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The proliferation of increasingly more sophisticated analytical separation systems,

often incorporating increasingly more powerful detection techniques, such as high-

resolution mass spectrometry, causes an urgent need for highly efficient data-

analysis and optimization strategies. This is especially true for comprehensive two-

dimensional chromatography applied to the separation of very complex samples. In

this contribution, the requirement for chemometric tools is explained and the latest

developments in approaches for (pre-)processing and analyzing data arising from one-

and two-dimensional chromatography systems are reviewed. The final part of this

review focuses on the application of chemometrics for method development and opti-

mization.
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1 INTRODUCTION

Analytical instruments are indispensable for modern society.
To keep pace with the growing needs of society to obtain
extended and reliable information on an increasing number
of sample characteristics, analytical methods are continuously
improved [1]. New analytical tools typically are able to gen-
erate more and more complex data, from which it is increas-
ingly difficult to extract useful information and deduce simple
and correct answers, especially when multi-component sam-
ples are analyzed. To extract all valuable information from
what has been referred to by some as “a tsunami of data” or,
more generally, “Big Data,” efficient data-analysis strategies
are evidently needed [2].

One frequently applied analytical tool is chromatography,
where the separation of analytes in a mixture may be obtained
by exploiting differences in their partitioning between the
employed stationary and mobile phases. The employed detec-
tion techniques can detect one signal as a function of time,
often referred to as single-channel data, or a spectrum at every
point in time. This multi-channel data may facilitate identifi-
cation or quantification of the analyte represented by the chro-
matographic signal. Although co-elution of multiple analytes
upon chromatographic analysis may significantly complicate
quantification and identification [3,4].

The quest for more separation power led to the develop-
ment of comprehensive 2D chromatography where the entire
first-dimension (1D) effluent is divided into many fractions,
each of which is subjected to a second-dimension (2D) sepa-
ration [5,6]. The result is illustrated for a comprehensive 2D
LC (LC×LC) separation in Figure 1, where a mixed-mode
ion-exchange LC separation (A) is combined with a reversed-
phase LC separation (B) leading to a 2D chromatogram (C)
[7]. Qualitative information may be obtained from the posi-
tion of the spots (potentially supported by data obtained from
MS detection) and quantitative information from the spot
intensities [8].

However, when applied to highly complex samples even
with 2D chromatography, it can still be difficult to extract
accurate and correct information from the obtained results.
Indeed, samples such as copolymer formulations [9,10], food
[11,12], protein digests [13,14], metabolic mixtures [15], and
oil mixtures [16–18] may easily contain thousands of different
components. To resolve these, powerful separation systems
are needed, often equipped with sophisticated detectors such
as high-resolution mass spectrometers that are able to gener-
ate huge amounts of higher-order data [19]. A large amount
of information is contained in the resulting datasets, with a

mass spectrum (and sometimes multiple fragmentation spec-
tra) at each point in time in the 2D separation space. Arguably,
extracting all relevant information is the biggest challenge
we currently face in high-resolution chromatography. Fortu-
nately, many researchers are devoting their time to developing
efficient chemometric data-processing strategies.

In this article, we review the latest developments in the field
of chemometrics applied to 1D and 2D chromatography. First,
preprocessing methods will be discussed in which we address
post-analysis corrections to resolve baseline drift, undesired
background signals, shifting retention times, and unresolved
peaks. The second part of the review will focus on the inter-
pretation of the data, commonly referred to as data analysis, or
information extraction. In some cases, proper interpretation of
the data can lead to new insights that may be used to further
improve the analytical method. The final part of the review
will, therefore, focus on the application of chemometrics for
method development and optimization.

It is worth mentioning that, ultimately, 2D chromatographic
datasets comprise a collection of 1D separations. Conse-
quently, many of the chemometric strategies used in 2D chro-
matography are based on the analysis of 1D chromatograms.

2 PREPROCESSING

2.1 Aim
The main data preprocessing strategies are generally con-
sidered to be (i) denoising and smoothing, (ii) baseline
(drift) correction, (iii) retention time alignment, (iv) peak
deconvolution and resolution enhancement, and (v) data
compression. Steps (i) and (ii) together are generally termed
“background correction” and are required for the accurate
identification and, especially, quantification of analytes.
This has been a long-standing issue, with the first reports
having been published in the 1960s [20,21]. During the
denoising and smoothing procedures, low-amplitude signals
are first removed, irrespective of their frequency spectrum,
after which high-frequency signals are removed, irrespective
of their amplitude. Next, baseline (drift) correction can be
performed, with the aim to determine the baseline shape and
subtract it from the measurement. Step (iii), retention time
alignment, is used to correct shifts in retention time that occur
between experiments. This is required to compare a series of
chromatograms and to allow one to discern the real differ-
ences between similar samples. Peak deconvolution and res-
olution enhancement (iv) are utilized to resolve two or more
(partially) overlapping signals. Finally, data compression (v)
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F I G U R E 1 Separation of a mixture of industrial surfactants using (A) mixed-mode ion-exchange LC, (B) reversed-phase LC, and (C) a
comprehensive combination of mixed-mode ion-exchange LC and reversed-phase LC. Adapted with permission from [7]

is generally required for large datasets to both reduce the com-
putational resources required and to speed up data analysis.

Important to note here is that all preprocessing strategies
tend to rely on assumptions or premises, which, in some cases,
may lead to incorrect conclusions. A case in point is back-
ground correction, which may lead to the removal of true sig-
nals. This is likely to occur when real peaks cannot easily be
distinguished from the background signal. Another example
is inaccurate alignment, which may occur due to the incor-
rect identification of landmark peaks (or anchor points) used
for the alignment. This can subsequently lead to errors during
data analysis when assessing the differences between chro-
matograms. It should also be stressed that, while a preprocess-
ing method may yield correct results in a specific situation, its
usefulness should always be critically assessed for any other
application, lest incorrect conclusions are drawn. This section
reviews recent developments regarding the preprocessing of
chromatographic data, with a focus on recent strategies for
background correction and retention-time alignment. Where
useful, less-recent methods are also briefly explained.

2.2 Baseline correction
As described previously, the first preprocessing step involves
denoising, smoothing, and baseline-drift correction to reduce
baseline disturbances. In LC, noise mainly results from small

fluctuations in the flow rate, the mobile-phase composition,
and the temperature. Drift results primarily from a variation
in the mobile-phase composition (gradients). In GC electronic
noise may dominate and drift arises from the variations in the
flow rate and temperature-induced “bleeding” of the station-
ary phase. Certain derivative-based peak detection methods
(see Section 3.1) may struggle when such noise is present,
illustrating the necessity for noise removal. In this paper, well-
known noise removal strategies, such as Savitsky–Golay [22]
or Kalman filtering [23], are not specifically discussed. How-
ever, many of the recent background correction procedures
either perform such noise removal prior to base-line drift
correction or utilize subsequent peak detection methods that
do not require noise removal. The baseline-drift correction
is often performed by either a curve-fitting or a smoothing
strategy [24]. The aim in both approaches is to fit a curve
through the presumed background data points, by utilizing
a loss function, such as the well-known least-squares, or
by polynomial fitting [24]. Background correction methods
can be roughly categorized as parametric or nonparametric.
Parametric models are defined as those models that assume
the background is of a certain form that can be described by
a constant number of parameters, e.g. linear, quadratic, or
polynomial regression. Nonparametric methods, on the other
hand, make no prior assumptions regarding the shape of the
baseline and allow for a flexible number of parameters, the
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exact number of which depends on the data. Many back-
ground correction methods are nonparametric, these include
adaptive iteratively reweighted penalized least squares (air-
PLS), asymmetrical least squares (asLS), and corner cutting
(CC) [25]. Interpolation may in some cases also be required
when the actual shape of the background signal under the
peaks must be determined. When a large number of peak clus-
ters are present, baseline correction can become increasingly
difficult, as the data points that contain information on the
background become scarce. However, as stated above, such
baseline-less data sets are becoming increasingly common
with the ever-increasing complexity of the samples analytical
chemists are asked to deal with. Certain techniques perform
especially well in these cases (see Section 2.2.5) [26].

2.2.1 Penalized least squares approach
Many background correction algorithms are based around the
use of penalized least squares, which is a smoothing method
based on the Whittaker smoothing function [27]. Such meth-
ods include adaptive iteratively reweighted penalized least
squares (airPLS), modified airPLS (MairPLS), asymmetri-
cal least squares (asLS), asymmetrically reweighted penalized
least squares (arPLS), and morphologically weighted penal-
ized least squares (MPLS) [24,28,29].

The penalized least squares algorithm relies on balancing
the fit of a model to the data, 𝐹 , given by the sum of squares
(SSQ), against its roughness (𝑅) by adjusting a smoothing
parameter, λ. This is given by:

𝑄 = 𝐹 + λ𝑅 =
𝑚∑
𝑖=1

(
𝑥𝑖 − 𝑧𝑖

)2 + λ
𝑚∑
𝑖=2

(
Δ𝑧𝑖

)2
= ‖x − z‖2 + λ‖Dz‖2 (1)

where 𝑥𝑖 is the ith data point in the signal (x), D is the deriva-
tive of the identity matrix (I), and 𝑧𝑖 is the ith point of the fitted
data, z. Solving for ∂𝑄

∂𝑧 = 0 returns a set of linear equations
that can be solved to determine the fit, z:(

I + λD′D
)
z = x (2)

To utilize this smoothing function for baseline correction,
one must first establish the location of peaks in the chro-
matogram. Once these peak points are known, a binary mask
or “weighted matrix” can be created, the points of which cor-
respond to either one or zero, depending on whether the data
point in the chromatogram corresponds to background or to a
peak, respectively. This is the approach taken by both Cobas
[30] and Zhang et al. [31].(

W+ λD′D
)
z = Wx (3)

with W the weighted matrix or binary mask indicating the
location of peaks. The disadvantage of this weighted-least-

squares method is that it requires peak detection, which may
in itself be affected by the correct definition of the baseline.
The asymmetrical least squares (asLS) method developed by
Eilers et al. [24] aims to solve this issue by introducing an
asymmetry parameter. This parameter allows for the weights
that are placed on positive and negative deviations from the
baseline to be smaller and larger, respectively. However, in the
case of asLS, this asymmetry parameter is constant, irrespec-
tive of the position on the baseline. For this reason, airPLS
was introduced [29], which allows for certain regions of the
baseline to be penalized more than other regions. In airPLS,
a weight vector is obtained by iteratively solving a weighted
penalized least squares problem. An accurate weight vector is
thought to be established once the difference between the sig-
nal and the fitted vector |𝑑𝑡| falls below one thousandth of the
original signal.

||𝑑𝑡|| < 0.001 |x| (4)

Both asLS and airPLS overestimate the baseline in the
presence of additive noise. Therefore, the asymmetrically
reweighted penalizes least squares (arPLS) approach was
developed by Baek et al. [32]. Additional methods based
around the same principles are MairPLS, in which the chro-
matogram (x) is pretreated prior to performing airPLS (see
Section 2.2.4) [29], and MPLS, developed by Li et al. For
MPLS a morphological strategy is used for the initial deter-
mination of the weight vector [28,33]. Background drift is
ultimately accounted for by using the previously described
weighted penalized least squares.

While the penalized least squares approaches are not con-
sidered computationally intensive, it should be noted that all
of them require finding the correct smoothing (λ) parameter
to fit the baseline. This may make these methods more time
consuming than some of the other methods.

2.2.2 Multivariate curve resolution and
orthogonal subspace projection for background
correction
Multivariate curve resolution (MCR-ALS) is one of the
best-known two-way data analysis methods. It allows recov-
ering the number of components in a mixture, their response
profiles, and their estimated concentrations [34,35]. There-
fore, MCR is often applied for quantitative purposes (see
Section 3.4). However, it may also be used for background
correction. MCR requires the data to satisfy the condition of
bilinearity. Examples of its application include LC–DAD and
LC–MS data [36,37]. MCR decomposes a matrix into pure
chromatographic and spectral profiles, plus noise or error, as
in equation (5)

𝑋 = 𝐶𝑆𝑇 + 𝐸 (5)
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in which 𝑋 represents the recorded data, and 𝐶 and 𝑆 the
pure chromatographic and spectral profiles of the components
in the sample, respectively. 𝐸 is the error matrix, (ideally)
containing only instrumental noise. Often initial estimates are
made by singular value decomposition (SVD) [38] or PCA,
but sometimes alternative methods are used [39]. Then con-
straints are set in place and the equation is iteratively opti-
mized by means of alternating least-squares (ALS). The sig-
nal 𝑋 does not only contain information on analytes but also
on background drift:

𝑋 = 𝑋analyte +𝑋background (6a)

𝑋analyte = 𝑐1𝑠1
𝑇 + 𝑐2𝑠2

𝑇 ⋅ ⋅ ⋅ 𝑐𝑁𝑠𝑁
𝑇 (6b)

𝑋background = 𝑐𝑏𝑘,1𝑠𝑏𝑘,1
𝑇 + 𝑐𝑏𝑘,2𝑠𝑏𝑘,2

𝑇 ⋅ ⋅ ⋅ 𝑐𝑏𝑘,𝑀𝑠𝑏𝑘,𝑀
𝑇 (6c)

By considering that the spectra of the analytes 𝑠𝑁 also
contain background data, a subspace projection can be cre-
ated that is orthogonal to the original data. Multiplication
of the original data with this subspace will cause the back-
ground drift to be canceled out, which is called orthogonal
subspace projection (OSP) or orthogonal spectral signal pro-
jection (OSSP). For more information regarding this tech-
nique and its use in background correction, please refer to the
literature [40,41].

2.2.3 Corner cutting with Bezier smoothing
One example of nonparametric background correction is the
CC method that has been developed by Liu et al. [25]. In CC,
a smooth baseline is generated by fitting a Bezier curve [42]
through the points that remain after corner points are removed
from the signal vector. These corner points are defined as
those points that lie above a straight line created between the
previous and subsequent points in the data. This results in
the automatic removal of peaks as these, by definition, will
be corner points. However, a disadvantage of the approach is
that it results in increasingly concave baselines as the algo-
rithm progresses. This has been addressed by the authors by
introducing a terminal condition related to the average area
reduction that occurs during the iterations. The baseline is
obtained after the iteration at which the average reduction in
area is maximal. The approach was evaluated by comparing
it to airPLS and various software packages [43–45], as well
as by employing support vector machines (SVM; see Sec-
tion 3.3.4) classification. Since improved baseline correction
should lead to better classification results, this may be one cri-
terion to decide which method performs best. By correcting
the background in Raman, X-ray diffraction (XRD), LC–MS,
and matrix-assisted laser desorption/ionization–time-of-flight
MS (MALDI-ToF MS) data, the CC method was shown to
yield the best results, without requiring additional parameters
to be determined.

2.2.4 Local minimum value approach
Another approach to baseline correction is by utilizing the
concept of local minimum values (LMVs) [46]. The approach
consists of three stages, namely: (i) initialization, (ii) iterative
optimization, and (iii) an estimation of background drift. In
the first stage, a set of data points are assigned as local mini-
mum values if the following set of conditions are satisfied:

𝑝𝑖−1 > 𝑝𝑖 (7a)

𝑝𝑖 < 𝑝𝑖+1 (7b)

In which 𝑝𝑖 is the ith data point in the chromatogram, while
𝑝𝑖−1 and 𝑝𝑖+1 are the data points before and after 𝑝𝑖. A chro-
matogram with LMVs selected is illustrated in Figure 2.

The complete set of LMVs is stored in a “minimum vec-
tor” and consists of chromatographic peak points and noise.
This minimum vector is shown in Figure 2B. Any of the peak
points that may have been included in the minimum vector are
treated as outliers and removed by utilizing a moving-window
strategy. This requires an a priori estimation of the appropri-
ate width of the moving window. The initial minimum vector
that still contains outliers and the corrected minimum vector
are shown in Figure 2B and C, respectively. Any point with
an S/N ratio larger than 2.5 is considered a peak point and
replaced with the median value of an extracted vector from
the window in which that point occurs. This strategy is then
repeated until convergence. After the iterative optimization
stage, the baseline is estimated by linear interpolation. The
corrected chromatogram is ultimately obtained by subtracting
the estimated baseline from the original data, as is illustrated
in Figure 2D.

The LMV method was compared with morphological-
penalized-least-squares (MPLS) [28] and moving-window-
minimum-value (MWMV) methods [47] using both simulated
and GC data. The simulated data consisted of both single and
overlapping peaks, with the latter being composed of con-
tributions of two, three, or four peaks. Using the simulated
data, peak areas and SDs were determined after background
correction by local minimum values-robust statistical analysis
(LMV-RSA), MWMV and MPLS at different levels of noise.
It was demonstrated that the LMV-RSA approach yielded the
most-accurate peak areas and the lowest SDs, with recoveries
close to 100% in all cases and SDs below 4.5% at all but the
highest noise level. MWMV performed slightly worse, while
MPLS generally resulted in significantly lower peak areas,
especially in the case of overlapping peaks, with recoveries of
around 53 and 74% for the peak clusters containing three and
four peaks, respectively. The influence of the moving-window
width (in the range between 20 and 80 data points) was found
negligible for the GC data set.

Additionally, the LMV approach was compared to
the “background drift correction by orthogonal subspace
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F I G U R E 2 Background correction using LMVs, (A) The selection of LMV’s by the criteria of Eqns. 7a and 7b, (B) The resulting minimum
vector, (C) removal of outliers by a moving-window strategy, with m the respective iteration, and (D) the original signal, the baseline, and the signal
corrected for background. Reproduced with permission from [46]

projection” (BD-OSP) method, which was utilized for the
LC-QTOF-MS data [41]. In this case, the differences were
only assessed qualitatively. It was shown that after correction
with BD-OSP, total-ion-current (TIC) data still contained
background drift, whereas data corrected with LMV-RSA
did not contain background drift but had lost part of the
information contained in the TIC [44]. The comparisons
showed that LMV-RSA performed comparably or better
than the MPLS, MWMV, and OSP approaches. However,
as also stated by the authors, it is important to note that the
technique can only be applied if local minimum values can be
assigned.

2.2.5 Automatic peak detection
and background drift correction
Another approach to automated background correction com-
bined with peak detection is the automatic peak detection and
background drift correction (ACPD-BDC) method of Yu et al.
[48] First, peak start points (𝑥𝑖) and endpoints (𝑥𝑗) were deter-
mined. A data point was defined as a start point if the follow-
ing condition was satisfied:

𝑥𝑖 < 𝑥𝑖+1 < 𝑥𝑖+2 < 𝑥𝑖+3 (8)

i.e. starting position of a peak 𝑥𝑖 must be smaller than the
next three data points, 𝑥𝑖+1 to 𝑥𝑖+3. Similarly, any data point

is defined as an endpoint of the peak if the following condition
is satisfied:

𝑥𝑗 > 𝑥𝑗+1 > 𝑥𝑗+2 > 𝑥𝑗+3 (9)

which similarly states that a peak’s endpoint 𝑥𝑗 must be larger
than the next three points, 𝑥𝑗+1 to 𝑥𝑗+3. While not stated
explicitly by the authors it is assumed by us that in condi-
tion (8) only the first point in an increasing series is taken as
a peak starting point, as this condition will lead to multiple
points of increasing intensity being detected while the signal
is rising, depending on peak width and detector frequency.
Similarly, for condition (9), only the last point in a decreas-
ing series should be taken as a peak’s endpoint. These start
and end points were then contained in two vectors (a = [𝑎1
𝑎2 … 𝑎𝑝] and b = [𝑏1 𝑏2 … 𝑏𝑞]). A combination of a start-
ing and ending point, [𝑎𝑚 𝑏𝑛], was considered a peak’s elution
range as long as the following logical condition is met: 𝑏𝑛−1 <

𝑎𝑚 < 𝑏𝑛 < 𝑎𝑚+1. All detected peaks were subsequently sub-
tracted from the original signal, 𝒙. In this way, an initial esti-
mate of the background was made (𝒙𝑛𝑒𝑤). Threshold values
were established using the first-order derivative of this ini-
tial estimate (𝑑𝒙𝑛𝑒𝑤) and outliers were iteratively removed by
condition (Eq. 10), with noise thresholds being defined as 3σ.

|||𝑑𝑖 − 𝑑𝒙𝑛𝑒𝑤
|||

σ
> 3 (10)
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F I G U R E 3 Comparison of background drift correction in 15 LC samples, containing 11 antibiotics in tap water. (A) Original chromatograms,
(B) and (C) background correction by airPLS and MairPLS, respectively (smoothing factor, λ = 104), (D) correction by ACPD-BDC. Reproduced
with permission from [48]

In which σ is the SD within 𝑑𝒙𝑛𝑒𝑤 and 𝑑𝑖 is the ith
element of 𝑑𝒙𝑛𝑒𝑤. This condition estimates the noise level,
by iteratively removing elements in 𝑑𝒙𝑛𝑒𝑤. It is important
to obtain a correct 𝑑𝒙𝑛𝑒𝑤 vector, as its first-order derivative
is subsequently used as a threshold to selectively remove
pseudo peaks from the original signal (𝒙). This was carried
out by evaluating the first-order and second-order derivatives
of the original signal. Pseudo peaks were removed based on
two conditions, i.e. (i) the absolute value of the first-order
derivative of the original signal, relative to the threshold
value previously established using Eq. 10, and (ii) the number
of times the second-order derivative crosses the zero-line.
The authors accepted a signal as a true peak if the absolute
value of the first-order derivative was five times larger than
the noise threshold, and if the second-order derivative crossed
the zero-line fewer than eight times. Background drift was
ultimately corrected for by first replacing the previously
detected regions containing peaks by linear baselines and was
denoised using three-point moving-window averaging. This
resulted in a modified signal vector (𝒙𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑), which is
now assumed to accurately describe the background. Baseline
correction is then performed by subtracting this background
from the original signal. The developed background correc-
tion procedure was then evaluated and compared to the use
of airPLS [29] and MairPLS, in which the background signal
(𝒙𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) is used rather than the original chromatogram
signal (𝒙) as in airPLS. These three methods were applied for
the background correction of simulated data, experimental
LC data on a sample containing 11 antibiotics in tap water,
and GC data on plant-based flavor extracts. MairPLS and

ACPD-BDC performed similarly for all data sets evaluated,
while airPLS performed considerably worse. This is illus-
trated in Figure 3 where for each method the uncorrected and
background-corrected LC chromatograms are shown.

MairPLS and ACPD-BDC were further evaluated by means
of PCA (see Section 3.2.1.1). In this study, the variance
explained by the first principal component before and after
background correction is used as figures of merit. For the LC
data, this increased from 36.9% before background correc-
tion to 43.5% after background correction by MairPLS and
to 44.4% when ACPD-BDC was used. For the GC data set,
almost no change was observed in the percentage of variance
explained, which remained close to 95.0% in all cases.

2.2.6 Bayesian approaches to background
correction
As previously stated, baseline correction is often hindered by
crowded chromatograms and low S/N ratios. One approach
aimed specifically at facilitating baseline correction even
under these conditions has been developed by Lopatka et al.
[26]. In this approach, a probabilistic peak-detection algo-
rithm is used to determine the probability of a point in the
chromatogram belonging to a peak or to the baseline. It is
hence termed the peak-weighted (PW) method. The algorithm
operates by fitting several different models across a set win-
dow of data using a least-squares approach. Then, a likelihood
is assigned to each model and from this, the probability of
the data point belonging to a peak is calculated. User-defined
parameters include the number of overlapping peaks allowed
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F I G U R E 4 Comparison of background-drift correction by asLS, MM, and PW methods for crowded (left) and sparse (right) simulated
chromatograms [26]. The green points are those points that have been given high weight by the PW model and are primarily used to describe the
background, while the blue points have been given low weights

in each section and the window width, which directly depends
on the peak width. This approach was compared to the mixture
model (MM) and asymmetrical least-squares (asLS) [24,49]
approaches and was shown to perform especially well in the
case of crowded chromatograms. This is illustrated for simu-
lated data in Figure 4.

The PW method was also applied for background correc-
tion of a comprehensive 2D GC-FID chromatogram of fire
debris. However, with suitable benchmarks unavailable, the
authors found it impossible to objectively assess the perfor-
mance of the PW method in this situation.

A different approach based on Bayesian regularized
artificial neural networks (BRANN) [50] was developed

by Mani-Varnosfaderani et al. The iterative BRANN algo-
rithm was compared to airPLS, MPLS, iPF, and CC (see
Sections 2.3.2) methods using the projected-difference-
resolution (PDR) criterion.

2.2.7 Baseline estimation and denoising using
sparsity
When a signal can be described reasonably accurately using
only a few non-zero parameters it can be classified as sparse.
For a typical chromatogram, consisting of peaks, noise,
and background, this assumption may also be applied if it
features relatively few peaks compared to the number of
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F I G U R E 5 Comparison of background drift correction using BEADS (top), backcor (middle), and airPLS (bottom). Reproduced with
permission from [51]

baseline points. One algorithm that utilizes this concept of
sparsity, and has been developed recently, is called baseline
estimation and denoising using sparsity (BEADS) [51]. It
was later further improved to create the “assisted BEADS”
algorithm [52]. BEADS specifically aims to model the
signal, background, and noise, without employing the use
of overly restrictive parametric models. As the background
is considered a low-pass signal, depending on the cut-off
frequency, low-pass filters may allow this background to be
removed. In mathematical terms, the approach is based on
modeling the chromatographic signal as:

𝑦 = 𝑠 +𝑤 = 𝑥 + 𝑓 +𝑤 (11)

with 𝑦 the input data or chromatogram containing peaks 𝑥,
baseline 𝑓 , and white Gaussian noise 𝑤. Thus 𝑠 describes the
noiseless input chromatogram (𝑥 + 𝑓 ). It is assumed that in
the absence of peaks, the baseline can be estimated by utiliz-
ing a low-pass filter. Thus, from an estimate of the peak vector
(�̂�) an estimate of the baseline (𝑓 ) can be obtained by filtering
the chromatogram.

𝑓 = L (𝑦 − �̂�) (12)

Once the baseline is estimated, the noiseless input chro-
matogram (�̂�) can also be obtained as this is simply �̂� + 𝑓 .
This means �̂� can be estimated by using both a low-pass filter
L and a high-pass filter H.

�̂� = L𝑦 + H�̂� (13)

The task is then to obtain an accurate estimate of the
peak vector and to establish suitable filters. To achieve this,
the authors investigated two different cost functions and
employed an algorithm to minimize these. For a more exten-
sive overview of the cost functions and algorithm employed,
please refer to Ning et al. [51].

The performance of BEADS was compared to airPLS
[29] and backcor [53] strategies for baseline correction of
simulated and real chromatographic data. The results are
illustrated in Figure 5, using chromatographic data from
Zhang et al. [29].

BEADS was found to have performed favorably in com-
parison with airPLS and backcor, with the former underes-
timating the baseline in the range from datapoint (sample
in Figure 5) 2200 to 2500 and the latter overestimating the
baseline in this region. However, while BEADS performed
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well, the baseline was required to be periodic, i.e. the signal at
the start of the chromatogram should be equal to that at the end
of the chromatogram. If the above requirement is not fulfilled,
for example, due to changes in mobile-phase composition or
temperature, the modeled baseline will show end-point tran-
sient artifacts. This would manifest in a decrease (or increase)
of the baseline toward the starting value at the endpoint of
the chromatogram. An additional limitation includes the need
to manually adjust parameters, such as the order of the filter
employed and its cut-off frequency, the penalty function uti-
lized in the optimization and its asymmetry, and the regular-
ization parameters, which should be set in accordance with the
expected sparsity of the data. Small changes in these param-
eters can result in very different baselines. However, as noted
by the authors, these parameters do allow the approach to be
used for diverse signals, including, for example, baseline esti-
mation in electrocardiography (ECG). Furthermore, BEADS
cannot correctly handle negative signals, such as those
observed in, for example, refractive-index detection (RID).

To summarize, the following difficulties arise when using
BEADS for baseline correction: (i) parameter adjustment and
selection (ii) the signal intensity for the first and last points
in the chromatogram should be equal, and (iii) difficulties
with assessing data that may contain negative peaks. Most
of these limitations have been addressed by Navarro-Huerta
et al. [52] who have developed the assisted-BEADS algo-
rithm, and by Selesnick, who has proposed a solution for the
endpoint artifacts [54]. Parameter selection may be facilitated
by auxiliary autocorrelation plots. In such plots, the correla-
tion between consecutive data points is measured. By deter-
mining the autocorrelation of the noise after background cor-
rection and by plotting this as a function of one (or, ideally, all)
of the adjustable parameters, the optimal value of the param-
eter(s) can be established from the location in the plot where
autocorrelation is minimized. To address the sensitivity of
BEADS to negative peaks, an additional algorithm has been
applied, which discards sporadic negative signals [52].

2.2.8 Background correction in GC–MS and
LC–MS using recorded profile spectra
An MS-based approach to baseline correction and noise
removal in GC–MS and LC–MS data has been developed by
Erny et al. [55]. In this work, the recorded profile (full) spec-
tra were used rather than conventional centroid mass spec-
tra. The latter is obtained by retaining only the peak centers
at discrete m/z values (i.e. zero-line width), and the corre-
sponding intensity while discarding any other information.
However, it has recently been shown that errors may result
from the use of centroided spectra in subsequent data anal-
ysis, the most prominent being the merging of overlapping
peaks. As the number of profile spectra to be analyzed was
60 000 and 141 000 for CE–ToF-MS and UHPLC–QToF-

MS, respectively, a selection of profile spectra was first made
based on their relative length. This relative length is defined
as the number of non-zero values divided by the total num-
ber of values in the MS profile. As a zero value means no
ion is detected at the given time and m/z interval, the relative
length is an indicator of what type of information is contained
within the profile. By generating a base peak profile from a
selection of profiles that differ in relative length, the informa-
tion in these profiles can be visualized. Using this approach,
the authors selected the profile spectra with a relative range of
75–100% as the data to use for background correction, along
with profiles containing more than 50% of non-zero values.
This resulted in 3909 and 37 000 profiles for background cor-
rection in CE–ToF-MS and UHPLC–QToF-MS, respectively.
The same strategy was also applied for noise estimation, using
the profile spectra in the relative range from 0 to 25%. Both
airPLS and arPLS were then investigated for baseline correc-
tion, while a moving-window strategy was employed for noise
removal using the noise estimated from the base-peak pro-
file as a threshold value. The use of a higher noise thresh-
old was also investigated, however, this ultimately resulted in
the removal of low-intensity peaks. The background correc-
tion itself, performed with arPLS, did not result in significant
alterations of the total-ion profile. As a final step, the spectra
are converted back to conventional MS-centroid spectra. The
computation time was approximately 2 and 20 min for the CE-
ToF-MS (0.7 GB) and UHPLC-Q/ToF-MS (2.9 GB) data sets,
respectively. The primary difference with other approaches is
that baseline correction and noise removal are primarily based
on the profile spectra, which are first selected based on their
relative length, so as to improve the accuracy of the correction.
This allowed the authors to reliably obtain base-peak ions that
were previously obscured by background ions. It also allowed
for a substantial reduction in data size.

2.2.9 Methods for 2D chromatography
A number of research groups have specifically investigated
methods for 2D chromatography. One example exploits the
trait of visualizing LC×LC and GC×GC separations as 2D
image. In their work, Reichenbach et al. utilized a num-
ber of statistical and structural characteristics of the back-
ground signal in 2D chromatograms, including the white noise
properties of noise in chromatographic signals to correct for
the background [56]. Their algorithm has been applied to
both GC × GC and LC × LC data using the GC Image
and LC Image software tools [57,58]. Other approaches have
consulted the data from the 1D perspective. Zeng et al.
used the linear least-squares curve fitting approach combined
with moving-average smoothening to correct all 1D peaks
within the 2D chromatograms [59]. Zhang et al. employed
alternating trilinear decomposition (ATLD) to correct the
analytical signal for the background drift of LC×LC–DAD
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data [60]. Self-weighted alternating trilinear decomposition
(SWATLD) and parallel factor analysis (PARAFAC) were
also applied for this function.

2.3 Retention-time-alignment strategies
After the data have been corrected for the background signal
alignment may be required. This is especially the case in LC,
where retention-time shifts between analyses are not uncom-
mon. This alignment is generally performed either based on
integrated peak tables or on pixel-level chromatograms. In
the latter case, the entire chromatogram is used for the align-
ment. When using integrated peak tables, peaks are aligned
by assigning a unique identifier to each peak and assuming
this to be consistent across all chromatograms being aligned.
Therefore, such alignment strategies are often closely linked
with other chemometrics methods that allow for both peak
detection and tracking. The algorithms vary in complexity
from simple scalar shift alignment, alignment to selected
target peaks, local alignment, to globally optimized align-
ment, which automatically optimizes the alignment in mul-
tiple regions of the chromatogram. Some of the best-known
globally optimized alignment approaches are correlation-
optimized warping (COW), dynamic time warping (DTW),
parametric time warping (PTW), and correlation-optimized
shifting (COSHIFT) [61–63]. Many of these algorithms have
been applied in various fields, such as forensic profiling and
metabolic fingerprinting [64,65].

2.3.1 Correlation-optimized warping
In COW, the chromatogram is first divided into several local
regions, which are iteratively stretched and compressed until
the Pearson correlation coefficient (PCC) between the sample
and the reference chromatogram is maximized. The PCC is
calculated from Equation (14).

PCC = (𝒓 − �̄�)𝑇 (𝒙 − �̄�)√
(𝒓 − �̄�)𝑇 (𝒓 − �̄�) (𝒙 − �̄�)𝑇 (𝒙 − �̄�)

(14)

in which 𝒓 is a vector describing the reference chromatogram,
while 𝒙 is the test chromatogram. The mean values of these
are given by �̄� and �̄�, respectively. Several input parameters
are required, such as the segment length and the slack length.
Adaptations to COW have also been developed, including the
2D-COW algorithm by Zhang et al. [66] and an alternative
method by Gros et al. [67], which has recently been applied
for alignment of GC×GC–HRMS data [68].

2.3.2 Automatic time-shift alignment
An additional approach to time-shift alignment, automatic
time-shift alignment (ATSA), was developed by Zheng et al.
[69]. This method comprises three different steps, viz (i)
automatic baseline correction and peak detection, (ii) pre-

liminary alignment through adaptive segment partition, and
(iii) a precise alignment. Baseline correction was performed
by LMV-RSA (see Section 2.2.1) and peak detection was
carried out by a multi-scale Gaussian smoothing-based
strategy (see Section 3.3.2) [70]. Then the chromatogram
was divided into a number of short segments, the time shifts
within which were expected to be similar. A preliminary
alignment of the chromatograms was performed by first
establishing a reference chromatogram. However, as noted
by the authors, relying solely on maximizing PCC values can
lead to misalignments, as the magnitude of the PCC value is
influenced strongly by large peaks. Therefore, the preliminary
alignment was performed by using the total peak correlation
coefficient (TPC) instead, which is calculated from:

TPC =

(∑𝐼
𝑖=1 𝑤𝑖PCC𝑖∑𝐼

𝑖=1 𝑤𝑖

)
𝐼

𝑁
(15)

in which 𝑤𝑖 is the weight of the ith-matched peak, defined as
the ratio between peak area and peak length, and 𝐼 and 𝑁 are
the number of peaks in the test and reference chromatograms,
respectively. Peak length describes the width of the peak, but
in number of data points, rather than time units. Segments
that were not correctly aligned were treated as outliers and
were re-aligned if they did not fall within the 99% confidence
interval. For re-alignment PCC values were used and the coef-
ficient closest to the expected time-shift value was selected
as optimal. After preliminary alignment, overlapping and dis-
connected segments may be present in the chromatogram.
These were corrected by using a warping strategy and adjust-
ing the boundaries between segments. To ensure that the chro-
matogram retains the same start and endpoints after time-
alignment, a linear interpolation strategy was used. The PCC
values obtained after preliminary alignment already showed
significant improvement, increasing from 0.72 to 0.96.

After the preliminary alignment, the final precise align-
ment was carried out by first segmenting the aligned test
chromatogram based on the number of chromatographic
peaks present. Boundaries set in the middle between the end
position of a peak and the starting position of a subsequent
peak. Each segment was then aligned to the nearest reference
peak based on retention time. For segments that did not
contain a reference peak, the time shift was taken as the
average of that of neighboring segments. Then once again
warping was used to properly align the segment boundaries,
as the time-shifts caused disconnected and overlapping seg-
ments. After performing the entire retention-time alignment
procedure the correlation coefficient improved further, from
about 0.96 to about 0.99.

The authors then evaluated their approach. The influence
of the two pre-estimated parameters, i.e., the initial segment
size and initial time shift were investigated. Several different
settings were tested, and the obtained PCC values were
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compared. Initial segment size was varied incrementally
from 1 to 10 min and was found to result in nearly constant
PCC values of approximately 0.993. However, the authors
noted that larger segment sizes (> 10 min) would reduce the
required computing power but resulted in drastic time-shift
changes. The initial time-shift estimate was varied from
0.1 to 1 min and resulted in constant PCC values. The
ATSA method was also evaluated by analyzing the eventual
peak areas. This is especially important because a warping
strategy was used, which may influence quantification. Once
again, the peak areas before and after the entire alignment
strategy were compared by using the obtained PCC values.
The approach was shown to have a negligible effect on the
determined peak area (PCC = 0.9998). However, as stated
by the authors, the relative deviation increased for very small
peaks. ATSA was applied in a study concerning the storage
of essential oils and it was compared with COW. The exper-
imental data suggested the degradation of the essential oils
during storage. However, after alignment using either COW
or ATSA, the obtained correlation coefficients suggested that
no degradation had taken place. This demonstrates clearly
that the use of retention-time alignment may lead to incorrect
conclusions. Thus, whether such a strategy can be applied
must be critically assessed for each application.

2.3.3 MS-based peak alignment
Several alignment algorithms have been developed that are
based on the use of MS [71,72]. In the approach of Fu et al.
[71] baseline correction was first carried out by an LMV
approach (see Section 2.2.4). The actual time-shift alignment
consists of four steps: (i) extraction of the path of maximum
MS-correlation, (ii) peak-alignment modification using land-
mark peaks, (iii) grouping and registration of missing peaks,
and (iv) peak-alignment refinement. The first step required
an initial estimate of the time shift (0.5 min in the described
case), after which PCCs (see Section 2.3.1, Eq. 14) were cal-
culated based on mass spectra for each test and reference chro-
matographic peak that fell within this initial time-shift win-
dow. All PCCs were collected in a correlation matrix that was
used to determine the maximum-correlation path. The corre-
lation matrix and the determined maximum-correlation path
are illustrated in Figure 6.

The approach is based on the assumption that peak elution
order is consistent between samples. This may not always be
the case. Therefore, alignment based on landmark peaks has
also been incorporated. In this approach, landmark peaks are
first defined as those peaks showing PCCs above 0.99. The
time shifts of these landmark peaks are then stored in a vector
and outliers are removed based on the median and the stan-
dard deviations of the landmark peaks’ time shifts. Time shifts
between two landmark peaks are linearly interpolated and an
expected time shift can be calculated. This is then compared

to the original time shift resulting from step (i) and the peak
is realigned to the nearest reference peak in case the expected
time shift is significantly different from the original time shift.
However, as noted by the authors, while the time shift can also
be approximated using non-linear interpolation, it cannot be
employed in situations where the elution order has changed.
In steps (iii) and (iv), certain peaks may not be present in the
reference chromatogram. These missing peaks are grouped
based on their retention time with a maximum time shift win-
dow of 0.1 min, after which the chromatogram is realigned
one final time.

The developed MS-based alignment was validated by
applying it to a GC–MS data set including 12 growth and 18
maturation plant samples. Peak-alignment results of these 30
samples are illustrated in Figure 7 for a selection of 15 closely
eluting peaks.

Another method incorporating baseline correction, peak
detection, and time-shift alignment was proposed by Yu et al.
for metabolic profiling analysis of 30 plant samples [73]. The
method uses ACPD for peak detection and baseline correc-
tion, after which time shifts are corrected based on the TIC
data. After this pretreatment PCA, ANOVA, and PLS-DA
(Section 3.3) were applied to further analyze the data. Peak
alignment required first choosing a reference chromatogram,
which in this case was the chromatogram containing the
highest number of peaks. After peak detection and back-
ground correction, segments from both the chromatogram
to be aligned and the reference chromatogram were selected
based on an initial time-shift estimate (0.5 min was chosen).
Initially, a rough alignment was performed using a similar
approach as described in Section 2.3.1. In this case, the cosine
correlation was calculated rather than the PCC. Note that both
are related, with the difference being that the PCC is the cen-
tered cosine correlation, which itself is the normalized inner
product. The sum of the weighted individual cosine values
(COS) was then used to obtain the initially aligned chro-
matogram.

After initial alignment, a precise alignment was carried
out by accounting for the relative distances, cosine values,
and real distances between a chromatographic peak in the
reference and each of the peaks to be aligned in the sample
chromatogram, within the respective segment. This yielded
an alignment table. In those cases where two of the reference
peaks were aligned to the same sample peak, the peak with
the smallest cosine correlation would be removed, the roles
of reference and test chromatogram inverted, and the two
alignment tables would be combined. For all other cases, this
approach was not applied.

Although the time-shift-alignment procedure was val-
idated by aligning the data from the plant samples, the
procedure was not compared with other approaches. As also
stated by the authors, one of the disadvantages of this peak
alignment approach is that the elution order must remain
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F I G U R E 6 Peak alignment based on
maximum-correlation path and the additional use of
landmark peaks. (A) selected range of the
chromatogram; (B) misaligned peaks when only
mass-spectral information is utilized; (C) The
locations of the misaligned peaks in the maximum
correlation coefficient path and the modified result
after utilizing landmark peaks. In green, the highest
obtained PCC values are shown prior to the correction
using landmark peaks; higher PCC values could be
obtained by ignoring peaks 155 and 156 however, the
new PCC values are shown in yellow; (D) Aligned
chromatogram after correction. Reproduced with
permission from [71]

F I G U R E 7 Peak alignment results with (A) the original chromatogram; highlighted are 15 closely eluting peaks, (B) alignment results, and (C)
and (D) original and aligned peaks within the region containing the 15 closely eluting peaks. Reproduced with permission from [71]
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unchanged between samples. This assumption is actually
inherent to many of the peak-alignment methodologies
currently available.

2.3.4 Approaches for 2D chromatography
In addition to the approaches above, a number of less-recent
studies have focused on retention-time alignment in 2D chro-
matography where in particular second-dimension modu-
lations must be aligned to facilitate further data analysis.
PARAFAC was applied to correct such retention-time shifts
between neighboring modulations [74]. Johnson et al. applied
a windowed-rank minimization with interpolative stretching
to the separations of naphthalenes in jet fuel by GC×GC
[75]. Another method applied to GC×GC data used indexing
schemes for warping in both dimensions [76]. Similar to back-
ground correction, other developed methods for retention-
time alignment approached the data from an image perspec-
tive [59,77,78]. With most developed approaches generally
exclusively adaptable to three-way data structures, Allen and
Rutan developed an approach that allowed processing of four-
way data structures and applied this to LC×LC-DAD data
[79].

Correction for wrap around
In some cases, analytes may not elute within the modulation
time and appear in the following modulations. This is known
as wrap around and is rather common in GC×GC. One method
to resolve this treats the 2D chromatogram as a continuous
three-dimensional cylinder where the end of one modulation
is the beginning of the next [80]. Alternatively, absolute reten-
tion times may be determined by using an integer fraction of
the original modulation to detect occurrences of wrap around
[81].

2.4 Signal deconvolution and resolution
enhancement
In general, most chromatograms of complex samples suffer
from overlapping signals. This problem can be reduced
by utilizing efficient 2D-LC approaches combined with
selective detection techniques, such as tandem MS. However,
these types of analytical systems are not always available and
even when accessible, they sometimes still do not provide
resolution of all components. Techniques for peak-resolution
enhancement, such as even-derivative sharpening (see
Section 2.4.1) [82], derivative symmetrization [83], or
power-law methods may be used [84,85]. These techniques
also have the potential for peak detection, as they highlight
any small difference in peak shapes. However, they often
struggle with noise. Other approaches, such as deconvolution
or decomposition of the data, may also be applied to improve
resolution beyond what is possible given the instrumental
constraints. Examples include techniques such as Fourier

self-deconvolution [86], wavelets [87], and multivariate curve
resolution (MCR) [3]. In many cases, these deconvolution
strategies can also be applied for background correction,
as they allow one to separate peaks, background, and noise
vectors.

2.4.1 Derivative enhancement
One recent strategy is based on even-derivative sharpening
and been developed by Wahab et al. [82] The fundamental
concept is that the area of even derivatives of symmetric dis-
tributions will always be zero. It is assumed that peaks can
be accurately described as either a Gaussian or a Lorentzian
distribution. Asymmetric distributions are not considered and,
hence, fronting and tailing are neglected. The even derivatives
of a Gaussian function can be calculated analytically from

𝑑𝑛𝐺 (σ, 𝑡)
𝑑𝑡𝑛

= (−1)𝑛 1(
σ
√
2
)𝑛𝐻𝑛

(
𝑡

σ
√
2

)
𝐺 (σ, 𝑡) (16)

The 𝑛th derivative is seen to be simply the product of the
original Gaussian function G and a polynomial H. By then
subtracting the 2nd, 6th …. (2+4𝑚)th order derivatives and
adding the 4th, 8th … (4+4𝑚)th order derivatives (where
m is an integer), a resolution-enhanced peak (REP) can be
obtained. This is written as

REP = 𝐺
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The constants 𝐾2, 𝐾4, 𝐾6 … 𝐾𝑛 are empirically chosen to
obtain sufficient resolution, while preventing significant neg-
ative dips in the baseline or a significant decrease in S/N. Gen-
erally, the 6th-order and higher derivatives were not required,
and the following conditions were proposed as starting points

for the selection of the 𝐾 values: 𝐾2 =
σ2
30 and 𝐾4 =

σ4
200 .

This approach was then demonstrated on various overlap-
ping peaks in LC analysis, namely single critical pairs, such
as isomers of salbutamol and p-nitro-DL-phenylalanine, and
difficult-to-separate mixtures of three differently deuterated
benzenes. In all cases, the resolution was improved to the
extent that previously non-baseline separated peaks became
virtually baseline separated while retaining the peak area. Fur-
thermore, the approach proved capable of detecting hidden
peaks in a sample containing four steroid compounds, some of
which eluted as overlapping peaks. The authors demonstrated
that the approach could also be used for qualitatively improv-
ing distorted peaks. The derivative-enhancement approach is,
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however, limited by the resolution between peaks (𝑅𝑠). It can
only be reliably used when 𝑅𝑠 > 0.7 if the final goal is the
accurate quantification of overlapping peaks. If the approach
is primarily used for the detection of hidden peaks this is, of
course, not a requirement. For 𝑅𝑠 = 0.74 the error in area
estimation was approximately 0.4%, whereas for lower 𝑅𝑠

the error quickly increased and significant baseline distortion
could be observed.

2.4.2 Region-of-interest—Multivariate curve
resolution
With the advent of LC coupled to HRMS, a wealth of data
can be acquired in just a single experiment. Due to the very
large data sets (typically > 80 GB), filtering and compres-
sion are normally required before further data analysis can be
performed. A conventional reduction approach is binning, in
which the m/z axis is separated into several segments, with
a width of typically a few times the mass accuracy of the
mass spectrometer. Whereas such binning implies a compres-
sion of the data, it may be difficult to recover true chromato-
graphic peak shapes from the binned data as it also implies a
loss in resolution. For such cases, the region-of-interest (ROI)
strategy has been proposed [88], which considers only certain
regions with high data density. The ROIs are selected based
on criteria such as signal intensity and the number of mass
trace occurrences, i.e. the number of points that can be used to
describe the peak in the TIC. The ROI strategy allows for com-
pression of data, while maintaining spectral resolution. The
approach is often applied in combination with deconvolution
strategies, such as multivariate curve resolution–alternating
least squares (MCR-ALS, see Sections 2.2.2 and 3.4), as in
this case peak alignment is not required [89]. Such an ROI-
MCR approach has been applied by Navarro-Reig et al. [90]
in combination with LC×LC–HRMS for the identification of
metabolites in the rice metabolome. They selected the ROIs
based on S/N ratio (0.1% of maximum MS signal intensity),
mass accuracy of the MS (0.05 Da/e for the ToF mass ana-
lyzer used) and the minimum number of times the same m/z
signal had to be detected consecutively (set at 25). A further
compression in the time dimension was performed by means
of wavelet compression [91,92] and by a windowing strat-
egy, separating the data into three distinct windows. Using
this approach, a more than 50-fold reduction in data size
was achieved. After compression, MCR-ALS was performed,
resulting in 154 resolved metabolites, of which 139 were iden-
tified after correction.

3 ANALYSIS OF
CHROMATOGRAPHIC DATA

After preprocessing, the focus shifts to translating complex
data into useful information on a sample. Many methods for
information extraction have been developed during the last

decades [93–98]. In this context, the data analysis process
can be divided into several levels. First, the peaks represent-
ing the (partially) separated compounds in the sample must
be detected. Comprehensive 2D chromatography requires a
subsequent step of clustering the detected peaks, taking the
number of modulations per first-dimension peak into account.
Next, generic information about the individual detected one-
or two-dimensional peaks must be extracted (e.g. area, statis-
tical moments). Finally, the retrieved properties can be trans-
lated into useful information. In this section, we will review
the latest developments for each of these steps.

3.1 Peak detection
The aim of peak detection is to locate true signals within the
chromatogram and, therefore, it is crucial for correct inter-
pretation of an experiment. As clarified in the introduction,
a comprehensive 2D chromatogram comprises a large num-
ber of 1D chromatograms. Consequently, we will first address
the detection of peaks in 1D chromatograms, because the
interpretation of higher-order chromatograms usually relies
on techniques used in lower-order data.

3.1.1 Classical peak detection
Traditionally there are two primary methods for peak
detection. The first approach employs the derivatives of
the signal [4,22,99]. Taking the derivative will enhance the
variation in the original signal [100]. This is illustrated in
Figure 8A, where we consider a convoluted chromatographic
peak that has undergone perfect preprocessing. The second
derivative yields a clear valley at the location of the peak apex
(Figure 8B). However, when we regard the case illustrated
in Figure 8C and D, the second-derivative approach appears
useless. Indeed, this classical approach is not robust in the
presence of noise, system peaks, or other artifacts. It also
requires the peaks in question to be sufficiently resolved.
The general downside of derivative-based methods is their
sensitivity to noise and the resulting requirement for extensive
preprocessing, thus risking a loss of information.

The second approach to peak detection is based on curve
fitting or so-called matched filtering to describe the peaks
[101–103]. Figure 8E and F illustrates that curve-fitting
methods are much less affected by noise. The downside of
curve-fitting methods is that they generally assume the peaks
to have perfect Gaussian shapes, which is rarely the case. In
some cases, a more flexible peak function is used. This may,
however, lead to the detection of non-existing peaks (false
positives) or to overlooking existing peaks (false negatives)
[104]. Another downside of the curve-fitting method is that
the deconvolution of heavily overlapping peaks is challenging
because the algorithm often cannot determine the correct
number of peaks to be fitted. Because perfect methods for
peak detection do not exist, numerous research groups are
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F I G U R E 8 (A) Optimally preprocessed signal of two convoluted peaks; (B) noisy signal of the same two peaks as in (A); (C) second derivative
of (A); (D) second derivative of (B); (E) two curves fitted to signal of (A); (F) two curves fitted to signal of (B)

trying to improve the robustness of peak detection and to
reduce the number of false positives and false negatives.

3.1.2 Recent developments in peak detection
Separating real peaks from noise is troublesome for some of
the peak-detection methods, such as those based on deriva-
tives. Smoothing strategies rely on the assumption that noise
is random and becomes zero when averaged. Consequently,
smoothing based approaches can be seen as a combination
of data pre-processing and peak detection. When the noise is
removed, the real peaks remain. Besides data averaging, more
advanced smoothing-based methods have been developed for
peak detection.

The Gaussian-smoothing algorithm considers the local
maximum point in a section of the chromatogram—as do all
smoothing-based peak-detection methods. Each local maxi-
mum is seen as a peak. Without any preprocessing or addi-
tional calculations, noise will result in additional peaks being
detected. Actual peaks should retain the local maximum
after smoothing, whereas the maxima of noise will disap-
pear when sufficiently large smoothing windows are applied.
The Gaussian-smoothing algorithm of Fu et al. follows three
steps [70]. The first step corrects for background drift, the
second step is the actual peak detection, and the final step
involves peak filtration. By performing the smoothing with
different window sizes, the points where maxima disappear
under stronger peaks can be determined. The width of the
smoothing window is empirically selected.

A popular alternative for the Gaussian-smoothing algo-
rithm is wavelet-transform peak detection. The robustness of
any fitting-based method relies on the selection of the number
of compounds in a convoluted signal. Peters et al. developed
a method based on cross-validation to determine the opti-
mal number of components [105]. Wavelet transform encom-
passes the concepts of curve fitting and matched filtering.
Curve-fitting methods generally are known to struggle with
a high variability in peak height and width. To overcome
these disadvantages, other wavelet shapes have been proposed
[106]. An example of a wavelet-based method is the improved
continuous-wavelet-transform (CWT) approach, which is
thought to handle noisy and overlapping peaks better than
alternative techniques (MALDIquant and MassSpecWavelet
[107]). This is illustrated in Figure 9.

The CWT approach considers more information on the
peak shape, such as symmetry, which reduces the false-
positive rates compared to the traditional derivative [48,108]
and Gaussian-curve-fitting [109] methods. CWT can con-
sider more information, because when more complex models
are used more properties can be captured, to improve the
compatibility with overlapping peaks, CWT has been com-
bined with ridge-detection algorithms [110]. Such algorithms
determine the position of a peak by calculating the local
maxima [106]. The downside of CWT methods is that they
are non-numerical, which makes it difficult to determine the
area of a peak. The continuous-wavelet-transform algorithm
of Zheng et al. showed more true positives and fewer false
positives than simple smoothing methods and the standard
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F I G U R E 9 Performance of the CWTC, MassSpec, and MaldiQuant methods tested on ToF mass spectra. Figures show the ratio between true
and false positive ratios for the three methods based on simulated MALDI-TOF data (left), the minimal resolution the algorithm can correctly
process given a specific S/N ratio (middle) and the minimal detectable peak-height ratio, also as a function of the S/N (right). Reproduced with
permission from [94]

wavelet-denoising peak-detection method [107]. Tong et al.
developed the CWT approach further, referring to their
approach as recursive wavelet peak detection (RWPD).
The authors demonstrated that their algorithm performed
well for the deconvolution of real data [111]. The RWPD
yielded a fit error of 1.2% on simulated data, compared
with a 3.2% error obtained with Peakfit, which is a com-
mon peak-fitting tool [112]. By combining the continuous
wavelet transformation with heuristic optimization of the
peak width, heights, and areas could be determined more
accurately.

While the wavelet-transform methods incorporate more
information present in the chromatogram, these methods are
also more prone to miss convoluted peaks as compared to
Gaussian-smoothing algorithms [70]. Fu et al. [70] point out
a number of problems associated with wavelet-transform-
based peak detection. However, Yu et al. demonstrated that
the Gaussian-smoothing algorithm had similar problems with
convoluted peaks [72].

A recent development in curve-fitting methodologies has
been the introduction of the normal-gamma-Bernoulli (NGB)
model by Kim et al. [113]. This iteration of a distribution
function to describe a chromatographic peak started with
a recent open-access tool, msPeak, which uses the normal-
exponential-Bernoulli model (NEB) [114]. This approach
combines simultaneous removal of noise, baseline correction,
and peak-region detection. Thereafter, peak filtering is per-
formed by fitting different probability models to reduce the
number of false positives. Unlike the NEB model, the more
flexible NGB model [113] has no analytical solution. How-
ever, the authors demonstrated that the newest model fits the
data better and leads to more true positives when used to
detect MS peaks with low total ion currents [113]. The NGB
model found the same true positives in a GC×GC-TOF data
set of 76 compounds and double the number of true positives
on MTBSTFA-derivatized amino acid compounds data com-
pared to the NEB model.

Many peak-detection methods yield a binary answer (true
or false) to the question whether a data point belongs to a
peak. As an alternative, the so-called Bayesian methods focus
on probabilities [96]. Originally, this Bayesian approach
could not handle overlapping peaks [115]. However, further
improvements incorporated the statistical overlap theory
[116] and allowed resolving overlapping peaks [117]. The
primary advantage of Bayesian approaches over other
methods is that they can include prior information. This
renders such methods more compatible with experiment with
limited number of experiments. A Bayesian method has been
successfully used by Adutwum et al. for determining the
regions of interest [118]. A Bayesian probabilistic model
for untargeted peak detection was developed for LC–MS
by Woldegebriel et al. [119]. The advantage of the latter
approach was that true peaks could be distinguished from
chemical noise without any pre-processing.

3.1.3 Peak clustering
Peak-detection methods have been applied to 1D chro-
matograms for many years [100] and improvements are still
being made. An even greater challenge is peak detection in
comprehensive 2D chromatography [95]. Data from such
experiments can be viewed as a 2D chromatogram or, more
commonly, as a series of 1D chromatograms [94]. In the
latter case, in order to properly describe the 2D peak, peaks
detected in individual second-dimension chromatograms
(“modulations”) need to be clustered. In most approaches,
peaks are merged based on a decision tree [4]. In the most
recent algorithm, peaks detected in each modulation are
clustered based on bidirectional overlap, retention time, and
unimodality thresholds [120]. Especially the inclusion of
bidirectional overlap improves the accuracy and the com-
patibly with tailing peaks. Although this approach entailed
an improvement in comparison with previous peak-detection
methods in 2D chromatography, the error rate for overlapping
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F I G U R E 10 Example of automated peak integration of two
convoluted peaks and a comparison of the results with the true values.
Peak 1 is on the left; Peak 2 is on the right

peaks was still not satisfactory [115]. Using multichannel
data may help to correctly cluster peaks by incorporating
additional information. The downside of peak-clustering
methods is their dependence on arbitrary thresholds.

A fundamentally different approach is to view a compre-
hensive 2D chromatogram as an image, instead of a series
of 1D chromatograms. Peak-detection is then generally car-
ried out using the watershed algorithm, which establishes the
boundaries of peaks based on the topology of the surface
formed by the signal. An illustrative explanation is that the
chromatogram is held upside down and flooded with water
until the different peak maxima are no longer separated. This
method fails when the modulations do not perfectly align, due
to retention-time variability in the second dimension [121].
However, preprocessing steps may alleviate this issue [94].
The watershed algorithm has recently been applied to clean
up GC×GC chromatograms by removing “streaks” [122].

3.2 Peak properties
After the peaks are correctly detected, their properties can
be determined. These include height, area, and asymme-
try. Curve-fitting methods can determine these properties
from the fitted curve, which may be described by rather
complex equations. Other methods, such as derivative-based
approaches, require integration.

Peak integration is often done by standard software that is
provided with the hardware (Figure 10). The time boundaries
of the individual peaks can be estimated by the system, but are
often adjusted manually, which leads to operator-dependent
results. Especially for two-dimensional chromatograms, this
approach is too labor intensive.

An effective way to obtain peak properties by computer-
aided data interpretation is through the computation of sta-

tistical moments of a well-separated or fitted peak [123]. One
can distinguish the raw moment (Equation 18), the normalized
moment (Equation 19), the centralized moment (Equation 20)
and the standardized centralized moment (Equation 21).

𝑀𝑛 =

∞

∫
−∞

𝑡𝑛 ∗ 𝑓 (𝑡) 𝑑𝑡 (18)

𝑚𝑛 =
𝑀𝑛

𝑀0
(19)

μ𝑛 =

∞∫
−∞

𝑡𝑛
𝑟𝑒𝑙

∗ 𝑓 (𝑡) 𝑑𝑡

𝑀0
(20)

μ̃𝑛 =
μ𝑛
σ𝑛

(21)

The most-useful moments for determining peak properties
and the corresponding equations [124] are stated in Table 1.
When curve-fitting-based peak detection is used, the 𝑓 (𝑡)𝑑𝑡
part of the raw moment can be replaced by the specific
model [125]. The accuracy of the moments may depend on
the model used [126]. If there is no fitted model available
or if no analytical solution can be found, the peak can be
numerically integrated using trapezoidal or Simpson’s rules
[127]. Next to the number of points per peak, which depends
on the sampling frequency of the applied detector [128,129],
the accuracy of the moments also heavily depends on the
pre-processing [130].

3.3 Information extraction
Once the peaks are found and integrated, the interpreta-
tion of the obtained results is the next crucial task. Using
more-advanced analytical systems in terms of dimensionality
and sampling frequency yields large data sets, from which it is
more difficult to extract the relevant information, particularly
when samples are complex. To simplify this problem, dimen-
sion reduction can be applied to the data. There are many dif-
ferent methods available to extract information. In this review,
we address the most popular methods.

T A B L E 1 Peak moments and their significance

Moment
ordinal Peak property Formula Equation
0 (𝑀0) Area ∫∞

−∞ 𝑓 (𝑡)𝑑𝑡 (22)

1 (𝑚1) Average time
∫∞
−∞ 𝑡∗𝑓 (𝑡)𝑑𝑡
∫∞
−∞ 𝑓 (𝑡)𝑑𝑡

(23)

2 (μ2) Variance (σ2) ∫∞
−∞ 𝑡2

𝑟𝑒𝑙
∗𝑓 (𝑡)𝑑𝑡

∫∞
−∞ 𝑓 (𝑡)𝑑𝑡

(24)

3 (μ̃3) Skewness
∫∞
−∞ 𝑡3

𝑟𝑒𝑙
∗𝑓 (𝑡)𝑑𝑡∗

√∫∞
−∞ 𝑓 (𝑡)𝑑𝑡

(∫∞
−∞ 𝑡2

𝑟𝑒𝑙
∗𝑓 (𝑡)𝑑𝑡)

3
2

(25)

4 (μ̃4) Kurtosis
∫∞
−∞ 𝑡4

𝑟𝑒𝑙
∗𝑓 (𝑡)𝑑𝑡∗∫∞

−∞ 𝑓 (𝑡)𝑑𝑡

(∫∞
−∞ 𝑡2

𝑟𝑒𝑙
∗𝑓 (𝑡)𝑑𝑡)2

(26)
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F I G U R E 11 Graphical comparison of univariate (left) and multivariate (right) analysis of bioprocess data. Reproduced with permission from
[131]

Univariate statistics describe the variation in a single vari-
able. In multivariate statistical analysis, multiple variables are
considered that may be correlated and create a new latent
space. Figure 11 presents a graphical representation of uni-
variate and multivariate data analysis as provided by Mercier
et al. [131]. Tools for dimension reduction, such as principal
component analysis (PCA), can be applied to extract the most
informative variables.

3.3.1 Exploratory methods
Principal-component analysis
PCA is often used in chromatography for exploring the
results obtained from complex samples [132]. PCA linearly
fits uncorrelated variables through the data set. The first
component represents the principal variance in the data,
the second component explains the second-most-occurring
variance, and so on. This chemometrics tool is especially
useful to aid in the interpretation of high-dimensional data.
As for any chemometrics tool, the results of PCA were greatly
affected by the quality of the data (after preprocessing). Prior
to PCA, the chromatograms are often first aligned using the

COW algorithm [133], since it is regarded as a robust method
for alignment [134]. To translate the results to a classifier,
which classifies samples into groups based on a provided
model, PCA can be combined with a classification method,
such as linear discriminant analysis (LDA) [135].

An interesting application of PCA in combination with
COW within the field of chromatography is to compare
columns [136]. The chromatograms are first aligned with a
COW algorithm prior to the PCA, such as to maximize the
probability (p-) values. By calculating the Mahalanobis dis-
tances and converting these to p-values significant differences
between chromatograms can be established.

Binning of data can show improvement of classification
by PCA, because the large data set is simplified, removing
artifacts and noise. In principle, the bin size is set slightly
larger than the width of the peaks in the chromatogram. This
results in a dataset in which every component is represented
by a single data point. While this approach reduces noise and,
therefore, increases the S/N ratio, there is a chance that mul-
tiple components are convoluted (so-called “over-binning”)
and that chemical information is lost. The optimal bin size
was reported to depend on the sample [137]. Large bin sizes
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can be applied when sample compounds are well separated.
This approach can be useful if the classification of the sam-
ples is important and the raw data are not suitable for direct
PCA.

Parallel factor analysis
Factor analysis is similar to PCA in that it reduces the dimen-
sionality of the data set. However, where PCA is merely a
dimension-reduction technique, factor analysis also assumes
an underlying model and, therefore, finds not only a sub-
space but also the vector orientations [138]. Parallel factor
analysis (PARAFAC) views data as trilinear and containing
three modes, viz. chromatograms, concentrations, and spectra
[139]. Khakimov et al. developed PARAFAC2 [140], which
can also deal with small shifts in retention time.

Multivariate curve resolution
Apart from being a useful preprocessing tool, MCR can also
be used to obtain information from chromatograms. Cook
et al. showed that it is quite useful for quantitation [3,141].
MCR resolves the components of a mixture by deconvoluting
the data into response profiles and peak areas. The combi-
nation of MCR with ALS (see section 2.4.2) is a useful tool
to extract individual chromatographic and spectral profiles for
each analyte. In some cases, the resolved spectral profiles may
still be noisy [142]. By replacing ALS with an elastic-net
algorithm (ENALS) [143], the tool becomes more compati-
ble with sparse data [142], such as mass spectra. The ENALS
algorithm minimizes the number of m/z peaks when extract-
ing the profiles of an analyte and it eliminates the need for
intensity thresholds. By using ENALS, a data reduction by
99.7% was achieved [142], which strongly reduced the com-
putational resources required.

Machine learning and deep learning
Many of the previously described methodologies may be
called machine-learning techniques. Deep learning is a form
of machine learning that requires less input from the opera-
tor [144]. The more complex the machine-learning algorithm,
the more data it requires for proper training. In deep learning,
which uses neural networks, an arbitrary number of layers,
possibly with different properties, are used to fit all descrip-
tive relationships in the data. The difference between deep
learning and the use of a shallow artificial neural network.
So far, there are just few examples of the use of deep learn-
ing in chromatography in the literature. Risum et al. used
70 000 elution profiles [145] as input, which were extracted
from a GC–MS data set with PARAFAC2. As demonstrated in
Figure 12, the deep-convoluted network performs better than
partial-least-squares discriminant analysis (PLS-DA) [145]
locally weighted regression (LWR), and a shallow artificial
neural network (ANN).

F I G U R E 12 Performance comparison by receiver operating
characteristic curves of PLS-DA, ANN, deep-convoluted network, and
LWR methods, showing the ratio between true and false positive ratios.
Reproduced from [145] with permission

Recent work of Kantz et al. [146] also showed that deep
neural networks can remove up to 90% of false-positive peaks
in a nontargeted analysis based on LC–MS data, without los-
ing true positive signals.

3.4 Classification
Using chromatographic data, chemometrics can be applied to
discriminate between classes of samples with different chem-
ical compositions, such as biological samples. Chemometrics
is needed especially when it is a priori unknown which com-
pounds are indicative of a particular class of sample. To dis-
criminate between classes, so-called untargeted approaches
can be used, where a number of chromatograms are used as
input data for each class. These can then be used to con-
struct models by which samples can be discriminated. These
approaches often involve the reduction of variables to allow
robust discrimination between classes. An overview of the
most commonly used classification methods and some appli-
cations on chromatographic data is given below.

3.4.1 Partial-least-squares discriminant
analysis
Partial-least-squares discriminant analysis (PLS-DA) can be
applied to discriminate classes based on input data and clas-
sifiers. PLS-DA is one of the most-used chemometrics tools
for classification [147]. There are numerous PLS algorithms
and adaptations for discriminant analysis, but they share the
same basic concepts, which will be briefly explained below.
PLS-DA modeling consists of two main steps, i.e. dimension
reduction and construction of a predictive model. For multi-
class problems, PLS2-DA is often applied. In this method,
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F I G U R E 13 Schematic representation of a PLS1-DA algorithm, in which 𝐽 is the number of variables, 𝑋test is the test set, and 𝑟𝑒𝑠𝑥 and 𝑟𝑒𝑠𝑦
are the 𝑥 and 𝑦 residuals, respectively. n is the number of samples. Adapted from [148]

a dummy matrix Y is created with dimensions n × g with n
being the number of samples and g the number of classes
[148]. Each class is indicated with binary values in the dummy
matrix. The process is depicted in Figure 13. In the first
step of the process, the weights are estimated by maximiz-
ing the covariance between the input data X and the output
data y. Subsequently, the X-score, X-loading, and Y-loading
are determined, and the first component is constructed. Based
on the residuals, the subsequent components are determined.
Because PLS-DA is prone to overfitting, the constructed
model should always be tested on a subset of the data for veri-
fication [148, 149]. Orthogonal-partial-least-squares discrim-
inant analysis (OPLS-DA) is a variant of PLS-DA, which is
optimized to separate the discriminatory dimension from the
non-discriminatory dimension, yielding results that are easier
to interpret [150].

PLS-DA was applied many times in biomarker-discovery
studies, for example, by Bayci et al. who studied advanced-
stage melanoma in serum with LC–MS/MS and NMR spec-
troscopy [151]. Dittigen et al. applied PLS-DA for the classifi-
cation of black rice based on its geographical origin using LC–
MS data [152]. Caldeira et al. applied PLS-DA on GC×GC–
MS data of breath volatiles to differentiate between asthmatic
and non-asthmatic children [153]. Zhang et al. applied OPLS-
DA to verify the authenticity of fruit juices based on a set
of 43 metabolites identified by LC–MS/MS [154]. A similar

approach was applied by Yuswan et al., who applied OPLS-
DA to LC–MS/MS proteomics data to discriminate between
meat samples originating from different organisms [155].

3.4.2 PCA–linear discriminant analysis
PCA is another commonly used tool for classification,
although it does not consider a priori classes. For classifica-
tion purposes, PCA is usually combined with linear discrim-
inant analysis (LDA). Since LDA has the constraint that the
number of variables should not exceed the number of samples,
it can only be applied to high-dimensional data after PCA.
LDA aims to maximize interclass variation and minimize intr-
aclass variation by creating latent variables that are linear
combinations of the original variables [147]. Klockmann et al.
applied PLS-LDA to classify hazelnuts based on geographi-
cal origin using UPLC–MS/MS data [156]. Liu et al. applied
PCA-LDA for authenticating wine vintage based on HPLC–
DAD data [157].

3.4.3 Soft independent modeling of class
analogy
Soft independent modeling of class analogy (SIMCA) is
another commonly used classification method. In SIMCA, a
model is created by performing PCA on each sample class
individually. Each observation in the test set is then compared
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to the PCA model of each class, and if it falls within the vari-
ance of a class, it is assigned to it. This implies that a sam-
ple may in principle be assigned to multiple classes – or to
none when it fits within none of the PCA models [158]. Perez-
Castaño et al. applied SIMCA and PLS-DA on normal-phase-
LC data to classify palm oils based on their geographical ori-
gin [159]. Planinc et al. applied SIMCA on LC–MS data to
analyze changes in the N-glycosylation of therapeutic glyco-
proteins [160].

3.4.4 Support vector machines
Another approach for sample classification is classification
based on SVM. SVM is a machine-learning technique, which
can be applied to both regression and classification problems.
The method aims to separate the two classes by a hyperplane.
The distance between the hyperplane and the closest samples
of two classes is maximized to find the optimal separation. If
there is no linear solution, the data can be transformed to a
higher dimension in order to find a space in which the sam-
ples can be separated by a flat plane. To avoid overfitting, a
slacking variable can be introduced, allowing a fraction of the
training set to be categorized incorrectly [149,161]. Xi et al.
applied SVM to classify edible vegetable oils based on GC–
MS data [162]. Fu et al. applied SVM for biomarker screen-
ing and classification based on metabolomics data [163].
Reichenbach et al. applied SVMs to LC×LC–DAD data of
urine samples, successfully distinguishing between patients
before and after bariatric surgery [164].

3.4.5 Random forest
An alternative method is based on random-forest (RF) models,
which take the form of decision trees. In short, the algorithm
works by constructing a ‘forest’ of decision trees, which are
created from random subsets of features from a subset of sam-
ples. By applying a bootstrapping method, a subset of the data
is selected for creating the model and another one for testing
the prediction. This is repeated many times to grow a forest
of decision trees, and the consensus of all grown trees is then
used for prediction [165]. In a comparative study of classifica-
tion methods on a variety of data sets (NMR and MS data), RF
was the top performer based on cross-validation and external
validation test cases [147].

3.4.6 Ant-colony optimization
Another interesting approach to sample discrimination was
presented by Kalogiouri et al. [166], who used LC–MS/MS
to categorize different varieties of extra-virgin olive oils.
They applied ant-colony optimization (ACO) to pick fea-
tures, which would allow good discrimination by PCA and
RF. ACO is an optimization algorithm inspired by the forag-
ing behaviour of ants. By releasing artificial agents, referred

to as ants, on a dataset with shared memory, referred to as
pheromone, the shortest or optimal route can be determined.
This can be applied to a set of nodes, in this case MS features,
to find the optimal descriptors for a data set. In each itera-
tion each ant picks a certain number of predetermined fea-
tures. The amount of pheromone the ant encounters along its
trail is registered. Paths that score high are more likely to be
sampled, optimizing the system with each iteration. Option-
ally, prior information can be included by assigning weights to
data points. It should be noted that the path does not consist
of adjacent nodes. A random set of nodes is assigned in the
first iteration if no prior information is present. To prevent the
algorithm from prematurely converging to a suboptimal point,
the overall amount of pheromone may be decreased with each
iteration [167]. In each iteration each ant selects 𝑛 nodes from
𝐿 inputs. The probability of each node being selected can be
expressed as

𝑃𝑖 (𝑡) =
(
τ𝑖 (𝑡)

)αηβ
𝑖∑

𝑖

(
τ𝑖 (𝑡)

)αηβ
𝑖

(27)

In which 𝑃𝑖(𝑡) is the probability of point 𝑖 to be selected
at time 𝑡, τ𝑖 is the pheromone modifier, adjusted based on the
performance of the ants utilizing this point, η𝑖 represents prior
knowledge which can be added to the model. The α and β
exponents dictate the relative influence of the pheromone and
prior knowledge, respectively. The adjustment of τ𝑖 is calcu-
lated for each iteration based on the following equation:

τ𝑖 (𝑡 + 1) = ρ ⋅
(
τ𝑖 (𝑡)

)
+ Δ

(
τ𝑖 (𝑡)

)
(28)

where ρ is a constant indicating the decay of pheromone and
Δ(τ𝑖(𝑡)) is the adjustment made based on the performance of
the node. At 𝑡= 0,Δ(τ𝑖(𝑡)) is zero for all nodes [168]. ACO has
been applied in various bioinformatics applications to select
features of interest [168–170].

Readers interested in a performance comparison of various
chemometrics classification models are referred to refs. [147]
and [171]. Although both studies compare some of the same
classification methods, different methods were found to per-
form best, which illustrates the dependency of these models
on data and variables.

3.5 Quantification
Chemometrics approaches may also enhance the quantitative
capabilities of chromatographic methods. Multivariate curve
resolution (MCR) is often applied to quantify overlapping
signals based on detected spectra. This is especially challeng-
ing when no pure compound spectra are available. The MCR
model is based on the following equation

𝑋 = 𝐶 ⋅ 𝑆𝑇 + 𝐸 (29)
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where 𝑋 represents the raw data, 𝑆𝑇 is a matrix of the pure
spectral images, 𝐶 is the chromatographic profile, and 𝐸 is
the residual error. In MCR–alternating least squares (MCR-
ALS), this equation is solved in the following ways:

𝐶 = 𝑋𝑆 ⋅
(
𝑆𝑇𝑆

)−1
(30a)

𝑆𝑇 =
(
𝐶𝑇𝐶

)−1
⋅ 𝐶𝑇𝑋 (30b)

An initial value for either 𝑆𝑇 or 𝐶 is required, which can
be estimated from the data [141]. The initial estimates can
thus be concentration profiles or spectra. If pure compounds
(or pure-component spectra) are available, then input spec-
tra can be used for a targeted approach. If the approach is
untargeted the initial estimate can be made based on the raw
data set [172]. Many methods have been developed to obtain
this initial estimate, such as simple-to-use self-modeling anal-
ysis (SIMPLISMA), orthogonal projection approach (OPA),
and key-set factor analysis (KSFA) [173–175]. These methods
search the most dissimilar spectra in a data set (e.g. LC-DAD
data) and use these as initial estimates. Several constraints can
be applied to MCR, such as non-negativity, unimodality, and
predefined spectra or elution profiles [172]. There are numer-
ous applications of MCR-ALS in 1D chromatography [172].
Hoeylandt et al. for example, applied MCR-ALS to deconvo-
lute the chemical composition distribution of polymer blends
over an SEC separation by applying deconvolution using DAD
data [176]. Salvatore et al. applied MCR-ALS to quantify phe-
nolic compounds in wines to authenticate their protected des-
ignation of origin [177].

When applying MCR-ALS to two-dimensional data, the
application of MCR-ALS requires some more considerations.
Since the data are acquired as a series of 1D chromatograms,
from which the 2D chromatogram is reconstructed, some dis-
tortions can occur, such as retention time shifts. This has given
rise to some discussion as to which method is more suitable
for LC×LC data.

PARAFAC is another method that can be used for quan-
tification, assuming the data is trilinear. Such data can also
be analyzed with trilinear variations of MCR-ALS [178].
The difference between trilinear and a non-trilinear data set
is illustrated in Figure 14. Navarro-Reig et al. investigated
this issue for LC×LC–MS data [179]. Both MCR-ALS
and PARAFAC methods were applied on an LC-×-LC–MS
dataset of triacylglycerols (TAGs) in corn oil samples. They
found that, due to factors such as retention time shifts and
peak shape changes, bilinear models were better suited for
LC×LC–MS data than trilinear models. Bilinear MCR-ALS
proved to be the most favorable method. In more-recent
work Izadmanesh et al. compared different MCR-ALS and
PARAFAC models for the analysis of GC×GC–ToF-MS data
of metabolites. They also arrived at the conclusion that MCR-

F I G U R E 14 Example showing the difference between a trilinear
and a non-trilinear data set. Reprinted with permission from [178].
Copyright 2012 American Chemical Society

ALS was most suitable [180]. MCR-ALS was also applied by
Omar et al. for resolving co-eluting compounds in GC×GC–
MS data from Cannabis sativa extracts [181]. Another inter-
esting approach utilizing MCR-ALS-LC × LC was devised
by Rutan et al. The authors developed a novel method for LC
× LC-DAD quantification based on MCR-ALS. The LC × LC
system featured two DAD detectors, one after the first dimen-
sion and one after the second. Because more pure spectra were
obtained from the second-dimension detector, improved accu-
racy in quantification by MCR-ALS could be achieved [141].

4 OPTIMIZATION

4.1 Introduction
Another branch of chemometrics in chromatography con-
cerns the development and optimization of chromatographic
methods. In such a process several steps must be taken.
Especially, the development of a two-dimensional chromato-
graphic method can be a cumbersome and challenging task
[182,183]. The sheer number of variables that must be taken
into account [184] render a “trial and error” optimization
impractical and time-consuming. Chemometrics tools may
aid in almost all of the steps outlined in (Figure 15) [185].
LC method development starts with the selection of system
parameters [186,187] and retention modes (“mechanisms”).
The latter usually implies choosing a stationary phase and
the constituents of the mobile phase. The selection of the
appropriate retention mechanism(s) for a specific separation
requires knowledge and expertise of the chromatographer.



BOS ET AL. 1701

F I G U R E 15 Workflow of optimizing a separation using chemometrics. For the selection of the retention mechanism (Striped box), some
knowledge of the sample is required. The scanning chromatograms (Light blue box) are, in principle, the only experimental part of the optimization

The chemistry and properties of the analytes and other sam-
ple components should to some extent be known. Stationary-
phase and mobile-phase selection will be discussed in Sec-
tion 4.2. Once the system parameters are selected, initial
scanning chromatograms should be recorded. The results of
these can then be used as a starting point for further exper-
iments, to establish retention models for the analytes, or as
input for chemometrics modelling methods, such as artifi-
cial neural networks (ANNs) (see Section 4.3.1). After reten-
tion parameters or ANNs are established, quality descriptors
(Section 4.3.2) must be selected. These provide an objective
value for the quality of the separation. Examples include peak
capacity, resolution, and, for 2D-chromatography, orthogo-
nality. When quality descriptors have been selected, the sys-
tem can be optimized by calculating numerous simulated
chromatograms under varying conditions.

The optimization step in Figure 15 is not very well defined.
A decision as to what and how to optimize highly depends
on the aim of the analysis. In targeted optimization method
parameters may be modified so as to achieve a specific
goal (e.g. peak A separated from peak B, with the resolu-
tion between these peaks as the quality descriptor), whereas
untargeted optimization generally concerns the maximiza-
tion of other quality descriptors. As target optimization meth-
ods are generally difficult to encompass within an algorithm,
this review will focus on the application of chemometrics to
untargeted optimization. Target optimization can be seen as
a special (usually simpler) case of the general optimization
strategy. Readers interested in a more detailed discussion of
the rationale behind the different forms of optimization are
referred to an earlier work [6].

In this section, recent advances in the field will be
explained, including optimization of the system and physical
parameters, mobile-phase composition programs in LC (i.e.
gradients) or temperature programs in GC and the limits
of optimizing a (2D) chromatogram. In addition to method
development and optimization, chemometricians have devel-
oped tools to aid method transfer by modeling the effect of

column parameters [188] and for transferring to newer and
faster LC systems [189,190]. These method-transfer tools
rely heavily on retention-time predictions, as discussed in
Section 4.3.1.

4.2 Method and system setup
The first step in setting up a chromatographic system is the
selection of a suitable retention mechanism and a correspond-
ing stationary phase. The selected retention mechanism will
define the chemical properties that will govern the separation.
When the chemical properties of a sample and its components
are known, a decision regarding retention mechanism and col-
umn selection can be sensibly made. Column-selection tools
usually rely on large data sets, containing retention times mea-
sured on multiple columns. Thus, column selection requires
significant knowledge and experience. Especially in 2D chro-
matography, proper selection of a combination of columns is
challenging [191].

In GC×GC, the first dimension generally employs a non-
polar stationary phase, which is coupled to a polar station-
ary phase in the second dimension. An advantage of these
polarity-based systems is that a structured chromatogram
can be obtained [192] (Figure 16), which can provide quick
insights in the sample. However, maximizing the difference in
polarity does not always yield the highest resolving power, as
demonstrated, for example, by Seeley et al. [193]. They devel-
oped a mathematical model for GC stationary-phase selection
based on the solvation parameters model. The authors ana-
lyzed a sample of fatty-acid methyl esters on 50 different sta-
tionary phases. Out of 1225 combinations, the combination of
two moderately polar stationary phases was found to provide
the best separation.

For LC separations, Euerby, Petersson, and others [194–
196] explored a variety of column parameters, including
surface coverage, hydrophobic selectivity, shape selectivity,
hydrogen bonding, and ion-exchange selectivity. The columns
were classified in various groups using principle-component
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F I G U R E 16 Example of a structured chromatogram. Reproduced with permission from [191]

F I G U R E 17 The “PRISMA optimization model.” Each corner
represents a different solvent and each point in the triangle represents
the solvent strength of the specific solvent mixture. Reproduced with
permission from [198]

analysis (PCA) and the results can be used as a reference when
selecting a column. A similar principle is used in the online
“Phase-Optimization Liquid Chromatography” (POPLC) tool
[197] for column selection. This selection tool is based on the
“PRISMA-optimization model” developed by Nyiredy et al.
[198]. The PRISMA model is intended as a classification sys-
tem for mobile phases, where each solvent is classified based
on its solvent strength. Different combinations of solvents
will yield mixtures with intermediate solvent strengths (Fig-
ure 17). Using this concept, the best-performing solvent com-
binations can be selected by maximizing the selectivity and
resolution of the mixture. With POPLC, stationary phases are
classified based on their adsorption strengths, yielding a clas-
sification for each column. The databases of Euerby et al. and
POPLC are only applicable for reversed-phase (RP)-LC. In
a more general approach, Krisko et al. suggested a column-
selection method based on several initial runs of a test mixture

on an automated column-switching system [199]. The exper-
imental results were analyzed using DryLab software [200].
Using retention time predictions on all tested columns, the res-
olution of the mixture components could be predicted. Out of
all the predictions, the best-performing column and gradient
program were selected.

In some cases, the required selectivity for a sample can-
not be obtained by using a homogeneous column. For this
reason, stationary-phase gradients were recently introduced
[201–203]. However, prediction of retention times on these
columns, and, therefore, separation optimization, are prob-
lematic. Beer et al. addressed this problem by applying reten-
tion modelling for isocratic and gradient separations [204].
Two retention models (Section 4.3.1) by Schoenmakers et al.
[205], a log-linear (“LSS”) model and a quadratic model, were
used to predict retention times. Relative prediction errors of
1.60 ± 0.73% were reported. More recently, Jeong and Rutan
[206] calculated the rate of migration of each compound per
time frame on columns with stationary-phase gradients, in
order to obtain accurate retention-time predictions (1.94 ±
1.10%), although at the cost of longer computation times.

4.3 Selection of analytical method parameters
4.3.1 Optimizing modifier programs
Artificial neural networks
After column selection, the temperature gradient for GC or
the mobile-phase composition for LC must be optimized to
achieve the best separation possible. In the last decade, artifi-
cial neural networks (ANNs) have been explored to calculate
retention times for 1D-GC and 1D-LC separations [207–210].
ANNs are computing systems that “learn” to perform tasks
by considering many examples. An ANN is able to identify
characteristics and trends in data as long as sufficient input
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F I G U R E 18 By measuring two (comprehensive 2D) chromatograms using an eluent with a low modifier fraction (A) and a high modifier
fraction (B) retention factors can be estimated across a broad range using the appropriate model. Here, the first dimension follows the adsorption
model, which is applicable to ion-exchange LC. The second dimension complies to the LSS (log-linear) model for reversed-phase LC. Reproduced
with permission from [6]

is provided. These characteristics and trends are then used
to make predictions under new circumstances. ANNs have
so far hardly been used for optimizing 2D separations, but
recent work in this direction was undertaken by D’Archivio
et al. for GC × GC [211]. They used data from Focant et al.
[212], who used four different column combinations to sep-
arate 209 polychlorinated-biphenyl (PCB) congeners. Out of
these, 70 were used as a training set, with the remaining 139
compounds being used for validation. Single-response partial-
least-square (PLS-1) regression was found to provide the most
accurate predictions for the validation set. The same data set
was used by Ren et al., who applied a quantitative-structure-
retention-relationship (QSRR) model to predict retention
times [213]. The compounds were divided into groups with
PCA and the “best”-multi-linear-regression (BMLR) method
was applied for developing multi-linear equations. However,
in this work the first-dimension and second-dimension reten-
tion times were not estimated independently. Similar work
was performed by Noorizadeh and Noorizadeh, who predicted
retention times based on the molecular structure [214]. The
authors included 25 compounds in a training set and 44 com-
pounds in a validation set. Multiple QSRR models were tested
for retention time predictions. A Levensberg–Marquardt ANN
described the retention behaviour most accurately, with a rel-
ative error of about 5% in the training set and close to 9% in
the validation set.

Although ANNs can provide retention-time predictions,
they require large amounts of data for training. A second
argument against ANNs is that, at least in the examples dis-
cussed, the molecular structure had to be known to a certain
extent. Attempts have been made to apply ANNs for unknown
samples [215–217]. In that case, the models obtained are not
related to any physicochemical interactions that occur within
the column.

Retention modeling
The classical approach to retention modeling is based on the
relationship between retention factor and the physical proper-
ties of analytes, stationary phase, and mobile-phase composi-
tion (for LC) or temperature (mainly for GC). These equations
usually feature a small number of parameters. Typically, only
two or three parameters are required to estimate analyte reten-
tion factors obtained across a broad range of different tem-
peratures or mobile-phase compositions (Figure 18). For GC,
retention depends primarily on the stationary-phase chem-
istry and column temperature [218]. However, published work
indicates more complex relationships between the solute,
stationary phase and carrier gas [219,220]. This has been
extended to GC×GC [221–224].

Retention modeling has been studied extensively for the
present variety of retention mechanisms in LC. The most
common models are a log-linear model (often referred to as
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the linear-solvent-strength LSS model) [205], typically used
for RPLC; the adsorption model [225,226], typically used
for normal-phase LC (NPLC) and ion exchange (IEX); the
mixed-mode model [227,228], which is a combination of
the former two models; the quadratic model [205]; and the
nonlinear, empirical Neue-Kuss model [229,230]. Figure 18
illustrates the simultaneous assessment of retention param-
eters for two different two-parameter models, the adsorption
model for IEX and the LSS model for RPLC, based on
two comprehensive two-dimensional chromatograms.
Although the retention equations are well established for
the conventional LC modes (RPLC, NPLC, and IEX), there
is still considerable discussion about the most-suitable
(often non-linear) models for more recent retention mech-
anisms, such as HILIC [227,228,231–237], SFC [233,238],
and hydrophobic interaction chromatography (HIC)
[239–241].

Strategies for retention-model selection have been
proposed using goodness-of-fit tests, such as the Akaike
Information Criterion (AIC) [242]. The AIC score is based on
the sum of squared errors (𝑆𝑆𝑄) of predicted versus the real
values of a set of 𝑛 datapoints. Adding more parameters in
a mathematical model will virtually always result in a better
fit, which complicates the selection of the most appropriate
model. Therefore, the AIC score also takes the number of
parameters (𝑝) that are used in the model into account.

𝐴𝐼𝐶 = 2𝑝 + 𝑛

(
ln
(
2π ∗ 𝑆𝑆𝑄

𝑛

)
+ 1

)
(31)

The AIC proved to be useful for deciding on retention mod-
els in HILIC [234–236]. In very recent work by Roca et al.
[243] the statistical F-test was used, in addition to the AIC, to
evaluate the significance of adding an additional parameter to
a retention model [236]. The F-test uses a probability function
to compare the 𝑆𝑆𝑄𝑓𝑢𝑙𝑙 of a full model and the 𝑆𝑆𝑄𝑟𝑒𝑑 of
a reduced model, in which one or more parameters are dis-
carded.

𝐹 =
MSdiff

MSfull
=

(
SSQfull − SSQred

)
∕
(
dfred − dffull

)
SSQfull∕dffull

(32)

MSfull and MSdiff represent the mean squared error of the
full model and the mean of the difference in SSQ of the two
functions, respectively, and dffull and dfred are the degrees of
freedom for the full and the reduced model. The probability
(p) of the significance of the missing parameters are assessed
with the cumulative distribution function of the F-test. Within
a confidence interval of 5% (p < 0.05), Roca et al. con-
cluded that the extra terms in the mixed-mode and quadratic
model were statistically insignificant when compared to the
LSS and adsorption models when using retention modeling in
HILIC.

F I G U R E 19 (A) Non-orthogonal 2D separation methods. (B)
Fully orthogonal methods

Linear-free-energy relationships
Next to retention modeling, linear-free-energy-relationships
(LFER) or linear-free-solvation relationships (LSER) can be
used for retention-time predictions and for classification of
column selectivity [244]. The LFER model describes a solute
property in a given system, 𝑆𝑃 , as the summation of dif-
ferent solute-solvent interactions. The equation distinguishes
between solute parameters (capital letters) and the solvent or
system parameters (lower-case letters). The different descrip-
tors are a system constant 𝑐, a descriptor related to the polar-
izability of π- and 𝑛-electrons (𝑒, 𝐸), the polarity of bond
dipoles an induced dipoles (𝑠, 𝑆), acidity (𝑎, 𝐴), basicity (𝑏,
𝐵), and the molar volume (𝑣, 𝑉 ).

𝑆𝑃 = 𝑐 + 𝑒𝐸 + 𝑠𝑆 + 𝑎𝐴 + 𝑏𝐵 + 𝑣𝑉 (33)

When the parameters are known for solute and system, the
solute property (e.g. retention time) can be predicted using
the above relation. To reliably estimate the parameters, a large
number of measurements under different conditions must be
performed. Abraham et al. utilized 18 to 613 different mea-
surements for their classification [244]. Ulrich et al. cre-
ated a database with LFER parameters, called “UFZ-LSER
database” [245], which can in principle be used for retention-
time predictions. Coefficients are regularly being updated.
An example is the recent classification of the sorption of an
organic compound on carbon black by Su et al. [246]. Ortak
and Demiralay [247] recently combined LFER predictions
with van‘t Hoff plots to calculate temperature dependencies
of retention. For more information, the interested reader is
referred to a review on LFER by Endo and Goss from 2014
[248].

4.3.2 Quality descriptors
Orthogonality
For an optimal separation of a sample using 2D chromatog-
raphy, it is crucial that both dimensions have different
selectivities [249]. If the selectivities in both dimensions are
the same, the separation will take place along a diagonal line
across the separation space (Figure 19A). When selectivities
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differ greatly, more of the separation space will be used
(Figure 19B). The degree of dissimilarity is called the
orthogonality.

A series of different methods to quantify orthogonality
has been developed. Examples include information theory
[250], convex-hull strategies [251], bin-counting approaches
[252], home-range theory [253], conditional entropy [254],
and nearest-neighbour distances [255]. Comparative studies
were conducted by Gilar et al. [256] and later by Schure
and Davis [257]. In these studies, the authors described
the advantages and disadvantages of each orthogonality
metric and concluded that a product of several different
orthogonality metrics provided the most robust descriptor.
The more recent asterisk orthogonality metric by Camenzuli
and Schoenmakers [258] and the modeling approach by Zeng
et al. [259] were, however, not included in those studies,.
Some older methods, such as the geometric approach of
Liu et al. [260] were also excluded. The asterisk metric was
tested against many of the existing orthogonality metrics
by its creators and was found to be more robust than other
metrics [258]. The authors found that the asterisk metric
is less affected by a change in the number of compounds,
unlike, for example, the bin-counting approaches, and that
its value is less affected by outliers than the convex-hull
strategies. More recently, new metrics were developed by
Mani-Varnosfaderani and Ghaemmaghami, based on the
maximal information coefficient [261], and by Leonhardt
et al. [262], based on a combination of bin-counting and cal-
culated histograms for the respective dimensions. Mommers
and Van der Waals [263] developed two new metrics based
on a polynomial fit and a new bin-counting approach. Since
the developed equations were usually only tested against one
or a few other approaches, there is no definitive conclusion
on the best approach calculating orthogonality. A product of
different approaches, as suggested by Schure and Davis [257],
may provide the most robust quantification for orthogonality
as shown by Cuzuel et al. [264]. The latter authors used nine
criteria, including six different orthogonality metrics to opti-
mize their GC×GC separations. They calculated the “global
desirability” as a product of all nine criteria for different
experimental set-ups. The experimental setup with the highest
global desirability was deemed optimal. The authors claimed
to have established a simple, but highly flexible approach
for assessing the optimum, since desirability factors could be
added or discarded according to the user’s preferences. Sim-
ilarly, Bassanese et al. described protocols to find the most
orthogonal LC×LC separations for their separations [265].
In addition to 2D separations, orthogonality is an important
quality descriptor for higher-order separations. When more
dimensions are added to a chromatographic system, the
probability of similarities in selectivity will increase. Schure
and Davis provided a quantification method for orthogonality
in three or multidimensional separation mechanisms [266].

F I G U R E 20 Top: Low resolution, overlapping peaks. Bottom:
high resolution, baseline separated peaks. Reproduced from [268] with
permission

Resolution
Resolution in chromatography quantifies the separation
between two peaks. In a 1D chromatogram, the resolution
(𝑅𝑠) can be calculated from the following equation

𝑅𝑆 =
𝑡𝑅,2 − 𝑡𝑅,1

2σ1 + 2σ2
≈

Δ𝑡𝑅

4σavg
(34)

with 𝑡𝑅,1 and 𝑡𝑅,2 the retention times of two adjacent chro-
matographic peaks and σ1 and σ2 the corresponding peak
widths. A resolution value of 0 represents two completely
overlapping peaks with identical retention times, whereas a
value of 1.5 or higher corresponds to baseline separated peaks
(Figure 20C). The resolution between two chromatographic
peaks can also be expressed using the valley-to-peak ratio, 𝑃
[267].

𝑅𝑠 =
√

−1
2
ln
(1 − 𝑃

2

)
(35)

where 𝑃 is expressed as

𝑃 = 𝑓

𝑔
= 1 − 2𝑒−

1
2

(
Δ𝑡

2σ

)2
(36)

The parameters 𝑓 and 𝑔 are shown schematically in
Figure 20A. The parameter 𝑔 represents the average peak
maximum and the depth of the valley 𝑓 is equal to the differ-
ence between this average maximum and the signal height in
the valley ℎ𝑣. In Eqn. 36 it is assumed that the SD, σ, is the
same for both peaks and that both peaks are Gaussian shaped.
The above equation can be expanded to multi-dimensional
separations as shown by Schure [268]. The resolution 𝑅𝑠

is calculated from the same equation (Eqn. 35). Because of
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the identical equation, Schure concluded that this equation
can be used for any number of dimensions. The equation for
the peak-to-valley ratio 𝑃 can be expanded to incorporate
the retention times and peak widths of the extra dimension.
The equation for two dimensions is shown below, where 𝑡𝑥,
σ𝑥, 𝑡𝑦, and σ𝑦 represent the retention time and SD in the first
dimension (𝑥) and second dimension (𝑦), respectively.

𝑃 = 𝑓

𝑔
= 1 − 2𝑒−

1
2

(
Δ𝑡𝑥
2σ𝑥

)2
⋅ 𝑒

−1
2

(
Δ𝑡𝑦

2σ𝑦

)2

(37)

Peters et al. adjusted the equation formulated by Schure
[269]. The authors observed that chromatographic peaks
are usually not Gaussian shaped. Therefore, their proposed
method does not start from the center of the peaks, but rather
from the closest points between them. Furthermore, they pro-
posed a method to determine whether two peaks are neigh-
bors. Thanks to this algorithm, the computational time can be
reduced, since the resolution does not need to be calculated
between peaks that are not close to each other.

Peak capacity
The peak capacity is the theoretical number of peaks that can
be resolved under specific conditions and within a certain
analysis time. Giddings derived a formula for estimating the
peak capacity (np) under non-programmed (isocratic, isother-
mal) conditions in 1967 [270]. Giddings’ equation features
time (t), desired resolution (Rs), and the separation power of
the column (plate number, Ncol).

𝑛𝑝 = 1 +
√
𝑁col

4𝑅𝑠

ln
(
𝑡𝑅,𝑛

𝑡𝑅,1

)
(38)

where 𝑡𝑅, 1 and 𝑡𝑅,𝑛 are the retention times of the first- and
last-eluting compounds, respectively. In theory, adding a sec-
ond dimension to a system will result in a total peak capacity
(n2D) that is the product of the peak capacities of the individ-
ual dimensions (1n and 2n, respectively).

𝑛2D =1 𝑛⋅2𝑛 (39)

The effective (useful) peak capacity is lower in reality if the
two systems are not fully orthogonal. Grushka demonstrated
Giddings’ equation to be analytically correct [271]. However,
especially in LC, there is a difference in the observed plate
number (𝑁obs) and the column plate number (𝑁col). Both
Giddings and Grushka assumed that virtually all band broad-
ening occurred in the column and that the plate number was
identical for all analytes. With sophisticated contemporary
columns and stationary phases, these assumptions are often
no longer valid. Extra-column band broadening has a greater
impact on the resulting separation when using more efficient
columns [272]. Especially in 2D chromatography such extra-
column effects, including those arising from transferring a

peak from the first to the second dimension, can significantly
affect the peak capacity of a 2D system. The modulation
time will decrease the effective peak capacity of the first
dimension (𝑛1𝐷) due to undersampling. However, a trade-off
arises, because minimizing the modulation time to increase
𝑛1𝐷 inevitably decreases the resolving power and the peak
capacity of the second dimension (𝑛2𝐷).

Vivó-Truyols et al. estimated the loss in theoretical peak
capacity in isocratic and gradient LC and estimated a loss
of 50% in peak capacity in each dimension, and thus a 75%
loss in total [187]. Utilizing a Pareto-optimality approach
[273], Vivó-Truyols et al. also concluded that two to three
cuts per first-dimension peak would result in the highest
observed peak capacity (n2D). An additional conclusion was
that gradient elution provided a significant improvement in
peak capacity in comparison with isocratic elution. Potts and
Carr confirmed the estimates of Vivó-Truyols by deriving
an exact equation for peak capacity using isocratic elution
[274]. Recently, Chester [275] rewrote the equation of Potts
and Carr in such a way as to provide insight into the effects
of extra-column band broadening. The equation for effective
peak capacity with isocratic elution in each individual dimen-
sion then reads

𝑛 = 1 +
√
𝑁𝑐𝑜𝑙

4𝑅𝑠

ln
⎛⎜⎜⎜⎝
𝑡𝑅,𝑛 +

√
𝑡𝑅,𝑛

2 + σ𝑒𝑥2𝑁𝑐𝑜𝑙

𝑡𝑅,1 +
√

𝑡𝑅,1
2 + σ𝑒𝑥2𝑁𝑐𝑜𝑙

⎞⎟⎟⎟⎠ (40)

where σ𝑒𝑥 is the extra variance due to an imperfect system.
In the first dimension, the extra variance is almost equal to
the variance added by under-sampling. In the second dimen-
sion, most of the extra variance is due to the large injection
volume.

Chromatographic response functions
Recently, new chromatographic response functions (CRFs,
or chromatographic objective functions, COFs) were devel-
oped. CRFs are single-number descriptors that describe the
quality of separation. Most CRFs are based on the number
of observed peaks and the time required to obtain the sep-
aration. Tyteca and Desmet conducted a comparison study
on the performance of multiple CRFs [232], describing the
advantages and disadvantages of almost 40 different func-
tions. New CRFs are still being proposed, for example by
Alvarez-Segura et al. [276], who used peak prominences. The
latter method was evaluated for complex chromatograms with
unknowns or without standards by selecting a global value
[277]. the authors concluded that the sum of the COFs pro-
vided the most-robust global value. The product of the qual-
ity descriptors was found to be too sensitive to one or more
poorly resolved peaks, even though it performed excellently
for the remainder of the separation. Duarte et al. extended
CRFs to 2D chromatography [99], providing a single value
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for the quality of a 2D separation based on the number of
observed peaks, the analysis time, and an estimate of peak
overlap. Nowik et al. combined their orthogonality metric
with a function of the desired resolution to create their CRF
for 2D separation systems [278]. The calculated values of a
CRF can be useful for quickly assessing the quality of a sepa-
ration. Interested readers are referred to a review on CRFs by
Matos et al. [279].

4.3.3 Gradient optimization
Using retention modeling, the retention times of compounds
can be rapidly predicted. From the simulated chromatograms
produced, an “optimal” result can be predicted using the
above-discussed quality describers, which may then be ver-
ified experimentally. Since measuring a 2D chromatogram
requires up to several hours and a series of predictions take
seconds or minute, automatic simulation and optimization
of 2D chromatograms seems very attractive. An additional
benefit of this predictive approach is a reduction in the con-
sumption of organic solvents or carrier gases. In GC, adjust-
ing the temperature program and the flow rate may improve
the separation. Computer modeling to reduce the method-
development time for GC×GC has been discussed by Dorman
et al. [280]. Optimization tools are even more useful in LC,
since the elution order may change depending on the gradient
program [281].

For LC several optimization tools and algorithms have
been published. The 1D optimization tool DryLab [200]
had already been developed in 1989. Before and after, other
optimization methods, such as predictive elution-window
shifting and stretching (PEWS) [231] and “concentration
pulses” have been developed. A concentration pulse is a tem-
porary increase in modifier content when a compound elutes
and is typically used in multistep isocratic measurements
[282] and multistep gradients [283,284]. These optimization
strategies may require a good deal of computational power
to perform brute-force computations. Therefore, root-finding
methods were investigated for reducing the computation time
required to locate optimal methods [285]. The concepts used
for 1D optimization were recently expanded to LC×LC with
the development of the program for interpretive optimization
of 2D resolution (PIOTR) by Pirok et al. [286]. The PIOTR
approach relies on retention modeling and simulations to
rapidly distil optimal method parameters for the first- and
second-dimension gradient systems. The desired optimum
can be identified using Pareto plots of, for example, reso-
lution versus analysis time (Figure 21). The Pareto-optimal
front depicts a line of optimal conditions. No other point in
the Pareto plot will provide a better resolution in a shorter
analysis time. Muller et al. [11] recently published methods
for the kinetic optimization of HILIC × RPLC separations.
They considered not only modifier gradients, but also the

F I G U R E 21 Example of a Pareto plot. The red line depicts the
Pareto optimal front

system settings, such as column length, temperature, dilution
factor, flowrate, and the maximum pressure.

Although the benefits of retention modeling are described
in numerous papers, there is still discussion about how to
correctly calculate retention times. Blumberg has argued that
migration equations outperform elution equations in column-
based separations in which the pressure is kept constant [287].
Because the viscosity changes with modifier composition,
constant-pressure operation applies variations in the flow rate.
Conventional retention models do not account for this. More-
over, non-linear retention models cannot easily be integrated
mathematically, with the exception of the Neue-Kuss model
[229,230], which has been specifically designed to allow inte-
gration. However, it is an empirical model which bears no
relation to interactions occurring in the column. Numerical
integration is used to deal with other non-linear models [285].
Retention models do not take the injection volume and initial
solvent composition into account. These initial conditions are
important when transferring compounds from the first to the
second dimension, as these conditions influence band broad-
ening. Jeong, Stoll, and others addressed these issues in a
series of papers [288,289], with calculations being performed
for each time frame. The authors admitted that their algo-
rithms were slower than conventional modeling, but their pre-
dictions were thought to be more accurate.

4.4 Peak tracking and alignment
A drawback of retention modeling for optimization of separa-
tions is that retention times must be assigned for each analyte
of interest in each chromatogram. The interactions between
the analyte, stationary phase and mobile phase cannot be
modeled without experimental input data. Especially for
complex mixtures consisting of hundreds of compounds,
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it can be a challenging task to assign retention times to
all analyte peaks. Accurate automatic peak detection and,
possibly, deconvolution of overlapping peaks are required
before peaks can be “tracked” or labeled (but not neces-
sarily be identified). Several peak-tracking algorithms have
been developed for LC-DAD data, such as those of Round
et al. [290] and Bogomolov and McBrien [291]. However,
hyphenation of LC to MS often is needed to properly track
peaks. Several peak-tracking algorithms have been published
for LC–MS data in recent years [292–294]. For 2D sepa-
rations, examples of peak tracking have so far been limited
to GC×GC data. One example is the algorithm of Barcaru
et al. [295], which is based on the use of Bayesian statistics
and neighboring peaks. However, as stated earlier, shifts in
elution order occur more often in LC and, thus, pairing peaks
based on its neighbours is prone to mismatching in LC×LC.
Reichenbach et al. published a peak-alignment algorithm for
LC×LC [57] where a presumed pattern of chromatographic
peaks and the corresponding metadata, e.g. UV spectra, are
identified on one or more initial chromatograms. After the
establishing this pattern, new sets of chromatographic data
can be compared. The authors published peak-alignment
results varying from 89 to 100% correctly matched peaks.
The algorithm allows for small deviations in retention time
to account for variations in chromatographic conditions (e.g.
column aging or temperature deviations).

4.5 Limits to optimization
Irrespective of the described tools and algorithms, there are
limits to the optimization of 2D chromatography. Vanhoutte
et al. evaluated the separation limits of fully comprehensive
LC×LC [296] using a Pareto-optimality approach. Their work
suggested that for relatively simple samples 1D-LC may out-
perform LC×LC in terms of analysis time and the maximum
number of resolved peaks. However, when sample complexity
increases, LC×LC will virtually always outperform 1D-LC.
Nonetheless, excessive under-sampling of the first-dimension
separation and sample dilution may limit the separation power
of LC×LC. Stop-flow LC×LC, active modulation, or spatial
2D-LC may alleviate these hurdles [296]. Davis and Stoll have
discussed the probability of resolving all peaks in 1D-LC,
fully comprehensive LC×LC, and selective comprehensive
2D-LC separations (sLC×LC) [297]. They concluded that
sLC×LC offered the highest probability of resolving all peaks
in complex samples. Indeed, all of these developments con-
cern LC×LC where the availability of vastly different selectiv-
ities leaves much room for optimization of selectivity. Instead,
method development in GC×GC involves maximizing effi-
ciency (i.e. plate numbers and thus peak capacity), rather than
selectivity [182]. Instead, improvement of GC×GC methods
is often sought in modulation strategies [298,299].

5 REFERENCE TABLE

Data analysis is a large field and it may take a significant effort
to find relevant research. To help the reader get acquainted
with the different subjects, some relevant papers are summa-
rized per category as a starting point in Table 2. While more
papers on the different topics can be found, the table gives a
mostly comprehensive view of recent developments.

6 CONCLUSIONS AND OUTLOOK

Robust data analysis strategies are needed to obtain use-
ful information on complex samples using the increasingly
advanced analytical tools. Preprocessing of the data is indis-
pensable to remove irrelevant anomalies, which otherwise
may induce significant errors in, for example, quantification
or classification. For background correction, BEADS (base-
line estimation and denoising using sparsity) and assisted
BEADs are highly promising recent developments, as these
approaches seems capable of handling many different types of
background distortions and are fast. The main downside is that
these are parametric methods that require prior optimization
[63,64]. An important development that may lead to more-
accurate information is the use of profile spectra instead of
centroid spectra in the correction of GC–LC–MS data, which
is especially important considering the prevalence of these
hyphenated MS methods [55]. Along similar lines, the most
noteworthy strategies for peak alignment in 2D chromatog-
raphy are those that operate not just in one-dimension but in
both. Methods developed for such pixel-level alignment are
still quite scarce, especially for application in LC×LC. One
such method has, however, been recently been developed for
GC×GC–HRMS data by Zushi et al. [68].

Although there have been many additional interesting
developments, it is difficult to judge which methods truly per-
form best. This is often better judged on a case-by-case basis.
What has become abundantly clear is that a two-dimensional
chromatogram is still very often treated as a series of individ-
ual 1D chromatograms, with the preprocessing methods being
applied separately to all of these. This is most likely because
many of the existing methods have been developed for LC–
MS data sets, rather than for two-dimensional data. In terms
of background correction, improvements can quite possibly
be made by focusing on a series of modulations. The surface
of the chromatogram may then be corrected, instead of apply-
ing a 1D method iteratively (row or column-wise) to the data.
There is a distinct lack of peak-alignment strategies that can
deal with changes in elution order.

Data analysis strategies, aimed to extract relevant informa-
tion, are also rather difficult to compare, because the results
greatly depend on the quality of the data. Most reported
methods were developed to tackle a specific challenge in a
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T A B L E 2 Overview of recent and useful applications of chemometrics in chromatography

Background correction
Title Subcategory Year Reference
Trilinear decomposition method applied to removal of 3D background drift ATLD 2007 [60]

Leveraging probabilistic peak detection to estimate baseline drift in complex
chromatographic samples.

Bayesian statistics 2016 [26]

A concise iterative method using the Bezier technique for baseline construction Corner cutting 2015 [25]

Assisted baseline subtraction in complex chromatograms using the BEADS algorithm Smoothing/Filtering 2017 [52]

Background correction in separation techniques hyphenated to high-resolution mass
spectrometry – Thorough correction with mass spectrometry scans recorded as profile
spectra

MS Profile spectra- based
correction

2017 [55]

Simple automatic strategy for background drift correction in chromatographic data analysis Local minimum values 2016 [46]

Chemometric strategy for automatic chromatographic peak detection and background drift
correction in chromatographic data

Derivative-based peak
detection

2014 [48]

Chromatogram baseline estimation and denoising using sparsity (BEADS) Smoothing/Filtering 2014 [51]

Effect of background correction on peak detection and quantification in online
comprehensive two-dimensional LC-DAD

SVD 2012 [36]

A fully automated iterative moving averaging (AIMA) technique for baseline correction Moving-average smoothing 2011 [43]

An intelligent background-correction algorithm for highly fluorescent samples in Raman
spectroscopy

Smoothing 2010 [31]

Automated autofluorescence background subtraction algorithm for biomedical Raman
spectroscopy

Curve fitting 2007 [300]

A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR
data

Wavelet transform 2006 [30]

Baseline correction of spectra in Fourier transform infrared: Interactive drawing with
Bézier curves

Bezier smoothing 1998 [42]

A general baseline-recognition and baseline-flattening algorithm Curve fitting 1977 [21]

The elimination of errors due to baseline drift in the measurement of peak areas in gas
chromatography

(Blank) Subtraction 1965 [20]

On a New Method of Graduation Smoothing 1922 [27]

Background correction and multivariate curve resolution of online LC with IR detection. MCR-ALS 2011 [37]

Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve
resolution

MCR-ALS 1995 [34]

Mixture models for baseline estimation Mixture model 2012 [49]

Morphology-based automated baseline removal for Raman spectra of artistic pigments Morphological correction 2010 [33]

Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy
using a model-free algorithm

Moving-window minimum
value

2014 [47]

Baseline correction using asymmetrically reweighted penalized least squares smoothing Smoothing 2015 [32]

Baseline correction using adaptive iteratively reweighted penalized least squares Smoothing 2010 [29]

A perfect smoother Smoothing 2003 [24]

Morphological weighted penalized least squares for background correction Smoothing 2013 [28]

Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for
beginners.

SVD 1994 [38]

Background removal from spectra by designing and minimising a non-quadratic cost
function

Backcor 2005 [53]

Image background removal in GC × GC Image-based correction 2003 [56]

A new approach to linear filtering and prediction problems Smoothing 1960 [23]

Peak alignment
Title Subcategory Year Reference
Two-dimensional correlation optimized warping algorithm for aligning GCxGC-MS data 2D-COW 2008 [66]

Retention time alignment for 2D data 2D alignment 2005 [76]

(Continues)
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T A B L E 2 (Continued)

Peak alignment
Title Subcategory Year Reference
Automatic time-shift alignment method for chromatographic data analysis ATSA 2017 [69]

GC × GC retention time shift correction and modelling using bilinear peak alignment,
correlation optimized shifting and MCR.

COSHIFT 2012 [63]

Alignment and clustering strategies for GC × GC-MS features Cylindrical mapping 2012 [80]

Retention time alignment to correct for wrap-around Wrap-around 2005 [81]

Correlation optimized warping and dynamic time warping as preprocessing methods for
chromatographic data

DTW 2004 [301]

Pixel-by-pixel correction of retention time shifts in chromatograms from GCxGC-TOF-MS GC × GC 2017 [68]

Investigation of interpolation techniques for the reconstruction of the first dimension of LC
× LC

Interpolation 2011 [79]

Automatic data analysis workflow for ultra-high performance liquid chromatography-high
resolution MS-based metabolomics

MS-based alignment 2019 [72]

A chemometric-assisted method based on gas chromatography-mass spectrometry for
metabolic profiling analysis

MS-based alignment 2015 [73]

Robust algorithm for aligning two-dimensional chromatograms 2D Alignment 2012 [67]

Handling within run retention time shifts in 2D data PARAFRAC 2009 [74]

MS-based peak alignment for automatic nontargeted metabolic profiling analysis for
biomarker screening in plant samples

PCC 2017 [71]

Parametric Time Warping PTW 2004 [62]

Peak alignment in LC × LC LC × LC 2009 [57]

Peak detection
Title Subcategory Year Reference
Untargeted Peak detection in LC-MS using Bayesian statistics Bayesian statistics 2015 [119]

Probabilistic peak detection Bayesian statistics 2014 [117]

Bayesian Approach for Peak Detection in Two-Dimensional Chromatography Bayesian statistics 2012 [115]

Comparative analysis of peak-detection techniques for comprehensive two-dimensional
chromatography

Comparison 2011 [94]

Normal-Gamma-Bernoulli Peak Detection Curve fitting 2017 [113]

Peak detection and background drift correction done with Curve fitting Curve fitting 2014 [48]

Normal–exponential–Bernoulli based peak detection Curve fitting 2014 [114]

Universal Denoising and Peak Picking Algorithm for LC−MS Curve fitting 2003 [109]

Curve fitting using natural computation Curve fitting 1994 [101]

Curve Fitting on overlapping peaks Curve fitting 1994 [102]

Iterative curve fitting of chromatographic peaks Curve fitting 1973 [103]

Characterization of exponentially modified Gaussian peaks in chromatography Curve fitting 1972 [125]

Component selection for deconvolution Deconvolution 2013 [105]

Peak detection and deconvolution of multi-overlapped chromatographic signals Derivative based 2005 [100]

LIMPIC: A computational method for the separation of protein MALDI-TOF-MS signals
from noise

Moving-average smoothing 2007 [45]

Improved peak detection and quantification of mass spectrometry data acquired from
SELDI by denoising spectra with the undecimated discrete wavelet transform.

Wavelet transform 2005 [44]

Total Ion Spectra versus Segmented Total Ion Spectra as Preprocessing Tools for Gas
Chromatography – Mass Spectrometry Data

Mass spectrometry 2018 [118]

Elastic Net Multivariate Curve Resolution Strategy for Sparse Spectral Recovery MCR 2017 [142]

Peak detection coupled with multivariate curve resolution-alternating least squares MCR-ALS 2019 [89]

(Continues)
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Peak detection
Title Subcategory Year Reference
Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein

Complexes
MS 2015 [108]

Peak clustering algorithm for comprehensive two-dimensional liquid chromatography data
analysis

Peak clustering 2019 [120]

Development of an algorithm for peak detection in comprehensive two-dimensional
chromatography

Peak clustering 2007 [4]

A comparison of three algorithms for chromatograms alignment Peak clustering 2006 [134]

Peak Detection and Profiling from Multidimensional Chromatography Review 2018 [98]

Peak detection methods for GC × GC Review 2016 [97]

multi-scale Gaussian smoothing-based strategy for peak extraction Smoothing 2016 [70]

Streak detection based on image analysis Watershed 2018 [122]

Probability of failure of the watershed algorithm for peak detection in comprehensive
two-dimensional chromatography

Watershed 2010 [121]

Peak detection of TOF-SIMS using continuous wavelet transform and curve fitting Wavelet transform 2018 [302]

Recursive Wavelet Peak Detection Wavelet transform 2016 [111]

Peak detection by continuous wavelet transform Wavelet transform 2016 [107]

Multiscale peak detection in wavelet space Wavelet transform 2015 [106]

Multiridge detection and time-frequency reconstruction Wavelet transform 1999 [110]

Peak properties
Title Subcategory Year Reference
Statistical moments in chromatography using trapezoidal and Simpson’s rules of peak

integration
Statistical moments 2019 [127]

Linearly modified Gaussian model Curve models 2017 [126]

Comparison and optimization of different peak integration methods Integration 2014 [129]

Asymmetric least squares baseline algorithm through the accuracy of statistical peak
moments

Statistical moments 2013 [130]

Statistical moments in the exponentially modified Gaussian model of chromatography Statistical moments 2003 [128]

Analysis of Peak Profiles Using Statistical Moments Statistical moments 1995 [124]

Statistical theory of component overlap in multicomponent chromatograms Curve fitting 1983 [116]

Computer characterization of chromatographic peaks by plate height and higher central
moments

Statistical moments 1969 [123]

Data analysis
Title Subcategory Year Reference
Chromatographic response function for assessing the separation quality in comprehensive

two-dimensional liquid chromatography
CRF 2012 [99]

ANN in metabolomics Deep learning 2019 [144]

Data analysis of metabolomic MS data Mass spectrometry 2019 [89]

Multivariate Curve Resolution MCR-ALS 2014 [172]

Multivariate Data Analysis Review 2014 [131]

Chemometrics for the analysis of chromatographic data in metabolomics investigations Review 2014 [139]

Review of chemometric analysis techniques for comprehensive two-dimensional
separations data

Review 2012 [95]

Trends in data processing of comprehensive two-dimensional chromatography Review 2012 [93]

Recent advancements in comprehensive two-dimensional separations with chemometrics Review 2008 [280]

Multivariate Curve Resolution (MCR) from 2000: Progress in concepts and applications Review 2006 [35]

De-Tailing and Sharpening of Response peaks in Gas Chromatography Peak Symmetrisation 1965 [83]

Power Law Approach as a Convenient Protocol for Improving Peak Shapes and Recovering
Areas from Partially Resolved Peaks

Power Law 2019 [85]

(Continues)
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Data analysis
Title Subcategory Year Reference
Black box linearization for greater linear dynamic range: The effect of power transforms on

the representation of data
Peak sharpening 2010 [84]

Comparison of wavelet transform and Fourier self-deconvolution (FSD) and wavelet FSD
for curve fitting

Fourier self-deconvolution 2000 [86]

Filtering and deconvolution by the wavelet transform Wavelet transform 1994 [87]

Data interpretation
Title Subcategory Year Reference
Peak evaluation by deep learning Deep learning 2019 [145]

Multivariate data analysis Multivariate data analysis 2014 [303]

Bin size effect on PCA PCA 2020 [137]

Balancing Resolution with Analysis Time using PCA and the Mahalanobis Distance PCA 2019 [136]

Discriminating Brazilian crude oils using comprehensive two-dimensional gas
chromatography-mass spectrometry and multiway principal component analysis

PCA 2016 [304]

Differentiation of cocoa nibs PCA 2016 [305]

Data evaluation in chromatography by principal component analysis PCA 2010 [132]

Alignment of chromatographic profiles for principal component analysis PCA 1994 [133]

Classification
Title Subcategory Year Reference
Application 0PLS-DA authentication of fruit juice based on LC-MS data Application OPLS-DA 2018 [154]

Application OPLS-DA discrimination between pork meat and other meat sources based on
LC-MS data

Application OPLS-DA 2018 [155]

Application PCA-LDA chemometrics-assisted HPLC-DAD strategy for authentication of
vintage year

Application PCA-LDA 2017 [157]

Application PCA-LDA for Geographical Origin Discrimination of Hazelnuts based on
LC-MS data

Application PCA-LDA 2016 [156]

Application PLS-DA Discrimination of genotype and geographical origin of black rice
based on LC-MS data

Application PLS-DA 2019 [152]

Application PLS-DA metabolomic study serum based biomarkers advanced melanoma
based on LC-MS and NMR data

Application PLS-DA 2018 [151]

Application PLS-DA GC × GC analysis of breath metabolome classification allergic
asthma

Application PLS-DA 2012 [153]

Application SIMCA detection of changes in N-glycosylation profiles of therapeutic
glycoproteins by LC-MS

Application SIMCA 2017 [160]

Application SIMCA Geographical Origin Discrimination of edible palm oil by NP-HPLC
fingerprinting

Application SIMCA 2015 [159]

Application SVM’s for classification based on GC-MS metabolomics data Application SVM’s 2017 [163]

Application SVM’s classification of edible vegetable oils based on GC-MS data Application SVM’s 2016 [162]

Classification on mass chromatography by COW-PCA-LDA COW-PCA-LDA 2018 [135]

DNN for classification of LC-MS data Deep learning 2019 [146]

Criteria for chemical identification with GC × GC-MS Peak selection 2005 [58]

Comparison of classification methods on GC × GC data Method comparison 2019 [171]

Comparison of different classification methods, NIR data Method comparison 2016 [306]

Comparison of classification methods on various data sets Method comparison 2013 [147]

OPLS-DA as an alternative to SIMCA and PLS-DA OPLS-DA 2006 [307]

PLS-DA, use, and methods Review 2018 [148]

PLS-DA, in metabolomics Review 2015 [149]

PLS-DA different methods and approaches Review 2014 [308]

(Continues)
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Classification
Title Subcategory Year Reference
Unsupervised-RF RF 2016 [165]

Application RF combined with ACO, for the classification of the Greek olive oil varieties
based on LC-MS data

RF, ACO 2018 [166]

SIMCA description of method SIMCA 2005 [148]

SVM’s in chemometrics SVM’s 2006 [148]

Quantification
Title Subcategory Year Reference
Effect of background correction on peak detection and quantification in online

comprehensive two-dimensional liquid chromatography
AWLS 2012 [36]

Comparative study between univariate spectrophotometry and multivariate calibration Comparison 2014 [309]

Comparison of multivariate curve resolution strategies in quantitative LC × LC MCR 2017 [3]

Quantification with trilinear partial least squares for GC × GC Tri-PLS 2004 [75]

Chemometric approach to improve accuracy and precision of quantitation in liquid
chromatography

MCR 2015 [141]

An initial estimation method using cosine similarity for MCR: Application to NMR spectra
of chemical mixtures

MCR 2019 [39]

Determination of phenolic compounds by LC-DAD MCR-ALS 2013 [177]

Chromatographic background drift correction coupled with parallel factor analysis to
resolve coelution problems in 3D chromatographic data: Quantification of eleven
antibiotics in tap water samples by high-performance LC-DAD

OSP 2013 [41]

Unique resolution of hidden minor peaks in multi-detection chromatography by first-order
differentiation and orthogonal projections

OSP 1993 [40]

Resolution and quantification of peaks in liquid chromatography–mass spectrometry
using PARAFAC2

PARAFAC2 2012 [140]

Targeted and non-targeted sample profiling by GC × GC-qMS Profiling 2010 [78]

Peak detection and quantification of mass spectrometry data acquired from
surface-enhanced laser desorption and ionization by denoising spectra with the
undecimated discrete wavelet transform

Wavelet transform 2005 [44]

Quantification co-eluting compounds
Title Subcategory Year Reference
MCR tutorial MCR-ALS 2014 [172]

Deconvolution of overlapping spectral polymer signals in SEC by MCR-ALS MCR-ALS 2014 [176]

Application MCR-ALS coeluting compounds GC × GC analysis of Cannabis Sativa MCR-ALS 2014 [181]

Methods for initial guess in MCR-ALS MCR-ALS, Comparison
methods initial guess

1996 [174]

KSFA for initial guess in MCR-ALS MCR-ALS, KSFA 1982 [175]

Comparison PARFAC and MCR methods on GC × GC MCR-ALS, PARFAC 2017 [180]

Comparison PARFAC and MCR methods on LC × LC MCR-ALS, PARFAC 2016 [179]

Simplisma for initial guess in MCR-ALS MCR-ALS, SIMPLISMA 1991 [173]

Simultaneous deconvolution and re-construction of primary and secondary overlapping
peak clusters in GC × GC

NLLSCF 2011 [59]

Optimization
Title Subcategory Year Reference
Using computer modelling to predict and optimize separation in GC × GC GC × GC 2008 [280]

Benefits of solvent concentration pulses in retention time modelling of LC LC 2019 [282]

Enhancement in the computation of gradient retention times in LC using root-finding
methods

LC 2019 [285]

Gradient design for LC using multi-scale optimizations LC 2018 [284]

(Continues)
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Optimization
Title Subcategory Year Reference
Method development using one-segment-per-component optimization strategies LC 2014 [238]

Optimization of HPLC with ANNs LC 2005 [216]

Predictive kinetic optimization of HILIC × RP-LC separations LC × LC 2018 [11]

Program for the interpretive optimization of 2D resolution LC × LC 2016 [286]

Optimization of conditions 2D-RP-LC LC × LC 2015 [184]

Pareto-optimality study into the comparison of LC × LC in the column and spatial mode LC × LC 2012 [296]

Challenges in LC × LC Review 2018 [5]

Optimizing separations in LC × LC Review 2018 [6]

Optimization of GC × GC Review 2012 [182]

Likelihood of total resolution in sLC × LC with parallel processing sLC × LC 2018 [297]

Orthogonality
Title Subcategory Year Reference
Two metrics for measuring orthogonality for 2D chromatography 2D separations 2019 [263]

The role of surface coverage and orthogonality metrics for 2D chromatography 2D separations 2017 [249]

New method for the determination of peak distribution across a 2D separation space for optimal
column combinations

2D separations 2016 [262]

Comparison of orthogonality metrics by statistical analysis 2D separations 2015 [257]

Comparison of orthogonality estimation methods for the 2D separation of peptides 2D separations 2015 [256]

Assessment of the orthogonality in 2D separative systems using criteria defined by the maximal
information coefficient

2D separations 2015 [261]

Asterix equation: A new measure of orthogonality 2D separations 2014 [258]

Assessment of 2D separative systems using the nearest neighbour distances approach. Part 1:
Orthogonality

2D separations 2013 [278]

A modelling approach for orthogonality of comprehensive 2D separations 2D separations 2013 [259]

Fractional coverage metrics based on ecological home range for calculating the effective peak
capacity

2D separations 2012 [253]

The dimensionality of chromatographic separations 2D separations 2011 [252]

Orthogonality of 2D separations based on conditional entropy 2D separations 2011 [254]

Informational orthogonality of 2D chromatographic separations 2D separations 1996 [250]

Geometric approach to factor analysis for the estimation of orthogonality and practical peak
capacity

2D separations 1995 [260]

Optimization of GC × GC method based on orthogonality GC × GC 2018 [264]

Convex Hull: A new method to determine the used separation space GC × GC 2010 [251]

Protocols for finding the most orthogonal dimensions for LC × LC LC × LC 2015 [265]

Orthogonality measurement for multi-dimensional chromatography in three and higher
dimensional separations

Multi-dimensional
separations

2017 [266]

Resolution
Title Subcategory Year Reference
Valley-to-peak ratio as a measure for the separation of two chromatographic peaks 1D separations 1971 [267]

Development of a resolution metric for comprehensive 2D chromatography 2D separations 2007 [269]

Quantification of resolution for 2D separations 2D separations 1997 [268]

Peak capacity
Title Subcategory Year Reference
Chromatographic peak capacity and the factors influencing it 1D separations 1970 [271]

Maximum number of components resolvable in gel filtration and other elution chromatographic
methods

1D separations 1967 [270]

Further considerations of exact equations for peak capacity in isocratic LC LC 2014 [275]

(Continues)
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Peak capacity
Title Subcategory Year Reference
Approximate and exact equations for peak capacity in isocratic HPLC LC 2011 [274]

Study on the optimization of LC × LC considering losses in theoretical peak capacity in the 1D
and the 2D

LC × LC 2010 [187]

Chromatographic response functions
Title Subcategory Year Reference
Study on the performance of resolution criterion to characterize complex chromatograms 1D separations 2017 [277]

A chromatographic objective function to characterize chromatograms, peak prominence 1D separations 2015 [276]

Assessment of 2D separative systems using the nearest neighbour distances approach. Part 2:
Separation quality aspect

2D separations 2013 [255]

Universal comparison of CRFs LC 2014 [232]

A new CRF for assessing the separation quality in LC × LC LC × LC 2012 [99]

CRFs in 1D and 2D chromatography as tools for assessing chemical complexity Review 2013 [279]

Stationary phase selection
Title Subcategory Year Reference
Stationary phase selection in GC × GC GC × GC 2012 [193]

Column selection with a multi-column system and DryLab LC 2006 [199]

Classification and comparison of RP-LC columns using PCA RP-LC 2007 [195]

Characterization of RPLC columns with porous particles RP-LC 2007 [196]

Classification and comparison of RP-LC columns RP-LC 2003 [194]

Retention modelling
Title Subcategory Year Reference
Prediction of retention time of capillary GC using MLR, PLS and back-propagation ANNs GC 2011 [207]

Influence of carrier gas on the prediction of GC retention times based on thermodynamic
parameters

GC 2011 [220]

Prediction of GC retention time via an additive thermodynamic model GC 2010 [219]

Evaluation of a structure-driven retention model for temperature-programmed GC GC 2004 [218]

Prediction of GC retention indices using radial basis function ANNs GC 2002 [208]

Regression algorithm for calculating 2D retention indices in GC × GC GC × GC 2018 [222]

Retention time prediction in temperature-programmed GC × GC GC × GC 2014 [221]

QSRR-based estimation of retention times in GC × GC GC × GC 2012 [214]

Retention modelling in GC × GC using a QSRR model GC × GC 2011 [211]

An accurate QSRR model for the prediction of GC × GC retention times GC × GC 2007 [213]

Generating multiple independent retention index data in dual-secondary GC × GC GC × GC 2006 [224]

Estimation of environmental partitioning properties using GC × GC retention indices GC × GC 2005 [223]

Prediction of protein retention times in gradient HIC HIC 2008 [241]

Protein retention and selectivity in HIC using QSRR models HIC 2006 [239]

New approaches for prediction of protein retention times in HIC HIC 2006 [240]

Applicability of retention modelling in HILIC for algorithmic optimization programs HILIC 2017 [234]

Retention modelling and method development in HILIC, PEWS HILIC 2014 [231]

HILIC retention prediction under gradient elution HILIC 2012 [237]

Study on the retention mechanism in HILIC - Mixed mode model HILIC 2011 [227]

Study on the retention equation in HILIC - Mixed mode model HILIC 2008 [228]

Development of an inorganic cations retention model in ion chromatography by means of ANNs IEX 2005 [215]

Retention modelling in IEX - Adsorption model IEX 1996 [226]

Migration and elution equations in gradient LC LC 2019 [287]

Simulation of elution profiles on columns with a stationary phase gradients LC 2018 [206]

(Continues)
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T A B L E 2 (Continued)

Retention modelling
Title Subcategory Year Reference
Simulation of elution profiles in LC: Gradient conditions, and with mismatching injection and

mobile phase solvents
LC 2016 [288]

Data fitting problems encountered in modelling retention behaviour of analytes with dual
retention mechanisms

LC 2015 [233]

Prediction of retention time in high-resolution anti-doping screening data using ANNs LC 2013 [210]

Linear gradient prediction algorithm for stationary phase optimized selectivity LC LC 2010 [204]

Simulation of elution profiles in LC: Investigation of the injection solvent in the second
dimension

LC × LC 2017 [289]

Sorption of organic compounds on black carbon LFER 2018 [246]

Application of hydrogen bonding calculations, LFER LFER 2002 [244]

Effect of temperature on retention using RP-LC LFER, van ’t Hoff 2019 [247]

Optimization of ANNs for modelling impurities retention in micellar LC MLC 2011 [209]

Retention modelling in NP-LC and RP-LC - Adsorption model NP-LC, RP-LC 2000 [225]

Applications of polyparameter LFER in environmental chemistry Review, LFER 2014 [248]

Gradient retention time predictions for suspect screening RP-LC 2016 [217]

Improved RP gradient retention modelling, Neue-Kuss model RP-LC 2010 [230]

Nonlinear retention relationships in RP-LC, Neue-Kuss model RP-LC 2006 [229]

Possibilities of retention modelling and computer-assisted method development in SFC SFC 2015 [238]

Peak tracking
Title Subcategory Year Reference
Bayesian peak tracking in GC × GC GC × GC 2016 [295]

Peak-tracking algorithm for use in automated interpretive method-development tools in LC LC 2018 [294]

Combined use of algorithms for peak picking, peak tracking, and retention modelling LC 2011 [293]

Feature detection and alignment of LC-MS data using Kalman tracking LC 2008 [292]

Mutual peak alignment in series of HPLC-DAD mixture analytes LC 2003 [291]

Peak tracking of peptides in RP-LC using DAD data RP-LC 1994 [290]

Method transfer
Title Subcategory Year Reference
Method transfer after changing pore diameter LC 2019 [188]

Method transfer for fast LC - Gradient experiments LC 2008 [189]

Method transfer for fast LC - Isocratic measurements LC 2007 [190]

Feature selection
Title Subcategory Year Reference
Application ACO for feature selection of MALDI-TOF data ACO 2007 [168]

Ant colony optimization ACO 2006 [310]

Application RF combined with ACO, for the classification of the Greek olive oil varieties based
on LC-MS data

RF, ACO 2018 [166]

Miscellaneous
Title Subcategory Year Reference
Bayesian regularization of neural networks Bayesian statistics 2008 [50]

Application of GC × GC combined with pixel-based chemometric processing for the chemical
profiling of illicit drug samples

COW application 2008 [64]

Application of parallel computing to speed up chemometrics for GC × GC-TOFMS based
metabolic fingerprinting

Parallel computing 2011 [65]

Chemometrics-assisted method development in RP-LC Review 2013 [185]

Recent developments in GC × GC Review 2006 [192]

Tutorial on Bayesian chemometrics Review 2007 [96]

The ‘PRISMA’ mobile phase optimization model in TLC TLC 1985 [198]
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data set and comparisons with other approaches supported by
numerical data have rarely been reported. A comprehensive
study of different types of data and data-analysis techniques
would allow a better overview of which techniques can be
best used in which situation.

The water-shed algorithm is often outperformed by the
other techniques, but it may find new application in the field of
polymer analysis. Polymer separations typically do not yield
individually separated components (i.e. peaks), but envelopes
or distributions (sometimes called “smears”), which are diffi-
cult to treat with curve-fitting or derivative-based methods.

Interest in deep-learning methods is rapidly growing in
other fields of science and algorithms are starting to be
applied in chromatography, concurrently with the increase in
computation power available. Deep learning methods are very
flexible but limited to situations that are sufficiently repre-
sented in the training data.

Traditional classification methods such as PCA-LDA,
SIMCA and PLS-DA are still most commonly applied,
although newer methods, such as RF and SVM methods, are
gaining popularity. Again, the different variations of each of
these methods render an absolute comparison challenging.
Numerical data are not yet available. However, RF and SVM
methods have been shown to perform as well or even better
than classical methods in some cases [147,306]. Therefore,
further studies in this direction are encouraged.

Quantification of compounds based on spectrally aided
deconvolution is currently best performed using bilinear
MCR-ALS methods. Current multidimensional chromato-
graphic methods fail to reconstruct 3D data with trilinear
models. Future peak-alignment models may be sufficiently
accurate for this purpose.

Finally, almost all the discussed algorithms and tools for
method optimization assume the optimum to concur with
a maximum in one of the quality descriptors, such as peak
capacity. The optimum, however, always depends on the
objective of the optimization. The highest peak capacity,
resolution or orthogonality may not always be required. In
some cases, only a single compound is of interest and the only
objective is to have this fully resolved from its neighboring
peaks. In other cases, impurity profiling may be desired or
obtaining a structured chromatogram may be the goal. For
these reasons, the answer to the question “What is the true
optimum of a separation?” is still debatable and incorporation
of a user-specified desirability parameter is recommended in
future developments.
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