Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Poly[trans-diaquabis[μ_{2}-2-(pyridin-3-yl)acetato- $\kappa^{2} N$: O]zinc]

Yue-Hua Li, ${ }^{\text {a,b }}$ Lin Du, ${ }^{\text {a }}$ Zong-Ze Li ${ }^{\text {a }}$ and Qi-Hua Zhao ${ }^{\text {a* }}$

${ }^{\text {a S School of Chemical Science and Engineering, Yunnan University, Kunming 650091, }}$ People's Republic of China, and ${ }^{\mathbf{b}}$ School of Pharmacy, Dali University, Dali 671000, People's Republic of China
Correspondence e-mail: qhzhao@ynu.edu.cn
Received 7 September 2011; accepted 19 September 2011
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.042 ; w R$ factor $=0.098$; data-to-parameter ratio $=15.5$.

In the title coordination polymer, $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Zn}^{\text {II }}$ cation is located on an inversion center and is coordinated by four pyridylacetate anions and two water molecules in a distorted $\mathrm{ZnN}_{2} \mathrm{O}_{4}$ octahedral geometry. The pyridine- N and carboxylate- O atoms of the pyridylacetate anion connect to two $\mathrm{Zn}^{\mathrm{II}}$ cations, forming a two-dimensional polymeric complex extending parallel to (212). Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is present in the crystal structure.

Related literature

For related complexes with pyridylacetate ligands, see: Li et al. (2004); Du et al. (2006); Martin et al. (2007); Qin et al. (2007); Aakeröy et al. (1999); Evans \& Lin (2002); Tong et al. (2003).

Experimental

Crystal data
$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=373.66$
Monoclinic, $P 2_{1} / n$
$a=9.175$ (2) A
$b=8.686$ (2) A
$c=9.574$ (2) \AA
$\beta=105.928(3)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.718, T_{\text {max }}=0.723$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.098$
$S=1.00$
1732 reflections
112 parameters 3 restraints
$V=733.8(3) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=1.71 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.20 \times 0.20 \times 0.19 \mathrm{~mm}$

4934 measured reflections 1732 independent reflections 1178 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.054$

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{N} 1$	$2.168(3)$	$\mathrm{Zn} 1-\mathrm{O} 3$	$2.125(2)$
$\mathrm{Zn} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.091(2)$		

Symmetry code: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 1^{\text {i }}$	0.81 (3)	1.99 (3)	2.739 (4)	152 (4)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O} 1^{\text {ii }}$	0.82 (3)	1.97 (3)	2.764 (4)	161 (3)
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\text {iii }}$	0.93	2.54	3.443 (5)	163
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {iv }}$	0.93	2.50	3.366 (5)	155

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1,-y,-z+1$; (iii) $x, y, z-1$; (iv)
$x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Yunan Province, China (grant 2009 CD015).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5324).

References

Aakeröy, C. B., Beatty, A. M. \& Leinen, D. S. (1999). Angew. Chem. Int. Ed. 38, 1815-1819.
Bruker (2001). SADABS. Brucker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Brucker AXS Inc., Madison, Wisconsin, USA.
Du, M., Li, C.-P. \& Zhao, X.-J. (2006). Cryst. Growth Des. 6, 335-341.

metal-organic compounds

Evans, O. R. \& Lin, W. B. (2002). Acc. Chem. Res. 35, 511-522.
Li, X., Cao, R., Sun, Y.-Q., Shi, Q., Yuan, D.-Q., Sun, D.-F., Bi, W.-H. \& Hong, M.-C. (2004). Cryst. Growth Des. 4, 255-261.

Martin, D. P., Springsteen, C. H. \& LaDuca, R. L. (2007). Inorg. Chim. Acta, 360, 599-606.

Qin, S.-N., Liang, F.-P., Chen, Z.-L. \& Yan, W.-H. (2007). Acta Cryst. E63, m1492-m1493.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
Tong, M.-L., Li, L.-J., Mochizuki, K., Chang, H.-C., Chen, X.-M., Li, Y. \& Kitagawa, S. (2003). Chem. Commun. pp. 428-429.

supplementary materials

Poly[trans-diaquabis[μ_{2}-2-(pyridin-3-yl)acetato- $\kappa^{2} N: O$ zzinc]

Y.-H. Li, L. Du, Z.-Z. Li and Q.-H. Zhao

Comment

The compounds of pyridine-carboxylic acids have been extensively utilized in the preparation of metal complexes due to their versatile coordination modes. Though various metal-pyridinepolycarboxylate complexes have been reported (Evans et al., 2002; Aakeröy et al., 1999; Li et al., 2004; Du et al., 2006), 3-pyridylacetate complexes are rare. Only a few of complexes as nickel, cobalt and copper species have been combined up to now (Martin et al., 2007). In this paper, we described a new two-dimensional coordination polymer, $\left[\mathrm{Zn}(3 \text {-pyridylacetato })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{\mathrm{n}}$, (I). The molecular structure of the title complex is similar to those previously reported such as $\left[M(4 \text {-pyridylacetato })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{\mathrm{n}}(M=\mathrm{Cu}, \mathrm{Co}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Zn}$, $\left.\mathrm{Cd})(\mathrm{Du} \text { et al., 2006; Qin et al., 2007; Tong et al., 2003) and [} M \text { (3-pyridylacetato) })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{\mathrm{n}}(M=\mathrm{Ni}, \mathrm{Co}, \mathrm{Cu})(\mathrm{Martin}$ et al., 2007;). Single-crystal X-ray diffraction analysis shows that the title compound is crystallized in a space group $P 2_{1} / n$. The $\mathrm{Zn}^{\mathrm{II}}$ center is six-coordinated by two water molecules in the axial positions, two pyridyl nitrogen atoms and two carboxylate oxygen atoms from two 3-pyridylacetate ligands in the plane. Pyridine nitrogen atom and carboxylate oxygen atom of each 3-pyridylacetate anion are connected to one $\mathrm{Zn}^{\mathrm{II}}$ ions. The coordination geometry of $\mathrm{Zn}^{\mathrm{II}}$ cation can been described as a distorted octahedral geometry with $\mathrm{Zn}-\mathrm{N}$ and $\mathrm{Zn}-\mathrm{O}$ distance range 2.168 (2) \AA and 2.091 (3)—2.125 (3) \AA, respectively (Fig. 1, Table 1). Four 3-pyridylacetate anionic ligands and four $\mathrm{Zn}^{\mathrm{II}}$ ions are combined to a tetragon, which is of a side length of $8.653 \AA$ and a diagonal measurement of $14.969 * 8.686 \AA$ based on the $\mathrm{Zn}-\mathrm{Zn}$ distances. The tetragon is further extended into a two-dimensional framework structure parallel to (212) with arhombic grid through sharing $\mathrm{Zn}^{\mathrm{II}}$ ions, 3-pyridylacetate anionic ligands. Adjacent two-dimensional layers are connected by the intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydro-gen-bonding contacts, forming a three-dimensional framework structure with oxygen as a trifurcated acceptor atom (Fig. 2)

Experimental

A mixture of $\mathrm{Zn}(\mathrm{COO})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$, 3-pyridyl acetic acid $(0.1 \mathrm{mmol})$, DMF $(5.0 \mathrm{ml})$ and methanol (10.0 ml) was stirred for 30 min and and the crude product was isolated by filtration. The filtrate was purified by recrystallization from anhydrous methanol and DMF to give (I) as colorless block crystals in 60% yield. An solution of (I) was stood at room temperature, and upon slowly evaporating methanol and DMF from the solution, colorless block crystals suitable for X-ray diffraction analysis were isolated in room temperature three week later.

Refinement

Water H atoms were located in a difference Fourier map and positional parameters were refined, $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{O})$. Other H atoms were generated geometrically and were included in therefinement in the riding model approximation with $\mathrm{C}-\mathrm{H}$ $=0.93-0.97 \AA, \mathrm{U}_{\text {iso }}=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. The molecular structure of the title complex with the atom-numbering diagram. Ellipsoids were drawn at the 30% probability level.

Fig. 2. The packing diagram of (I).

Poly[trans-diaquabis[μ_{2}-2-(pyridin-3-yl)acetato- $\left.\kappa^{2} N, O\right]$ zinc]

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$]
$M_{r}=373.66$
Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2 yn
$a=9.175(2) \AA$
$b=8.686(2) \AA$
$c=9.574(2) \AA$
$\beta=105.928(3)^{\circ}$
$V=733.8(3) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.718, T_{\text {max }}=0.723$
4934 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$F(000)=384$
$D_{\mathrm{x}}=1.691 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4934 reflections
$\theta=3.2-28.2^{\circ}$
$\mu=1.71 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colorless
$0.20 \times 0.20 \times 0.19 \mathrm{~mm}$

1732 independent reflections
1178 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-12 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-9 \rightarrow 12$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.098$
$S=1.00$

1732 reflections
112 parameters
3 restraints

H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.035 P)^{2}+0.2786 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.38$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Zn1	0.5000	0.0000	0.0000	$0.02624(18)$
O1	$0.2006(3)$	$0.1719(3)$	$0.6106(3)$	$0.0400(6)$
O2	$0.0333(3)$	$0.2812(3)$	$0.4230(2)$	$0.0331(6)$
O3	$0.6282(3)$	$0.0534(3)$	$0.2153(3)$	$0.0359(6)$
H3C	$0.694(3)$	$0.002(3)$	$0.272(3)$	0.043^{*}
H3B	$0.676(4)$	$0.130(3)$	$0.207(4)$	0.043^{*}
N1	$0.3007(3)$	$0.0777(3)$	$0.0596(3)$	$0.0293(6)$
C1	$0.1913(4)$	$0.1572(4)$	$-0.0326(4)$	$0.0346(8)$
H1A	0.2032	0.1814	-0.1235	0.042^{*}
C2	$0.0611(4)$	$0.2054(4)$	$0.0003(4)$	$0.0372(9)$
H2A	-0.0123	0.2612	-0.0670	0.045^{*}
C3	$0.0414(4)$	$0.1699(4)$	$0.1341(4)$	$0.0346(8)$
H3A	-0.0460	0.2004	0.1578	0.042^{*}
C4	$0.1537(4)$	$0.0881(4)$	$0.2333(3)$	$0.0267(7)$
C5	$0.2802(4)$	$0.0449(4)$	$0.1900(4)$	$0.0295(8)$
H5A	0.3557	-0.0104	0.2555	0.035^{*}
C6	$0.1407(4)$	$0.0437(4)$	$0.3815(4)$	$0.0341(9)$
H6A	0.2296	-0.0158	0.4302	0.041^{*}
H6B	0.0532	-0.0229	0.3692	0.041^{*}
C7	$0.1255(4)$	$0.1768(4)$	$0.4799(4)$	$0.0278(7)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0299(3)$	$0.0285(3)$	$0.0225(3)$	$-0.0017(3)$	$0.0111(2)$	$-0.0004(2)$

O1	$0.0477(16)$	$0.0369(14)$	$0.0309(14)$	$0.0064(12)$	$0.0033(12)$	$0.0006(11)$
O2	$0.0417(15)$	$0.0324(13)$	$0.0259(12)$	$0.0088(11)$	$0.0106(11)$	$-0.0015(10)$
O3	$0.0426(16)$	$0.0340(14)$	$0.0279(14)$	$-0.0022(12)$	$0.0044(11)$	$-0.0018(11)$
N1	$0.0336(17)$	$0.0316(16)$	$0.0256(15)$	$-0.0012(13)$	$0.0130(12)$	$0.0007(12)$
C1	$0.045(2)$	$0.034(2)$	$0.0261(18)$	$0.0034(17)$	$0.0126(16)$	$0.0024(15)$
C2	$0.037(2)$	$0.039(2)$	$0.034(2)$	$0.0102(17)$	$0.0060(16)$	$0.0004(16)$
C3	$0.029(2)$	$0.037(2)$	$0.039(2)$	$0.0047(16)$	$0.0121(16)$	$-0.0065(17)$
C4	$0.033(2)$	$0.0232(18)$	$0.0263(17)$	$0.0001(14)$	$0.0123(15)$	$-0.0021(14)$
C5	$0.034(2)$	$0.0275(18)$	$0.0286(18)$	$0.0025(14)$	$0.0116(15)$	$0.0035(14)$
C6	$0.048(2)$	$0.0259(18)$	$0.035(2)$	$0.0059(16)$	$0.0234(17)$	$0.0035(14)$
C7	$0.0286(19)$	$0.0282(18)$	$0.0314(19)$	$-0.0034(15)$	$0.0160(15)$	$0.0037(15)$

Geometric parameters (\AA, ${ }^{\circ}$)

Zn1-N1	2.168 (3)
$\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	2.168 (3)
$\mathrm{Zn} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.091 (2)
$\mathrm{Zn} 1-\mathrm{O} 2^{\text {iii }}$	2.091 (2)
$\mathrm{Zn} 1-\mathrm{O} 3$	2.125 (2)
O1-C7	1.252 (4)
O2-C7	1.258 (4)
$\mathrm{O} 2-\mathrm{Zni}{ }^{\text {iv }}$	2.091 (2)
O3-H3C	0.825 (18)
O3-H3B	0.812 (17)
N1-C1	1.333 (4)
N1-C5	1.344 (4)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 2{ }^{\text {iii }}$	180.00 (12)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{O} 3{ }^{\text {i }}$	87.23 (9)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{O} 3^{\text {i }}$	92.77 (9)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	88.57 (10)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	91.43 (10)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	87.67 (10)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{Zn} 1-\mathrm{N} 1$	91.43 (10)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Zn} 1-\mathrm{N} 1$	88.57 (10)
$\mathrm{O} 3{ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{N} 1$	92.33 (10)
$\mathrm{N} 1^{\mathrm{i}}$-Zn1-N1	180.00 (12)
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{Zn} 1^{\text {iv }}$	130.4 (2)
$\mathrm{H} 3 \mathrm{C}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	101 (2)
C1-N1-C5	117.0 (3)
C1-N1-Zn1	121.5 (2)
C5-N1-Zn1	121.5 (2)
N1-C1-C2	123.1 (3)
N1-C1-H1A	118.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	118.4
C3-C2-C1	119.1 (3)
C3-C2-H2A	120.4

C1-C2	1.382 (5)
C1-H1A	0.9300
C2-C3	1.377 (5)
C2-H2A	0.9300
C3-C4	1.390 (5)
C3-H3A	0.9300
C4-C5	1.387 (4)
C4-C6	1.507 (4)
C5-H5A	0.9300
C6-C7	1.522 (4)
C6-H6A	0.9700
C6-H6B	0.9700
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.2 (3)
C2-C3-H3A	120.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.4
C5-C4-C3	117.3 (3)
C5-C4-C6	120.1 (3)
C3-C4-C6	122.6 (3)
N1-C5-C4	124.2 (3)
N1-C5-H5A	117.9
C4-C5-H5A	117.9
C4-C6-C7	115.7 (3)
C4-C6-H6A	108.4
C7-C6-H6A	108.4
C4-C6-H6B	108.4
C7-C6-H6B	108.4
H6A-C6-H6B	107.4
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	125.3 (3)
O1-C7-C6	118.3 (3)
O2-C7-C6	116.4 (3)

sup-4

supplementary materials

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.81(3)$	$1.99(3)$	$2.739(4)$	$152(4)$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{C} \cdots \mathrm{O} 1^{\mathrm{V}}$	$0.82(3)$	$1.97(3)$	$2.764(4)$	$161(3)$
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{vi}}$	0.93	2.54	$3.443(5)$	163
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{vii}}$	0.93	2.50	$3.366(5)$	155

Symmetry codes: (ii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (v) $-x+1,-y,-z+1$; (vi) $x, y, z-1$; (vii) $x-1 / 2,-y+1 / 2, z-1 / 2$.

supplementary materials

Fig. 1

Fig. 2

