts
which it is affected by. As most genes (~60%) are 0-fragile
genes, we focused our analysis on the genes that are
affected by the knockout of a large number of TFs. On
average, genes were affected by the knockout of two TFs.
We determined genes as fragile genes if they are 5-fragile
or higher. We identified a total of 785 fragile genes (Addi-
tional file 3). A recent study has measured genome-wide
gene expression levels on overexpression of 55 TFs [22].
Fragile genes are sensitive not only to TF knockout but
also to TF overexpression: their expression levels are sig-
nificantly more changed upon TF overexpression than the
rest of the genes (P < 10-3°>, Mann-Whitney U-test; Addi-
tional file 4).

We next examined how fragile genes modulate gene
expression upon changing environmental conditions. As
fragile genes have transcriptional regulatory programs
that are sensitive to TF perturbation under normal growth
condition, an open question is whether this property
makes their expression more readily be reprogrammed in
response to changing conditions. To test this possibility,
we used gene expression data from the Stanford Microar-
ray Database [23] to calculate for each gene the average
magnitude of expression changes upon various condi-
tions (see Materials and Methods), termed as transcrip-
tional plasticity. The transcriptional plasticity quantifies
the dynamic range of expression level in various condi-
tions. Fragile genes have significantly higher transcrip-
tional plasticity than the rest of the genes (P < 10175,
Mann-Whitney U-test; Figure 2A). This result also per-
sisted when transcriptional plasticity was calculated sepa-
rately for up-regulation or down-regulation (Additional
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Features in gene expression that are specific for frag-
ile genes. (A) Average values that correspond to transcrip-
tional plasticity and expression divergence between yeast
species are shown for fragile genes (red) and all genes (vio-
let). Values in each property were normalized, such that their
means are zero and standard deviations are one. (B) Average
values that correspond to trans and cis effects on expression
divergence are shown for fragile genes (red) and all genes
(violet). Error bars were calculated by bootstrapping.
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file 5). These results indicate that fragile genes show more
expression changes under a variety of conditions regard-
less of the direction of the expression changes. Further-
more, transcriptional plasticity globally increases with the
degree of fragility (R = 0.43, P ~ 0; Additional file 6).

We further investigated into the relationship between
fragile transcriptional regulatory program under normal
growth condition and gene expression responses to differ-
ent stress conditions. It is well established that yeast cells
regulate expression levels of ~900 genes in a stereotypical
manner in most of the environmental stress conditions,
commonly referred to as the environmental stress
response (ESR) [19]. TFs bind some specific genes to reg-
ulate their expression in response to changing conditions.
Using the genome-wide TF binding data measured in var-
ious conditions [6], we identified genes (n = 631;Addi-
tional file 7) that are bound by multiple (at least two) TFs
in the stress conditions that were included in ESR [19].
These multiple-TF-binding genes were expected to be reg-
ulated in response to environmental stress conditions.
However, only a small fraction (~17%) of these genes par-
ticipate in ESR. We found that these minority genes are
affected by more TF knockouts under normal growth con-
dition than the rest of multiple-TF-binding genes (5.4 ver-
sus 2.7; P < 10-12, Mann-Whitney U-test). This result
indicates that these minority genes have relatively fragile
transcription regulatory program under normal growth
condition. Moreover, these two gene classes show no sig-
nificant difference in TF binding number in stress condi-
tions (2.6 versus 3.0), ruling out the possibility that their
difference in environmental response is attributable to
their difference in TF binding number. Together, these
results suggest that fragile transcriptional regulatory pro-
gram under normal growth condition tend to be repro-
grammed in response to changing conditions.

We next examined whether there are other mechanisms
that ensure normal expression of fragile genes in various
conditions. A previous study has identified 1,269 paralogs
inyeast [24]. Fragile genes are enriched with paralogs (Fig-
ure 3A), which indicates backup mechanisms might be
used for fragile genes. Indeed, the paralogous gene pairs
involving fragile genes are more pair-wise co-expressed
than the other paralogous gene pairs under both normal
growth and stress conditions (P < 10-1¢ for stress condi-
tions, P < 10-8 for normal growth conditions, Mann-Whit-
ney U-test; Figure 3B). These results suggest that paralogs
provide backup mechanisms and robustness for expres-
sion of fragile genes in various conditions. Fragile genes
have high evolutionary rates of genes expressionWe next
asked whether fragile transcriptional regulatory program
is linked to high evolutionary rate of gene expression.
Fragile genes have higher evolutionary rates of gene
expression between yeast species [25] than the rest of the
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Figure 3

Backup mechanisms used for fragile genes. (A) Fre-
quency of paralogs is shown for fragile genes (red) and all
genes (violet). (B) Pair-wise Pearson correlation coefficient in
expression profiles was calculated for each paralogous gene
pairs under both stress and normal growth conditions. Aver-
age values that correspond to expressional correlation coef-
ficient are shown for paralogous pairs with fragile genes
(yellow) and paralogous pairs without fragile genes (dark
cyan). Error bars were calculated by bootstrapping.

genes (P < 10-°9, Mann-Whitney U-test; Figure 2A). Evolu-
tion of gene expression can be caused by changes in cis
and/or trans regulations. Previous studies have experi-
mentally quantified the relative contribution of cis and
trans effects to expression divergence between species, and
have revealed that most of interspecies divergence can be
generally explained by cis effects [26,27]. However, trans
and cis effects [27] of fragile genes show comparable con-
tribution to expression divergence between species (P =
0.27, Mann-Whitney U-test). Fragile genes have higher
trans effects than the rest of the genes (P < 10, Mann-
Whitney U-test; Figure 2B), and have comparable cis
effects with the other genes (P = 0.68, Mann-Whitney U-
test). Hence, fragile transcriptional regulatory program
might facilitate the contribution of trans effects on expres-
sion divergence.

Sensory trans effects are suggested to play a dominant role
in trans effects [27]. Accordingly, ESR genes show higher
trans effects. We sought to understand the contribution of
sensory trans effects and fragile transcriptional regulatory
program to trans effects. To this end, we compared trans
effects between fragile and ESR genes. We excluded genes
shared by these two gene classes for analysis. These two
gene classes show comparable trans effects and evolution-
ary rates of gene expression (P = 0.42 and P = 0.57, Mann-
Whitney U-test).

Fragile transcriptional regulatory program is a major
source of expression variability

We next sought to quantify the contribution of fragile
transcriptional regulatory program to expression variabil-
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ity. Expression variability is primarily regulated at the
chromatin level [28]. Nucleosome occupancy at the 150
bp upstream of the transcription start site (TSS) shows
high positive correlation with transcriptional plasticity
[29]. 544 occupied proximal-nucleosome (OPN) genes
with high nucleosome occupancy close to the TSS were
identified [29]. Fragile genes have significantly lower
nucleosome occupancy [30] close to the TSS [31] than
OPN genes (Figure 4A), indicating that fragile transcrip-
tional regulatory program has an impact on expression
variability irrespective of the presence of nucleosomes
close to the TSS. We found that fragile genes have higher
transcriptional plasticity than OPN genes (P < 102,
Mann-Whitney U-test; Figure 4B). When excluding the
genes shared by fragile and OPN genes, the difference
became more significant (P < 10-35, Mann-Whitney U-
test) and OPN genes have transcriptional plasticity com-
parable to genome-wide level (Figure 4B). Although tran-
scriptional plasticity is also linked to the presence of a
TATA box [24], we found that fragile genes have still
higher transcriptional plasticity than TATA-containing
genes [32] (Additional file 8). To further investigate into
the contribution of fragile transcriptional regulatory pro-
gram and chromatin structure to expression variability, we
used seven measures for expression variability as in a pre-
vious study [33], including stochastic noise [34], respon-
siveness [25], stress response [19], trans variability [28],
mutational variance [35], interstrain variation [36] and
expression divergence [25]. We used multiple linear
regression to analyze the correlations of the seven varia-
bility measures with the fragility of transcriptional regula-
tory program and the average nucleosome occupancy
within the 150 bp upstream of the TSS (Figure 4C). We
found that the fragility of transcriptional regulatory pro-
gram is more positively correlated with six out of seven
variability measures than nucleosome occupancy. The
two factors show comparable correlation with the other
variability measure (interstrain variation). We conclude
that fragile transcriptional regulatory program plays a
more fundamental role in expression variability com-
pared with the presence of nucleosomes close to the TSS.

Discussion

We have shown that TF redundancy in activity plays an
important role in the robustness of transcriptional regula-
tory program. In addition, TF redundancy in sequence (TF
paralogs) also enhances the robustness of transcriptional
regulatory program [21]. As the two types of TF redun-
dancy have a low overlap, it seems more likely that they
work separately. For activity-redundant TFs that share a set
of binding target genes, their activity could compensate
for each other when one TF is perturbed. On the other
hand, TF paralogs tend to have similar binding domains
[21]. When robust TFs without activity-redundant TFs are
knocked out, their paralogous TFs might be recruited to
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Fragile transcriptional regulatory program is a major source of expression variability. (A) Average nucleosome
profiles in promoter regions are shown for fragile genes (red) and OPN genes (cyan). OPN genes have higher nucleosome
occupancy close to the TSS. (B) Comparison of transcriptional plasticity was performed between fragile genes (red) and OPN
genes (cyan). Values were normalized, such that their means are zero and standard deviations are one. When removing the
genes that are shared by fragile genes and OPN genes, the difference became more significant and OPN genes have transcrip-
tional plasticity comparable to genome-wide level. (C) Multiple regression analysis of two properties influencing seven meas-
ures for expression variability, including stochastic noise (stn), responsiveness (res), stress response (str), trans variability (trv),
mutational variance (muv), interstrain variation (isv) and expression divergence (div). The effects of fragile transcriptional regu-
latory program (purple) and the presence of nucleosomes close to the TSS (green) on expression variability were estimated by

multiple linear regression of the two properties. Error bars in B and C were calculated by bootstrapping.

bind their original target genes to compensate for their
loss. As their paralogous TFs have different activity levels
from them, the paralogous TFs should be reprogrammed
to acquire activity that is similar to theirs. These two types
of redundancy guarantee the robustness of transcriptional
regulatory program.

We have demonstrated that genes with fragile transcrip-
tional regulatory programs under normal growth condi-
tion tend to participate in ESR, though the number of TFs
that bind them in stress conditions is comparable with
that of robust genes. This implies that the fragility of tran-
scriptional regulatory program under normal growth con-
dition plays an essential role in ESR. Moreover, paralogs
also provide backup mechanisms for participation of frag-
ile genes into ESR. As the fragile gene is sensitive to single
TF perturbation, the stress-related TFs could readily repro-
gramme this gene by bypassing only one originally bound
TF. In contrast, even though stress-related TFs bind the
robust gene, its transcriptional programs might not be
altered unless multiple originally bound TFs are bypassed.
This makes it difficult for genes with robust transcrip-
tional regulatory programs under normal growth condi-
tion to respond to stress conditions. A similar explanation
is also applicable to the previous observation that the evo-
lutionary rate of expression or sequence of TFs is not cor-
related with the trans divergence of their target genes [27].
The degree of sensitivity to TF perturbation also affects the
contribution of the divergence of TFs on trans divergence.
Hence, fragile target genes with high divergence of TFs

should show high trans divergence, whereas robust target
genes with high divergence of TFs unnecessarily show
high trans divergence.

A key finding of this study is that fragile transcriptional
regulatory program plays a major role in expression varia-
bility. Expression variability also depends on promoter
chromatin structure: the presence of nucleosomes close to
the TSS is associated with high expression variability [33].
We suggest that the fragility of transcriptional regulatory
program is coupled with chromatin structure to determine
expression variability. First, the fragile transcriptional reg-
ulatory program makes fragile genes sensitive to trans var-
iation that could cause expression variability. Second,
once the transcriptional regulatory program permits the
trans variation to act on a gene, the transient removal of
nucleosomes that cover TSS and TATA elements is
required for gene activation. The fragile transcriptional
regulatory program provides a framework that allows for
expression variability, and the subsequent eviction of
nucleosomes close to the TSS is required for promoter
activation.

Conclusion

We have investigated into the cause and effect of robust
and fragile transcriptional regulatory programs (Figure 5).
In the robust transcriptional regulatory program, cooper-
ative TFs work in concert to regulate their common bind-
ing genes in an activity-redundant fashion, and they are
able to compensate for each other's loss. Accordingly,
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the fragile transcriptional regulatory program, cooperative TFs work in an activity-independent fashion under normal growth
condition (the left bottom panel). This leads to the expression level of the fragile gene sensitive to stress-related TF binding

and TF perturbation (the right bottom two panels).

their binding genes are insensitive to their changes in
activity level and even their single knockout. While in the
fragile transcriptional regulatory program, cooperative TFs
work together in a relatively activity-independent way,
their single perturbation thus significantly affects their
binding genes' expression. This high sensitivity to single
TF perturbation corresponds to high transcriptional per-
turbation, which leads to the high expression variability
of fragile genes.

Methods

TF data

Transcription factor binding data was taken from Harbi-
son et al. [6], which includes the binding affinities of 203
TFs to all promoters under normal growth condition, the
binding affinities of 147 TFs to all promoters under vari-
ous stress conditions. A P value cutoff of 0.001 was used
to define the set of genes bound by a particular TF. We
could determine binding target genes for each TF.
Genome-wide changes in expression data corresponding
to the knockout of 269 TFs were taken from Hu et al. [5].
As a TF can regulate secondary targets via regulatory cas-
cades, we used their refined transcriptional regulatory net-
work that eliminated indirect regulatory interactions. A P
value cutoff of 0.001 was used to define the set of genes
affected by the knockout of a particular TF. We could

determine knockout target genes for each TF. For a given
TF, its binding overlap is defined as the percentage value
of its binding target genes that are common to its knock-
out target genes, and its knockout overlap is defined as the
percentage value of its knockout target genes that are com-
mon to its binding target genes. In this way, we could cal-
culate the binding overlap and the knockout overlap for
specific TFs.

Gene expression data

Genome-wide gene expression data used for coexpression
analysis were measured under normal growth conditions
[17-19], a total of 112 time points. We calculated for each
TF the pair-wise Pearson correlation coefficients among
expression profiles of its binding target genes. We calcu-
lated for each robust or fragile TF the pair-wise Pearson
correlation coefficients between its expression profile and
those of its binding target genes, and also between its
expression profile and those of its cooperative TFs. For all
the 269 TFs [5], we calculated their pair-wise Pearson cor-
relation coefficients in expression profiles. We used the
Mann-Whitney U-test to evaluate whether one TF is signif-
icantly more or less co-expressed with the rest of the TFs.
68 TFs are more co-expressed than the other TFs (P < 0.01,
Mann-Whitney U-test), while 67 TFs are less co-expressed
than the other TFs (P < 0.01, Mann-Whitney U-test).
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We compiled available gene expression data from the
Stanford Microarray Database [23], a total of 1,260 pub-
lished microarray experiments for 6,260 genes in various
cellular conditions. For each gene, we calculated the aver-
age of the squared expression level from the 1,260 experi-
ments as described in a previous study [29], and defined
the normalized resulting value as transcriptional plastic-
ity, which reflected the dynamic extent of its expression
level in various conditions. Transcriptional plasticity was
also calculated separately for up-regulation (the average of
the squared positive expression level) or down-regulation
(the average of the squared negative expression level).
Sensitivity to TF overexpression, which was similarly
defined based on a smaller data set of gene expression lev-
els upon overexpression of 55 TFs [22].

Expression divergence data between yeast species were
taken from Tirosh et al. [25], which were normalized,
such that their means are zero and standard deviations are
one. Data for cis and trans effects to expression divergence
between species were taken from Tirosh et al. [27], which
were transformed into absolute values. Seven measures
were used to represent expression variability as in a previ-
ous study [33], including stochastic noise [34], respon-
siveness [25], stress response [19], trans variability [28],
mutational variance [35], interstrain variation [36] and
expression divergence [25].

Other data

The TSS data was taken from David et al. [31]. Genome-
wide nucleosome occupancy data in vivo were measured
with 1-bp resolution by Kaplan et al. [30]. We calculated
for each gene the average nucleosome occupancy within
the 150 bp upstream of the TSS. The list of ESR genes was
taken from Gasch et al. [19]. The list of paralogs was taken
from Ding et al. [24]. The list of TATA-containing genes
was taken from Basehoar et al. [32]. The list of TFs with
the most similar TF paralogs (E-value<E-20) was taken
from Gitter et al. [21].

Identification of robust TFs, fragile TFs and their respective
cooperative TFs

Given genome-wide TF binding data [6], TF knockout
data [5] and gene expression data [17-19], we used follow-
ing procedures to identify robust TFs, fragile TFs and their
respective cooperative TFs. We focused on the 178 TFs that
have both binding and knockout data. First, we identified
TFs that indeed regulate their own cohorts. For each TF,
the pair-wise Pearson correlation coefficients among
expression profiles of its binding cohort genes were calcu-
lated. If the TF regulates expression of its target genes, its
resulting coefficients should be significantly higher than
genome-wide levels. For each TF cohort, we selected
100,000 random gene sets with the same size as the TF
cohort, and calculated the pair-wise Pearson correlation

http://www.biomedcentral.com/1471-2164/10/573

coefficients in expression profiles for each random gene
set. We defined the p-value of a given cohort as the frac-
tion of the same-sized random sets that had higher aver-
age coefficient than that of the given cohort (a lower
bound of 10-5 on the significance can be assigned to a
given cohort). We identified 112 TFs whose cohort genes
have significantly higher pair-wise Pearson correlation
coefficients in expression profiles (Bonferroni corrected P
< 0.01). In each cohort, individual genes showing a lower
average expressional correlation to all other gene than the
average of the cohort were removed. We restricted our
analysis to these 112 TFs.

Second, we identified robust and fragile TFs. If a given TF
is involved in robust transcriptional regulatory programs,
the expression of its cohort genes should not be affected
by any TF knockouts. If a given TF is involved in fragile
transcriptional regulatory programs, the expression of its
cohort genes should be significantly affected by its knock-
out. We used the Kolmogorov-Smirnov (K-S) statistical
test to measure the discrepancy in the distribution of TF-
knockout gene expression values between a given TF
cohort and the rest of the genes. Our test generated 70
robust TFs whose cohort genes are not differentially
expressed upon any TF knockouts (P > 0.05, K-S test), and
13 fragile TFs whose cohort genes are differentially
expressed upon its knockout (Bonferroni corrected P <
0.01, K-S test) (Additional file 1).

Third, we identified cooperative TFs for robust or fragile
TF. Given a TF A, if another TF B works together with A,
the A cohort should be significantly enriched with the B
binding target genes. We used the Mann-Whitney U-test
to evaluate the difference in the medians of experimen-
tally measured B binding affinities between the A cohort
and the rest of the genes. 62 out of 70 robust TFs, and 12
out of 13 fragile TFs have at least one cooperative TF
(Additional file 1), that is, the TF cohort genes are signifi-
cantly bound by at least one other TF (Bonferroni cor-
rected P < 0.01, Mann-Whitney U-test).

Statistical methods

Given two samples of values, the Mann-Whitney U-test is
designed to examine whether they have equal medians.
The main advantage of this test against t-test is that it
makes no assumption that the samples are from normal
distributions. Given two samples of values, the Kol-
mogorov-Smirnov (K-S) test is designed to examine
whether they are from the same continuous distribution.
The main advantage of this test is that it makes no
assumption on the distributions from which the samples
originated. The main advantage of multiple linear regres-
sion analysis is that it can simultaneously estimate the
influence of all factors (the fragility of transcriptional reg-
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ulatory program and the average nucleosome occupancy
within the 150 bp upstream of the TSS in this study).
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Additional file 2

The difference between robust and fragile transcriptional regulatory
programs in TF-target co-expression. We calculated pair-wise Pearson
correlation coefficient in expression profiles between robust TFs or fragile
TFs and their binding target genes. Distributions of resulting correlation
coefficient values are presented for robust TFs (green) and fragile TFs
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TFs are less co-expressed with their binding target genes than fragile TFs.
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The list of ORF names for the fragile genes.
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Additional file 4

The sensitivity of fragile genes to TF overexpression. For each gene, we
calculated the average of the squared expression level upon overexpression
of various TFs, and defined the resulting value as sensitivity to TF overex-
pression. Average values that correspond to sensitivity to TF overexpression
are shown for fragile genes (red) and all genes (violet). Values were nor-
malized, such that their means are zero and standard deviations are one.
Error bars were calculated by bootstrapping.
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The transcriptional plasticity of fragile genes. Average values that cor-
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tions are one. Error bars were calculated by bootstrapping.
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Additional file 6

Relationship between fragility of transcriptional regulatory program
and transcriptional plasticity. The fragility of transcriptional regulatory
program of one gene is represented by the number of TF knockouts that
significantly (P < 0.001) affect its expression. All genes were divided into
five groups according to the degree of fragility (the five groups correspond
to 0, 1~5, 6~10, 11~15, and > = 16 fragility, respectively), and the aver-
age transcriptional plasticity was shown for each group. Error bars were
calculated by bootstrapping.
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The list of ORF names for genes that are bound by multiple TFs in
stress conditions.
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Additional file 8

Comparison of transcriptional plasticity between fragile genes and
TATA-containing genes. Comparison of transcriptional plasticity was
performed between fragile genes (red) and TATA-containing genes (yel-
low). Values were normalized, such that their means are zero and stand-
ard deviations are one. The comparison was also performed when
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genes. Error bars were calculated by bootstrapping.
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