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Abstract: The SARS-CoV-2 virus has proliferated around the world and caused panic to all people as
it claimed many lives. Since COVID-19 is highly contagious and spreads quickly, an early diagnosis
is essential. Identifying the COVID-19 patients’ mortality risk factors is essential for reducing this
risk among infected individuals. For the timely examination of large datasets, new computing
approaches must be created. Many machine learning (ML) techniques have been developed to predict
the mortality risk factors and severity for COVID-19 patients. Contrary to expectations, deep learning
approaches as well as ML algorithms have not been widely applied in predicting the mortality and
severity from COVID-19. Furthermore, the accuracy achieved by ML algorithms is less than the
anticipated values. In this work, three supervised deep learning predictive models are utilized to
predict the mortality risk and severity for COVID-19 patients. The first one, which we refer to as
CV-CNN, is built using a convolutional neural network (CNN); it is trained using a clinical dataset of
12,020 patients and is based on the 10-fold cross-validation (CV) approach for training and validation.
The second predictive model, which we refer to as CV-LSTM + CNN, is developed by combining the
long short-term memory (LSTM) approach with a CNN model. It is also trained using the clinical
dataset based on the 10-fold CV approach for training and validation. The first two predictive models
use the clinical dataset in its original CSV form. The last one, which we refer to as IMG-CNN, is a
CNN model and is trained alternatively using the converted images of the clinical dataset, where
each image corresponds to a data row from the original clinical dataset. The experimental results
revealed that the IMG-CNN predictive model outperforms the other two with an average accuracy of
94.14%, a precision of 100%, a recall of 91.0%, a specificity of 100%, an F1-score of 95.3%, an AUC of
93.6%, and a loss of 0.22.

Keywords: COVID-19 detection; mortality and severity risk; deep learning; machine learning

1. Introduction

Nowadays, most healthcare systems rely on big databases containing accurate medical
records that have been collected from medical centers and comprise the health information
of patients such as diagnoses, demographics, medications, vital signs, problem lists, and
laboratory data. Developing applications based on artificial intelligence (AI) techniques in
order to utilize these medical big data has attracted the attention of many researchers in
the past few years. Recently, many AI-based medical applications have been introduced to
provide intelligent healthcare systems that can effectively perform multiple vital functions
such as early prediction and disease diagnosis, clinical decision support, patient support,
prognosis assessment, and mortality risk prediction for severe illnesses. In fact, physicians
have greatly benefited from the emergence of these applications in the medical field.

AI has permeated almost every aspect of our daily lives, raising its performance to
an even better level. One of the most important approaches of AI is machine learning
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(ML) [1,2]. ML algorithms utilize computational methods to simulate intelligent human
ways of understanding and learning in order to make decisions based on the available
historical data. They are concerned with developing systems that can learn from examples
without being explicitly programmed. A higher amount of data can guide the learning
process and enhance the quality of the employed machine learning algorithm. Deep
learning (DL) is considered to be an evolution of machine learning methods as it requires
more data to achieve more efficiency, quality, and comprehensiveness for deeper cases. DL
can detect the complicated relationship between the input data and identify the important
features without human intervention, which helps in building a more powerful learning
model [3]. Healthcare is one of the areas that has benefited from DL in many ways, such as
in the classification and prediction of diseases. Based on DL approaches, more accurate
healthcare tasks can be performed, such as the one introduced in this paper: the mortality
risk prediction for SARS-CoV-2 virus positive patients.

The convolutional neural network (CNN) is one of the first deep learning models
introduced in the DL field, and since then, it has been used in many different applications
such as pattern recognition, classification, and prediction [4,5]. It is based on the use of
several layers in order to reduce the high dimensions of the training data from which the
attributes are extracted automatically.

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that
depends on improving the performance of the model by solving the vanishing gradient
problem since this contains a memory block that stores weights values [6–8]. Each memory
block consists of three gates that determine the state and the output of the block. These
gates consist of a forget gate, an input gate, and an output gate. LSTM has shown great
performance and is impressive in many applications that capture sequential information
compared to traditional methods.

Currently, predicting mortality risk is considered as an important topic of research that
aims to identify the potential risk factors as well as predict the probability of mortality for
patients with severe diseases [9–16]. Investigating the key risk factors of mortality is critical
for early mortality risk prediction. Several medical studies, such as [17], have exploited the
prognosis for hospitalized SARS-CoV-2 patients. They evaluated the ECG readings (as an
indicator of heart disease) of hospitalized SARS-CoV-2 patients at the time of admission
to the hospital and after 7 days of hospitalization; they subsequently concluded that ECG
is useful in identifying patients with possible clinical risk. There was also a significant
association between abnormal ECG and major adverse events in patients with COVID-19.
Artificial intelligence, specifically ML, can greatly help in the prediction of such mortality
risk problems given the appropriate dataset to work with. Diseases such as chronic kidney
disease, brain stroke, heart attack as well as COVID-19 have been the focus of research
works concerned with mortality risk prediction in the recent years and which developed
several prediction models with high-accuracy prediction values. Since the appearance of
COVID-19, numerous AI-based applications that use different types of ML techniques have
been developed to predict the mortality risk factors and severity for COVID-19 patients.

Surprisingly, the effectiveness of DL applications in predicting the mortality and
severity of COVID-19 is not well-documented. Many studies have addressed mortality risk
prediction for COVID-19 patients [1,18–25]. The current studies on mortality risk prediction
for COVID-19, which employ clinical datasets, mostly utilize ML methods but rarely make
use of deep learning. Moreover, the majority of such studies use small clinical datasets. In
the current research, we use a clinical dataset in two different forms—its original CSV form
and its converted image form—in order to increase the performance of the DL predictive
models. The main contributions of this study are the following:

• Developing three deep learning predictive models with different architectures to
predict the mortality risk for COVID-19 patients.

• Using the clinical features of COVID-19 patients to predict their chances of survival.
• Converting the original clinical dataset into images that would be used by one of the

proposed predictive models and subsequently analyzing its performance.
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• Conducting a comparative analysis with some previous studies that used well-known
ML methods on the same dataset.

• Comparing our proposed work to previous studies that employed the deep learning
CNN model with various meta-heuristic methods and datasets.

The remaining part of this paper is organized as follows. Section 2 presents related
research works and the background on predicting mortality risk and severity. The details
of the materials and methods, the dataset used in the study, data pre-processing, and
the proposed deep learning models are described in Section 3. Section 4 incorporates
the results, including the experimental parameters and the performance metrics for our
proposed system, with comparisons to current state-of-the-art systems of mortality risk
prediction. Comparative analyses and a discussion are elaborated in Section 5. Finally,
conclusions along with possible future work are presented in Section 6.

2. Background and Related Works on Predicting Mortality Risk and Severity

Certainly, with the declining situation of COVID-19 patients, the timely identification
of patients at high risk is imperative and vital. Important decisions can be taken based
on this early identification, such as establishing more responsive healthcare systems, im-
mediate intervention in more effective ways to protect against the risk of death, or the
use of intensive care, which promotes an improvement in the health condition of patients
and avoids the risk of death or more severe complications [1]. Moreover, it reduces the
burden on the health systems and enables the decision makers to allocate the limited health
assistance resources during periods of high morbidity to critically ill patients.

On the other hand, doctors have been seeking the best possible medicine dosages that
would result in a fast and effective cure for the patients. Studies have been presented to
help anticipate the effects of certain dosages in reducing mortality risk, as in [26], which
investigated the possible association between different dosages of LMWH enoxaparin
administration and mortality in hospitalized COVID-19 patients.

In [1], an integrated predictive model using ML algorithms was designed and devel-
oped to identify health risks and predict the mortality risk for COVID-19 patients. Support
Vector Machine (SVM), Artificial Neural Networks (ANN), Random Forest (RF), Decision
Tree, Logistic Regression, and K-Nearest Neighborhood (KNN) are just a few of the tradi-
tional machine learning techniques that were employed to achieve this goal. The data of
more than 2,670,000 COVID-19-infected patients from 146 countries around the world were
used to train this model, which comprised 307382 labeled samples. However, this dataset
had to be pre-processed using a set of algorithms in order to extract new features and
process missing data values, remove redundant and useless data elements, and identify the
most useful features. The predictive model achieved an accuracy of 89.98% for the predic-
tion of the mortality rate, using a neural network with a 10-fold cross-validation model.
Moreover, the authors identified the most important symptoms and features associated
with the COVID-19 disease.

The authors of [19] sought the identification of the most meaningful mortality risk
markers in a dataset containing epidemiological, demographic, clinical, laboratory, and
mortality data, which were collected from the medical records of 485 patients residing in
Wuhan, China. A multi-tree XGBoost algorithm was used to rank the features based on
their significance in order to determine the important discriminative biomarkers causing
patient death. Their results indicated that Lactic dehydrogenase (LDH), lymphocyte, and
high-sensitivity C-reactive protein (hs-CRP) were the most important biomarkers. The
decision tree model accordingly uses the three indicated biomarkers in order to predict the
mortality of a patient, with a dead or alive classification accuracy of about 90%.

In [27], a prognostic prediction model that was built using the XGBoost algorithm
was developed for the prediction of the mortality risk in COVID- 19 patients. A dataset of
375 patients, including 201 survivors, from the Tongji Hospital in Wuhan was used in this
study. The prediction model achieved a survival prediction accuracy of more than 90% and
was based on the main clinical features of LDH, lymphocyte, and hs-CRP.
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The XGBoost algorithm in [28] was used to develop mortality prediction models for
COVID-19 patients. A dataset of 296 patients, including 277 survivors, from the First
People’s Hospital of Jiangxia District in Wuhan was used to train the models. The features
of age, history of hypertension, and coronary heart disease were used to create the clinical
model that attained an Area under the ROC Curve (AUC) value of 83%. The features
of age, oxygen saturation (SpO2), hs-CRP, neutrophil and lymphocyte count, aspartate
aminotransferase (AST), D-dimer, and glomerular filtration rate were used to construct the
laboratory model. The laboratory model outperformed the clinical model, with an AUC
value of 88%. The authors recommended that the clinical models with limited information
should only be used for the preliminary examination of high-risk cases.

The authors of [29] presented a prediction model that used the XGBoost algorithm to
predict COVID-19 mortality risk in the New York City healthcare system. Their dataset
contained 8770 patients, including 7656 survivors; the patient data were collected from
the Mount Sinai hospital. The prediction model was able to achieve an AUC value of 0.86,
whereas the detected risk factors were higher age, male gender, higher heart rate, higher
respiratory rate, higher body mass index (BMI), and chronic kidney disease (CKD).

In [30], a mortality risk tool based on the XGBoost algorithm was established to predict
COVID-19 mortality. Their dataset contained 3927 COVID-19 patients whose data were
collected from six diverse centers, including 33 hospitals in Europe and the United States.
The performance of the prediction tool was evaluated through three validation groups:
Seville patients, Hellenic COVID-19 study group patients, and Hartford hospital patients.
According to these validation groups, the prediction tool achieved AUC values of 0.92,
0.87, and 0.81, respectively. The study concluded that the mortality main risk factors were
older age, low oxygen saturation, high levels of CRP, blood creatinine, and blood urea
nitrogen (BUN).

Similarly, in [31], a simple-tree XGBoost ML model was developed for death risk
prediction in COVID-19 patients. A dataset of 1270 COVID-19 patients, 984 of whom
were admitted to the Sino French New City Branch and 286 to the Optical Valley Branch
of Wuhan Tongji hospital, was considered in the study. The least absolute shrinkage
and selection operator (LASSO) regression method was employed to discover the most
important clinical features that cause the mortality risk in COVID-19 patients. The achieved
performance of the death risk prediction was above 90%, 85%, and 0.90, respectively, for
precision, sensitivity, and the harmonic mean of precision (F1 scores) values. In this study,
the authors identified the major features of critical death risk for COVID-19 patients as
disease severity, age, and serum levels of hs-CRP, LDH, ferritin, and IL-10.

In [32], an ML model based on the SVM algorithm was introduced to predict the serum
biomarkers in COVID-19 patients with the greatest risk. A dataset from the University of
Texas Medical Branch containing information from 398 COVID-19 patients, of which 355
were survivors, was used in the study to predict death 24 hours before it occurred. The
SVM prediction model reached a sensitivity of 91% and a specificity of 91% with an AUC
value of 0.93 for death prediction in COVID-19 patients. The effective serum laboratory
factors determined by the authors were blood urea nitrogen, c-reactive protein, serum
albumin, serum calcium, and lactic acid.

In the study conducted by [33], the SVM algorithm was utilized as a predictive
model for the severe symptoms of COVID-19 patients. Their dataset contained the data
of 336 COVID-19 patients collected from Shanghai Public Health Clinical Center. The
prediction model determined only four features from among 220 clinical and laboratory
features that had a great effect on its performance; these features were age, CD3 ratio, GSH,
and total protein. The model realized an AUC value of 97.57%.

In [34], the SVM algorithm was used to develop a severeness detection model in
COVID-19 patients. A dataset of 137 COVID-19 clinical patients from the Tongji Hospital
affiliated with Huazhong University of Science and Technology, including 75 who were
severely ill, was employed in the study. The SVM prediction model achieved an overall
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accuracy of 81.48% using only 28 of the 32 clinical features. The study indicated the features
of the urine test and the blood test as candidate severeness factors.

Likewise, in [35], a machine learning predictive model based on the SVM was devel-
oped to predict disease severity in patients with moderate COVID-19. A dataset of 172
moderate COVID-19 patients admitted to the Cancer Center of Wuhan Union Hospital was
used in the study. The performance results of the prediction model in terms of mean accu-
racy, sensitivity, and specificity were 91.38%, 0.90, and 0.94, respectively. In this study, only
6 features out of 22 were selected to obtain the best performance from the prediction model.
These features were interleukin-6 (IL-6), high-sensitivity cardiac troponin I, procalcitonin,
hs-CRP, calcium level, and chest distress.

As in reference [20], a multi-tree XGBoost algorithm nomogram predictive model
was utilized to predict the mortality risk for COVID-19 patients. Their dataset contained
information on 375 COVID-19-positive patients collected from Tongji Hospital. The patients
were classified into the following groups: 124 were at low risk, 75 at moderate risk, and 176
at high risk. The prediction model attained an AUC value of 0.961 for the derivation cohort
and 0.991 for the validation cohort. The top-ranked features identified in this study were
age, lactate dehydrogenase, neutrophils, lymphocytes, and hs-CRP.

In [21], the authors utilized various supervised ML techniques to predict the mortality
risk for COVID-19 patients and to recognize the vital features that cause mortality. A dataset
of 370 infected patients containing 1766 datapoints from Tongji Hospital in Wuhan was used
in the study. The importance of the features was determined using the XGBoost classifier,
and feature selection was performed using a neural network. The obtained features were
then used to develop different prediction models with the machine learning algorithms:
neural network, SVM, logistic regression, random forests, XGBoost, and decision trees. The
results showed that the neural network prediction model was the best, with an F1 score of
0.969, an accuracy value of 96.53%, and an AUC value of 0.989. The powerful features that
were extracted for mortality prediction in the study were age, neutrophils, lymphocytes,
LDH, and hs-CRP.

In [22], the authors developed a multivariable mortality risk predictive model based
on the XGBoost algorithm that determines the survival chances of COVID-19 patients at
admission; the model was applied to periods of 7 and 28 days. A dataset of 1393 infected
patients from the clinical and laboratory records at admission, taken from six Apollo
hospitals in India, was used in the study. To achieve the best performance, only 23 features
of more than 65 were selected for the prediction model to get an AUC value of 0.88,
an accuracy score of 0.97, and a precision value of 0.91. For the validation cohort, the
performance was 0.782, 0.93, and 0.77, respectively.

Hu et al. [36] developed an early mortality risk prediction in COVID-19 patients
based on machine learning. The prediction model was built using a sample of 183 patients
from the Sino-French New City Branch of Tongji Hospital in Wuhan (115 survivors and
68 non-survivors of COVID-19). An additional 64 patients from the Optical Valley Branch of
Tongji Hospital in Wuhan were employed to externally validate the final predictive model
(33 survivors and 31 non-survivors of COVID-19). Patients’ medical records were mined
for demographic, clinical, and pre-admission laboratory data. A set of ten approaches were
initially tried in the study, and only five were proven to be effective. These approaches
were logistic regression (LR), partial least squares regression, elastic net model, random
forest (RF), and bagged flexible discriminant analysis (FDA). All of them had the same
performance, with an AUROC value of 88.1%, a sensitivity of 83.9%, and a specificity of
79.4% for the validation set. The simplicity and great the interpretability of the LR model
were the reasons it was chosen as the best final model. The study determined the features of
age, hs-CRP level, lymphocyte count, and D-dimer level to be the most important features.

Zhao et al. [37] used several statistical methods to build a risk-score model for mortality
and the intensive care unit (ICU) admission system. The authors examined 641 COVID-19-
positive patient data (including 195 patients who had been admitted to the intensive care
unit, of which 82 are deceased) at Stony Brook University Hospital. Patient characteristics,
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such as symptoms, comorbidities, and demographics, were compared to those of non-
critical COVID-19 patients in order to determine the most significant predictors. Using ML
and LR on the test dataset, the researchers were able to predict death with an AUC value of
0.83, and ICU admission with an AUC value of 0.74.

The authors of [38] introduced a predictive model to anticipate possible COVID-19
acute symptom development. The study used a dataset of 125 COVID-19 patients from
Guangzhou’s Eighth People’s Hospital (93 mild and 32 severe). The model achieved an
AUC value of 94.4%, a sensitivity of 94.1%, and a specificity of 90.2%. While there were
17 distinct differences between the moderate and severe groups upon admission, only
four were identified to be linked with progression to a severe condition. These were
comorbidities, respiratory rate, CRP, and LDH.

Zhou et al. [39] constructed a model to predict COVID-19 infection severity. The
study used a dataset of 377 patients (172 severe and 106 non-severe) from Wuhan’s Central
Hospital. It achieved an AUC of 87.9%, a specificity of 73.77%, and a sensitivity of 88.6%.
Age, CRP, and D-dimer were linked with severity in COVID-19 patients. The N/L*CRP*D-
dimer was also revealed to be a significant predictor of disease severity, where N/L is the
ratio of neutrophils to lymphocytes.

The authors of [40] proposed a model to estimate infection severity in COVID-19
patients. The study used a dataset of 127 patients (16 severe) from Ningbo’s Hwa Mei
Hospital. The risk prediction model was built with the LR algorithm and achieved an AUC
value of 90.0%. A significant rise was detected in the severe group for neutrophil percentage,
neutrophil–lymphocyte ratio (NLR), fibrinogen, sialic acid (SA), CRP, interleukin-6 (IL-6),
IL-10, interferon-γ (IFN-γ), partial pressure of oxygen (pO2), and partial pressure of
carbon dioxide (pCO2). High levels of IL-6, CRP, and hypertension could be considered as
important risk factors for evaluating COVID-19 severity. Furthermore, the results indicated
the great importance of IL-6 in monitoring severe cases, especially COVID-19 severity cases.

Gong et al. [41] constructed a risk prediction nomogram to identify patients whose
cases would progress to severe COVID-19. The study used a dataset of 372 hospitalized
Chinese patients. The feature selection was performed using the LASSO regression tech-
nique. The machine learning algorithms: LR, DT, RF, and SVM, were used to build the
prediction models. The study identified seven risk factors for severe COVID-19: older age,
higher LDH, CRP, direct bilirubin (DBIL), red blood cell distribution width (RDW), BUN,
and lower albumin (ALB). The predictive model achieved AUC values of 91.2% and 85.3%
for the training and validation cohorts, respectively.

The authors of [42,43] used a dataset of 336 seriously ill Chinese patients (34 of whom
died) to construct a predictive model for COVID-19 mortality. The predictive model was
developed using the multivariable LR algorithm, and it was able to achieve an AUC value
of 99.4%, a sensitivity of 100.0%, and a specificity of 97.2%. The study linked the features of
low lymphocyte ratio, BUN, and D-dimer to the cases of COVID-19 patient deaths.

Luo et al. [44] used a dataset of 1018 COVID-19 patients and developed a model that
could make an early prediction of the in-hospital mortality of COVID-19 patients. The
predictive model used univariate and multivariable logistic regression to identify the main
risk factors that caused in-hospital death among COVID-19 patients. The study showed
that the model was able to achieve better performance with an AUC value of 90.7% by
combining the IL-6 levels (>20 pg/mL) and the CD8+ T cell counts (<165 cells/µL).

Li et al. [45] built a mortality risk prediction model for COVID-19 patients based on the
basic health situation of the patient and other parameters such as age and sex. The study
used two different datasets: the GitHub dataset and the Wolfram dataset. The GitHub
dataset, after pre-processing, had 28,958 cases (530 deaths), while the Wolfram dataset
had 1448 records (123 deaths). An autoencoder based on a neural network was used to
build the predictive model. Its performance was evaluated in comparison to other training
algorithms: LR, RF, SVM, SVM one-class models, local outlier factor, and isolation forest.
The GitHub dataset had a precision problem and only contained general information on
the patient; therefore, the prediction accuracy yielded by this dataset was not sufficient.
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The study showed that the death of COVID-19 patients is related to whether they have a
chronic condition or symptoms of gastrointestinal, renal, cardiac, or respiratory problems.

Terwangne et al. [46] built an EPI-SCORE predictive model with the aim of enhancing
the accuracy of the existing COVID-19 mortality risk score according to the WHO model.
The EPI-SCORE model was built using a Bayesian network analysis. The study used
a dataset of 295 COVID-19 positive RT-PCR patients from Epicura Hospital Center in
Belgium. The model identified acute renal damage, age, LDH, lymphocytes, and activated
prothrombin time (aPTT) as the most vital features for risk. The ROC curve index obtained
by the WHO model was 83.8%, and the EPI-SCORE model outperformed it with 91%. As
concluded by the study, a few clinical and laboratory features could be added to improve
the accuracy of the COVID-19 EPI-SCORE model.

In a machine learning predictive study, the authors of [23] employed an aggregated
COVID-19 global dataset and performed a meta-analysis of the existing research in this
area. The results of the meta-analysis showed that the most important risk factors causing
COVID-19 severity are: cerebrovascular disease (CEVD), chronic obstructive pulmonary
disease (COPD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hyperten-
sion. They subsequently applied several ML classification approaches on an aggregated
group of data, which concluded that COPD, CVD, CKD, type 2 diabetes, malignancy, hyper-
tension, and asthma were the most important features when classifying the deceased and
survived patients of COVID-19. Furthermore, they concluded that age and gender were the
most significant predictors of mortality from the point of view of symptom–comorbidity
combinations. Finally, the authors proved that Pneumonia-Hypertension, Pneumonia-
Diabetes, and Acute Respiratory Distress Syndrome (ARDS)-Hypertension were the most
significant mortality risk factors of COVID-19 patients.

The authors of [24] conducted a study comparing the ability of some common ML
algorithms to predict COVID-19 in-hospital mortality. The outperformed model was used
to determine the in-hospital mortality risk factors in COVID-19 patients and also to design
a predictive tool that could determine the in-hospital mortality. The study was conducted
on COVID-19 patients diagnosed by PCR test at the COVID-19 referral center in the Veneto
region in Italy. Thus, a dataset comprised of 341 patients was created; the median age was
74, and the most predominant gender was male. The ML algorithms compared in study
were the recursive partition tree (RPART), SVM, RF, and the gradient boosting machine
(GBM). The performance results were recorded according to sensitivity, specificity, and
ROC curve metrics. The results showed that the RF algorithm had the best performance,
with an ROC of 0.84 (95% C.I. 0.78–0.9). The study concluded that the most relevant risk
factors of in-hospital death were age, vital signs (oxygen saturation and the quick SOFA),
and lab parameters (creatinine, AST, lymphocytes, platelets, and hemoglobin).

In [25], a deep learning model built using CNN combined with an autoencoder (AE)
was introduced to predict the survival probability of COVID-19 patients. The authors used
a clinical dataset collected from publicly available resources. As the size of the collected
data was relatively small, an AE was used to perform data augmentation and to generate
a balanced dataset. The feature selection of the clinical dataset was performed using
meta-heuristic algorithms: artificial bee colony (ABC), ant colony optimization (ACO),
butterfly optimization algorithm (BOA), elephant herding optimization (EHO), genetic
algorithm (GA), and particle swarm optimization (PSO).Their predictive model reached an
accuracy of 96.05% as compared to 92.49% for the CNN model. The authors also trained
their predictive model using another dataset to ensure the generality of the augmentation
method. Moreover, the effect of the various clinical features on the mortality rate was
studied, along with the correlations between the feature pairs. The commonly reviewed
studies on the severity and the prediction of mortality risk in COVID-19 patients are
summarized in Table 1.
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Table 1. Summary of the commonly reviewed studies on the severity and the prediction of mortality
risk in COVID-19 patients.

Study Method ML/DL Performance

Pourhomayoun et al. [1] SVM, NN, and RF Machine learning 89.98% (Accuracy)
Yan et al. [19] XGBoost Machine learning Accuracy 90%
Yan et al. [27] XGBoost Machine learning 93% (Accuracy)

Wang et al. [28] XGBoost Machine learning 83% (AUC for clinical model)
88% (AUC for laboratory model)

Rechtman et al. [29] XGBoost Machine learning 86% (AUC)

Bertsimas et al. [30] XGBoost Machine learning 81%, 87%, and 92%
(AUCs using three validation cohorts)

Guan et al. [31] XGBoost Machine learning
Precision > 90%,
Sensitivity > 85%
F1 scores 0.9

Booth et al. [32] SVM Machine learning
93% (AUC),
91% (Specificity),
91 % (Sensitivity)

Sun et al. [33] SVM Machine learning 97.57% (AUC)
Yao et al. [34] SVM Machine learning 81.48% (Accuracy)

Zhao et al. [35] SVM Machine learning
91.38% (Accuracy),
94% (Specificity)
90 % (Sensitivity)

Chowdhury et al. [20] XGBoost Machine learning 96.1% (AUC)

Karthikeyan et al. [21] NN, SVM, LR, random forests,
XGBoost, and DT

Machine learning

NN model performance
96.53% (Accuracy),
98.9% (AUC),
96.9 % (F1 scores)

Kar et al. [22] XGBoost Machine learning
78.2% (AUC),
93% (Accuracy score),
77% (Precision)

Hu et al. [36] partial least squares regression,
elastic net model, RF, bagged FDA,
and LR

Machine learning

LR model performance
88.1% (AUC),
79.4% (Specificity),
83.9% (Sensitivity)

Zhao et al. [37] LR Machine learning 83% (AUC for mortality prediction),
74% (AUC for ICU admission prediction)

Huang et al. [38] LR Machine learning
94.4% (AUC),
90.2% (Specificity),
94.1% (Sensitivity)

Zhou et al. [39] LR Machine learning
87.9% (AUC),
73.7% (Specificity),
88.6% (Sensitivity)

Zhu et al. [40] LR Machine learning 90% (AUC)

Gong et al. [41] LASSO regression, DT,
RF, SVM, and LR

Machine learning

LR model performance
85.3% (AUC),
78.4% (Specificity)
77.5% (Sensitivity)

Liu et al [43] Multivariable LR Machine learning
99.4% (AUC),
97.2% (Specificity)
100% (Sensitivity)

Li et al. [45] Autoencoder, LR, RF, SVM,
one-class SVM, isolation
forest, and local outlier factor

Machine learning
Autoencoder model performance
97% (Accuracy) and
73% (AUC)

Terwangne et al. [46] Bayesian network analysis Machine learning 83.8% (ROC for WHO classification model)
and 91% (ROC for EPI-SCORE model),

Aktar et al. [23] Random Forest, DT, GBM,
XGBoost, SVM, and LGBM

Machine learning

88% (Accuracy of comorbidity
and mortality for LGBM model),
90% (Accuracy of symptoms for
GBM and LGBM models)

Tezza et al. [24] RPART, SVM, GBM, and
Random Forest

Machine learning Random Forest model performance
84% (ROC)

Khozeimeh et al. [25] CNN and autoencoders Deep learning 96.05% (Average Accuracy)

As evidenced by the reviewed studies that used the clinical datasets for the mortality
risk prediction of COVID-19, machine learning methods had been used more frequently
than the deep learning ones. In addition, the majority of these studies used a small clinical
dataset in its original form. To overcome these drawbacks, we decided to convert the
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clinical dataset records from their original form into a corresponding image form. The
dataset created was presented in two ways. The first version is the original form, which
contains 12,020 records of patients who tested positive for COVID-19. The second form
was created by turning every record from the first form into images, with each image
representing a row of data in the initial clinical dataset. The original data (Tabular data)
were used as they were in the CNN model, and these data were converted into images
before being used as inputs for the 2-dimensional CNN in the IMG-CNN model. The
main reason for converting the clinical dataset into images was to be able to use the 2-
dimensional convolutional neural networks rather than the 1-dimensional convolutional
neural networks. The 2-dimensional convolutional neural networks have many advantages,
which include extracting spatial features from the data and creating a robust network for
classification. Since tabular data do not have a spatial relationship between their features,
they were preferred for the conversion into images to create more stability in the CNN
architecture. In our study, we developed a deep learning framework that used the clinical
dataset in both its original and image forms in order to fill this gap.

3. Materials and Methods

We propose three deep learning-based mortality risk predictive models to determine
the survival chances of COVID-19 patients by using their clinical features. The block
diagram of the proposed predictive models is given in Figure 1. As illustrated in the block
diagram, data collection is the first step in the procedure as we used a public clinical dataset.
The collected dataset is then pre-processed, which creates two forms that represent the
clinical dataset. The first form is the original form, which consists of 12,020 records of
COVID-19-positive patients, and it is used by the first two proposed models. The second
form is obtained by converting all the records from the original form into images, where
each image represents a data row in the original clinical dataset. This image form is then
used by the third proposed model.

Figure 1. Block diagram of the proposed predictive models (Deep-Risk).

The next step is the prediction process, where we use three predictive deep learning
models to achieve the prediction task. The first model, denoted by CV-CNN, is a CNN
model in which a 10-fold cross-validation technique is applied to the original clinical
dataset, partitioning it into a training set and a test set. The second model, denoted by CV-
LSTM + CNN, is a hybrid model based on the combination of LSTM and CNN. Similarly, as
in the CV-CNN model, a 10-fold cross-validation is applied to the original clinical dataset,
partitioning it into a training set and a test set. The third model, denoted by IMG-CNN, is a
CNN model in which the converted images of the clinical dataset are used. The final step is
the classification and performance evaluation of the three predictive models.

3.1. Datasets for the Study

In our study, a dataset of more than 12,020 COVID-19-positive patients is used. The
data on positive male and female COVID-19 patients were collected from 146 countries
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around the world (from official government sources), with the average age being 44.75 [47].
The virus is verified through the detection of its nucleic acid. The original dataset consists
of 32 data elements from each patient, which contain physiological and demographic data.
To avoid biasing the results, the data samples from the training dataset are balanced for the
number of both recovered and deceased patients [47]. A snapshot of the original clinical
dataset is shown in Figure 2.

Figure 2. Sample of the tabular dataset.

As in [1,46], we extract a total of 112 features from the original dataset: 80 features
from symptoms and doctors’ medical notes concerning the health status of the patient, and
32 features from patient’s demographic and physiological information. From among these
112 features, only 57 are selected as the most useful and effective features. The selected
57 features are listed in Table 2, and they are sorted into symptoms, pre-existing conditions,
and demographics [1].

Table 2. The list of the 57 selected features used in our predictive models.

Feature Type Feature Name

Symptoms anorexia fever shortness of breath
chest pain gasp somnolence

chills headache sore throat
conjunctivitis kidney failure sputum

cough lesions on chest radiographs septic shock
diarrhea hypertension Heart attack
dizziness Myalgia old
dyspnea Obnubilation cardiac disease
emesis pneumonia hypoxia

expectoration myelofibrosis fatigue
eye irritation respiratory distress rhinorrhea

Pre-existing Conditions diabetes COPD coronary heart disease
hypertension Parkinson’s disease prostate hypertrophy

chronic kidney disease asthma Tuberculosis
hypothyroidism cancer hepatitis B

cerebral infarction HIV positive chronic bronchitis
cardiac disease dyslipidemia any chronic disease

Demographics age country province
gender city travel history

3.2. Dataset Pre-Processing

The pre-processing stage is usually performed to prepare the collected data in order to
satisfy the requirements of the deep learning models. In our work, the balanced dataset
introduced in [1] was used as the CSV input data file for the CV-CNN model and the
CV-LSTM + CNN model. The input dataset is recorded in the form tabular rows, as shown
in Figure 3. Each row has 56 attributes, such as age, sex, hypoxia, etc. The number of
rows represents the number of patients in the dataset, which contains 12,020 patients.
Furthermore, a new representation of the input data is introduced by converting each row
in the tabular input dataset into a 2-dimensional image that contains 9 × 6 pixels [48].
In transforming the tabular data into images, the numbers are converted to pixel colors
ranging from black to white. The image appears with a black part and a white part based
on the values of the numbers in the data. These converted images are then used as inputs
for the IMG-CNN model. Samples of the converted images are shown in Figure 4.
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Figure 3. Sample of the original clinical dataset in tabular rows.

Figure 4. Samples of the converted images from the original clinical dataset.

3.3. The Proposed Deep Learning Predictive Models

In our work, three supervised deep learning predictive models are utilized to predict
the mortality risk for COVID-19 patients. One of these predictive models is built using a
combination of LSTM and CNN networks, while the other two models are constructed
using only CNN. The clinical dataset in its original CSV form is used by the first two
predictive algorithms. The last one uses a dataset that contains the converted images of
the original clinical dataset. The ability of each one of these predictive models to predict
the recovered and deceased cases of COVID-19 patients are investigated through the
experimental results.

3.3.1. The First Predictive Model: CV-CNN

The first proposed predictive model (CV-CNN) is a CNN model that is trained using
the clinical dataset based on the k-fold cross-validation (K-fold CV) approach, with k = 10.
The 10-fold CV randomly partitions the original dataset into 10 subsets of equal size. Of the
10 subsets, 9 are used as the training dataset to train the model, while a single subset is used
as the validation dataset to test the model. The training subsets represent 90% of the whole
dataset and are used to derive the model parameters. The validation subset represents
10% of the whole dataset and is used to evaluate the model. As we have 10 subsets, this
means that the cross-validation process is repeated 10 times (folds). In each fold, a different
subset is used for validation, as illustrated in Figure 5. The schematic diagram and the
pseudo-code of the CV-CNN model are shown in Figures 5 and 6, respectively.
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Figure 5. A schematic diagram of the CV-CNN model.

Figure 6. The pseudo-code of the CV-CNN model.

The detailed configuration of the parameters and the architecture of the CV-CNN
model is described in Table 3. The first three layers are convolutional layers, and they are
used for feature extractions. These are followed by a maximum pooling layer. The output is
then passed to a flatten layer, some dense layers, a batch normalization layer, and dropout
layers. The overall number of parameters is 1,167,361, with 1,167,169 trainable parameters
and 192 of non-trainable parameters.

Table 3. Architecture and parameter settings of the CV-CNN model.

Layer (Type) Output Shape Parameters

conv1d_5 (Conv1D) (None, 52, 256) 1024
conv1d_6 (Conv1D) (None, 50, 256) 196,864
conv1d_7 (Conv1D) (None, 48, 256) 196,864
max_pooling1d_1
(MaxPooling1D) (None, 47, 256) 0

flatten_2 (Flatten) (None, 12,032) 0
dense_6 (Dense) (None, 64) 770,112

batch_normalization_4
(BatchNormalization) (None, 64) 256

dropout_4 (Dropout) (None, 64) 0
dense_7 (Dense) (None, 32) 2080

batch_normalization_5
(BatchNormalization) (None, 32) 128

dropout_5 (Dropout) (None, 32) 0
dense_8 (Dense) (None, 1) 33

Total parameters: 1,167,361
Trainable parameters: 1,167,169
Non-trainable parameters: 192
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3.3.2. The Second Predictive Model: CV- LSTM + CNN

The second proposed predictive model (CV-LSTM + CNN) is developed by combining
the LSTM with a CNN model. Similarly, as in CV-CNN, it is trained using the clinical
dataset based on the 10-fold CV approach for training and validation. The original dataset
is randomly partitioned into 10 subsets of equal size using the 10-fold CV. There are 10 folds
to be executed, and a different validation subset is used in each fold, as illustrated in
Figure 7. The schematic diagram and the pseudo-code for the CV- LSTM+CNN model are
presented in Figures 7 and 8, respectively.

Figure 7. A schematic diagram of the CV-LSTM + CNN model.

Figure 8. The pseudo-code of the CV-LSTM+CNN model.

Table 4 contains the full configuration of the parameters and the architecture of the
CV-LSTM + CNN model. We use different types of layers, such as the batch normalization
layers, reshape layer, time distribution layers, convolutional layers, flatten layers, dense lay-
ers, and drop out layers. The total number of parameters is 995,077, with 994,563 trainable
parameters and 514 non-trainable parameters.
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Table 4. Architecture and parameter settings of the CV-LSTM+CNN model.

Layer (Type) Output Shape Parameters

batch_normalization_2
(BatchNormalization) (None, 54, 1) 4

Reshape (Reshape) (None, 9, 6, 1) 0
Time_distribution
(TimeDistributed) (None, 9, 6, 256) 264,192

dropout_2 (Dropout) (None, 9, 6, 256) 0
batch_normalization_3
(BatchNormalization) (None, 9, 6, 256) 1024

Time_distribution_1
(TimeDistributed) (None, 9, 6, 256) 26,2400

conv1d_4 (Conv1D) (None, 9, 4, 256) 196,864
average_pooling2d_1
(AveragePooling2D) (None, 4, 2, 256) 0

flatten_1 (Flatten) (None, 2048) 0
dropout_3 (Dropout) (None, 2048) 0

dense_3 (Dense) (None, 128) 262,272
dense_4 (Dense) (None, 64) 8256
dense_5 (Dense) (None, 1) 65

Total parameters: 995,077
Trainable parameters: 994,563
Non-trainable parameters: 514

3.3.3. The Third Predictive Model: IMG-CNN

The third proposed predictive model (IMG-CNN) is a CNN model, and it is trained
using the converted images of the clinical dataset, where each image corresponds to a
data row from the original clinical dataset. The dataset containing clinical images is
randomly partitioned into 20% for training and 80% for validation. Figures 9 and 10
illustrate the schematic diagram and the pseudo-code for the IMG-CNN model, respectively.
The complete information on the parameters and the architecture of the IMG-CNN model
is listed in Table 5. It starts with the 2-dimensional convolutional layers that are used for
feature extractions, followed by a maximum pooling layer; the output is then passed to a
flatten layer and then to some dense layers as well as batch normalization, activation, and
dropout layers. The total number of parameters is 170,280,001, with 170,279,361 trainable
parameters and 640 non-trainable parameters.

Figure 9. A schematic diagram of the proposed IMG-CNN model.
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Figure 10. The pseudo-code of the IMG-CNN model.

Table 5. Architecture and parameter settings of the IMG-CNN model.

Layer (Type) Output Shape Parameters

Conv2d (Conv2D) (None, 224, 224, 256) 7168
Activation (Activation) (None, 224, 224, 256) 0
batch_normalization (BatchNormalization) (None, 224, 224, 256) 1024
Conv2d_1 (Conv2D) (None, 224, 224, 128) 295,040
Activation_1 (Activation) (None, 224, 224, 128) 0
max_pooling2d (MaxPooling2D) (None, 74, 74, 128) 0
dropout (Dropout) (None, 74, 74, 128) 0
Conv2d_2 (Conv2D) (None, 72, 72, 64) 73,792
Activation_2 (Activation) (None, 72, 72, 64) 0
batch_normalization_1 (BatchNormalization) (None, 72, 72, 64) 256
flatten (Flatten) (None, 331,776) 0
dense (Dense) (None, 512) 169,869,824
dropout_1 (Dropout) (None, 512) 0
dense_1 (Dense) (None, 64) 32,832
dense_2 (Dense) (None, 1) 65

Total parameters: 170,280,001
Trainable parameters: 170,279,361
Non-trainable parameters: 640

4. Results
4.1. Experimental Parameters

Python 3 and the Keras framework were utilized during the development of these
models. They were tested by operating them on the Google Colab pro version [49], which
has a P100 Graphical Processing Unit (GPU) processor, 2 terabytes (TB) of storage, and
25 gigabytes (GB) of random access memory (RAM). An optimizer and appropriate fit
functions were utilized during the training and validation stages of the development of
these models. In addition, each model went through about 1000 epochs, with a batch size
of 32.

The findings were achieved by applying the performance metric equations to the
outputs of the generated validation data, and the registered results indicate the highest
validation values that could be attained. The Adam optimizer [50] was used for the training
of the proposed model. A value of 0.0001 was assigned to the learning rate. The entire
source code for the models that we generated can be seen on the GitHub website, at the
location indicated by [51].

4.2. Performance Metrics

The proposed model’s performance was evaluated based on: accuracy, recall, precision,
f1-score, and finally, Area Under Curve (AUC). Correspondingly, the confusion matrix was
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introduced for each model. The accuracy, given in Equation (1), is the number of instances
where an accurate prediction was made based on the total number of instances [52].

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(1)

where Tp and Tn are parameters that represent the genuine positive and negative values,
respectively. The false positive and false negative values are denoted by the notations
Fp and Fn, respectively. Sensitivity or Recall is the number of actual samples that have
been forecast as positive from the total number of samples that are in fact positive. It
is also known as the true positive rate and is provided by Equation (2). In contrast, the
true negative rate, which formerly went by the name of Specificity and is represented by
Equation (3), is the number of samples that were genuinely negative and were correctly
projected to be negative based on the total number of samples that were negative.

Recall =
Tp

Tp + Fn
(2)

Speci f icity =
Tn

Tn + Fp
(3)

Precision, which is sometimes referred to as the Positive Predictive Value [48], is
denoted by Equation (4) and indicates the ratio of the number of samples that were truly
positive to the total number of samples that were expected to be positive. The equation
that displays the harmonic mean of precision, which is also referred to as the F1-score, is
denoted by Equation (5).

Precision =
Tp

Tp + Fp
(4)

F1 − score =
2 ∗ Tp

2 ∗ Tp + Fp + Fn
(5)

In addition, the most recent research lends support to the utilization of confusion
matrix analysis in model validation [48] due to the fact that it is able to categorize data
relationships and any distribution. It offers further information regarding the illustrative
models of classification.

4.3. Deep-Risk: Deep Learning-Based Risk Mortality Prediction System Results

After introducing the three proposed deep learning predictive models for risk in
COVID-19 patients, we now present our results by examining the performance of the three
models in terms of precision, recall, F1-score, and accuracy using the dataset given in [1]. A
complete analysis of these models is given, which indicates their performance in predicting
recovered and deceased patients. The confusion matrix is also given for each model, and
the behavior of the model during training through epochs are presented as graphs for
precision, recall, loss, AUC, and accuracy. The results of the proposed Deep-Risk models
are presented, followed by a brief discussion and an analysis of each proposed model.

4.3.1. CV-CNN Model

Based on the experimental results, the confusion matrix for the CV-CNN model is
shown in Figure 11. The figure clarifies that the model can successfully classify the two
statuses, died and recovered, at a high ratio. In addition, the different evaluation metrics
for each fold based on a 10-fold cross-validation of this model, which used precision, recall,
f1-score, and accuracy between the training of the 10 folds, are introduced in Table 6. The
performance metrics of precision, recall, and f1-score along with the recovered, died, macro
average, and weight average values are represented in the table.
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Figure 11. Confusion matrix for the proposed CV-CNN model.

Table 6. Results of the CV-CNN proposed model using different evaluation metrics based on a 10-fold
cross-validation.

Fold
Precision
Recov-
ered

Died Macro Weight
Recall
Recov-
ered

Died Macro Weight

F1-
Score
Recov-
ered

Died Macro Weight Accuracy

1 0.79 0.93 0.86 0.86 0.94 0.75 0.85 0.85 0.86 0.83 0.85 0.85 0.85
2 0.80 0.93 0.86 0.86 0.94 0.76 0.85 0.85 0.86 0.83 0.85 0.85 0.85
3 0.53 0.95 0.74 0.74 1.00 0.09 0.54 0.55 0.69 0.17 0.43 0.43 0.55
4 0.59 0.95 0.77 0.77 0.98 0.30 0.64 0.64 0.74 0.46 0.60 0.60 0.64
5 0.69 0.93 0.81 0.81 0.96 0.57 0.77 0.77 0.80 0.71 0.76 0.76 0.77
6 0.74 0.93 0.84 0.83 0.95 0.66 0.80 0.81 0.83 0.77 0.80 0.80 0.81
7 0.81 0.93 0.87 0.87 0.94 0.78 0.86 0.86 0.87 0.85 0.86 0.86 0.86
8 0.50 0.00 0.25 0.25 1.00 0.00 0.50 0.50 0.67 0.00 0.33 0.34 0.50
9 0.81 0.92 0.87 0.87 0.94 0.77 0.86 0.86 0.87 0.84 0.86 0.86 0.86
10 0.65 0.92 0.78 0.78 0.96 0.47 0.71 0.72 0.77 0.62 070 0.70 0.72

4.3.2. CV-LSTM + CNN Model

Figure 12 displays the CV-LSTM + CNN model confusion matrix, which demonstrates
that the model can classify the died and recovered cases at 94.23% and 76.43%, respectively.
Additionally, the different evaluation metrics for each fold of a 10-fold cross-validation are
shown in Table 7.

Figure 12. Confusion matrix for the proposed LSTM+CNN model.
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Table 7. Results of the LSTM + CNN proposed model using different evaluation metrics based on a
10-fold cross-validation.

Fold
Precision
Recov-
ered

Died Macro Weight
Recall
Recov-
ered

Died Macro Weight

F1-
Score
Recov-
ered

Died Macro Weight Accuracy

1 0.81 0.93 0.87 0.87 0.94 0.77 0.86 0.86 0.87 0.84 0.85 0.85 0.86
2 0.83 0.63 0.73 0.73 0.48 0.90 0.69 0.69 0.61 0.74 0.68 0.67 0.69
3 0.81 0.92 0.86 0.86 0.93 0.78 0.85 0.85 0.87 0.84 0.85 0.85 0.85
4 0.76 0.61 0.68 0.69 0.47 0.85 0.66 0.66 0.58 0.71 0.65 0.65 0.66
5 0.81 0.93 0.87 0.87 0.94 0.77 0.86 0.86 0.87 0.84 0.86 0.86 0.86
6 0.81 0.92 0.86 0.86 0.93 0.77 0.85 0.85 0.86 0.84 0.85 0.85 0.85
7 0.63 0.50 0.56 0.56 0.01 0.99 0.50 0.50 0.03 0.66 0.35 0.34 0.50
8 0.96 0.50 0.73 0.73 0.02 1.00 0.51 0.51 0.04 0.67 0.35 0.35 0.51
9 0.79 0.92 0.86 0.86 0.94 0.75 0.84 0.84 0.86 0.83 0.84 0.84 0.84
10 0.10 0.49 0.30 0.30 0.00 0.98 0.49 0.49 0.00 0.66 0.33 0.33 0.49

4.3.3. IMG-CNN Model

In Figure 13, the confusion matrix for the IMG-CNN model illustrates the classification
of died and recovered statuses, with the highest ratio being for the recovered cases’ images
(100%) and the died cases’ images (83.66%). Table 8 shows the evaluation metrics for the
IMG-CNN model. Similarly, Figure 14 shows the loss, precision, accuracy, AUC, and recall
between the training and validation phases, with the number of epochs being equal to
1000 epochs.

Figure 13. Confusion matrix for the proposed IMG-CNN model.

Table 8. Evaluation metrics for the IMG-CNN model.

Performance Metric Value Performance Metric Value Performance Metric Value Performance Metric Value

Tp 124 val_Tp 305 accuracy 0.85 val_accuracy 0.94
Fp 2 val_Fp 0 precision 0.98 val_precision 1
Tn 94 val_Tn 177 recall 0.77 val_recall 0.91
Fn 36 val_Fn 30 AUC 0.94 val_AUC 0.936
loss 0.27 val_loss 0.22
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Figure 14. Loss, AUC, precision, recall, and accuracy between the training and validation phases,
with the number of epochs for the IMG-CNN model.

As clearly shown by the model results and as illustrated in the models’ confusion
matrix, the IMG-CNN model outperforms the other proposed models, the CV-CNN and
the CV-LSTM + CNN models.

4.4. Proposed Models Comparison and Results Discussion

The current research focused on the use of deep learning systems to predict the survival
chances of COVID-19 patients. We used patient data consisting of 12,020 records from
the clinical dataset to construct and evaluate the proposed models [1]. First, this clinical
dataset in its original numerical form was used to train and test two of the proposed models
(CV-CNN and CV-LSTM + CNN). Then, all these records were converted into images such
that each image represented one row of data from the original dataset; the images were
subsequently used to train and test the third proposed model (IMG-CNN).

The experimental results of the three proposed Deep-Risk models are summarized in
Table 9. The results of the CV-CNN and the CV-LSTM + CNN models for each performance
metric were computed as the average of all the 10 folds. As clearly seen in Table 9, the
IMG-CNN model is much better than the other two proposed models in terms of accuracy,
precision, F1-score, and accuracy. The use of the image form in the clinical dataset produces
better results than when the original dataset is used, especially with deep learning models.

After examining the results, we found that there were significant differences in perfor-
mance between the CNNs trained on clinical data and those trained on image data. The
reason for this is that the deep learning approach can identify the features presented in the
input data more precisely when the input is an image as the operations performed on the
input works better with images. This explains why converting the data into images and
using it in the IMG-CNN model yields better results. Accordingly, the proposed IMG-CNN
model will be used in the next section and compared with the previous models presented
in previous work.
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Table 9. Evaluation metrics for the three proposed Deep-Risk models.

Models Precision
Recovered Died Avg. Recall

Recovered Died Avg. F1-Score
Recovered Died Avg. Accuracy

CV-LSTM +
CNN 81% 92% 86.5% 93% 77% 85% 86% 84% 85% 85.27%

CV-CNN 81% 93% 87% 94% 78% 86% 87% 85% 86% 86.06%
IMG-CNN 83% 100% 91.5% 100% 84% 92% 91% 91% 91% 94.14%

5. Comparative Analysis with State-Of the-Art Work

In our comparative analysis, the previous studies concerned with predicting the
survival chances of COVID-19 patients were divided into two aspects: First, a comparison
with previous works based on machine learning methods using the same dataset. Second, a
comparison with previous works that used the CNN deep learning model but with different
descriptive methods and different dataset. In addition, we also present an analysis of the
experimental results to evaluate the prediction ability of our model.

5.1. Dataset-Based Comparison with State-Of the-Art Work

As discussed in the literature review section, very few methods have focused on
predicting mortality with the use of clinical data. Additionally, existing methods have used
features that are different from the ones employed in our experiments. In this section, we
compare our work with a recent study that used ML approaches such as Support Vector
Machine, Neural Network, KNN, LR, DT, and Random Forest on the same dataset [1]. As
can be concluded from the results presented in Table 9 in the previous section, the proposed
IMG-CNN model shows better performance than the other proposed models; therefore,
we will use only the proposed IMG-CNN model in the comparison with the previous ML
models that used the same clinical dataset [1].

Table 10 shows a comparison of the performance evaluation metrics of the different
ML models presented in a previous study [1] (as reported in their paper) and our proposed
IMG-CNN model using the same clinical dataset, as also represented in Figure 15. In
the present paper, we evaluated the proposed model in terms of accuracy and AUC. The
accuracy reached by our IMG-CNN model is 94.14% and the AUC is 93.6%; in comparison,
the best results reported in [1] for the NN model were 89.98% and 93% for accuracy and
AUC, respectively. The results show that our proposed IMG-CNN model outperforms all
the existing models by a significant value, which demonstrates the effectiveness of our
predictive model. This is due to the fact that deep learning-based models are more accurate
than machine learning-based models as they are able to extract the important features of
the input data in an accurate and automatic manner.

Table 10. Comparison of the performance evaluation metrics of the different models presented in
previous studies and our proposed IMG-CNN model using the same clinical dataset.

Models Rank Accuracy (%) AUC (%)

NN [1] 2 89.98 93
KNN [1] 3 89.83 90
SVM [1] 4 89.02 88
RF [1] 5 87.93 94
LR [1] 6 87.91 92
DT [1] 7 86.87 93

IMG-CNN (proposed) 1 94.14 93.6
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Figure 15. Comparison of the performance evaluation metrics of the different models presented in
previous studies (NN, KNN, SVM, RF, LR, and DT) and our proposed IMG-CNN model using the
same clinical dataset.

5.2. Deep Learning-Based Comparison with State-Of the-Art Work

There are few methods that have studied mortality rate prediction based on clinical
data with the use of deep learning models. However, the features and the clinical dataset
that were used in our experiments differ from those used in the introduced study [25].

Because the proposed IMG-CNN model outperforms the other two proposed models,
as shown in Table 9, it will be used in the comparison of the previous studies that used deep
learning models. Table 11 shows the performance evaluation metrics of the various deep
learning models presented in a previous study [25] (as reported by their paper) and our
proposed IMG-CNN model; the metrics presented are accuracy, precision, recall, specificity,
F1-score, AUC, and loss. Figures 16 and 17 show these results in a graphical form for a
clearer visual comparison. The conducted experiment results reveal that our proposed
IMG-CNN model outperforms the previous studies by a significant percentage in terms
of accuracy, precision, specificity, and AUC. It achieved the highest accuracy (94.14%),
precision (100%), specificity (100%), and AUC (93.6%), and the loss was minimal. This
is due to the better representation of the features in the image form, which allowed the
deep learning model to identify the correlation between the input features of the data that
produced better prediction ability.

Table 11. Comparison of the performance evaluation metrics of the different models presented in
previous studies and our proposed IMG-CNN model using deep learning models.

Models Rank Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%) AUC (%) Loss

ABC-CNN [25] 3 92.32 94.7 97.4 89.65 96.0 53.3 0.25
ACO-CNN [25] 2 93.10 95.6 97.3 90.57 96.4 62.5 0.26
BOA-CNN [25] 7 91.37 94.1 97.0 89.08 95.1 53.5 0.28
EHO-CNN [25] 5 91.86 94.1 98.0 85.69 95.9 53.2 0.23
GA-CNN [25] 4 92.18 94.8 97.8 88.32 96.1 57.5 0.29
PSO-CNN [25] 6 91.85 95.0 96.4 88.17 95.5 61.5 0.28
IMG-CNN (proposed) 1 94.14 100 91.0 100 95.3 93.6 0.22
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Figure 16. Comparison of the performance evaluation metrics of the different models presented in
previous studies and our proposed IMG-CNN model using deep learning models.

Figure 17. Loss comparison among the different models presented in previous studies and our
proposed IMG-CNN model using deep learning models.

6. Conclusions and Future Work

In this research work, a supervised deep learning system for COVID-19 risk mortality
prediction was developed; this system is called Deep-Risk. Three different deep learning
models were designed for this purpose, namely the CV-CNN model, the CV-LSTM + CNN
model, and the IMG-CNN model. Each model was trained and tested to see how well they
would be able to identify the cases that had recovered and those that had died. The same
clinical dataset was used for all three models; a single but 10-fold cross-validation was
used with the first and second models, while a normal training method was used with the
third one.

In developing our models, the CNN model and a combination of the CNN and Long-
Short-Term Memory (LSTM) deep learning models were used. Instead of using the clinical
dataset in CSV form, each record in the dataset was converted into an image and then used
as input for the third model. Accuracy, precision, recall, specificity, F1-score, AUC, and loss
were used as the performance metrics. It was discovered that the IMG-CNN model had a
higher average accuracy (94.14 percent) than the CV-CNN model (85.27 percent) and the
CV-LSTM + CNN model (CV-LSTM + CNN model) (86.06 percent). To demonstrate the
generality of our Deep-Risk system, a comparative analysis with previous studies that used
machine learning methods to analyze the same dataset as ours was presented. An accuracy
score of 94.14% and an AUC of 93.6% show that our IMG-CNN model outperformed those
of the previous studies. To further our investigation, we compared our proposal to previous
work that used a deep learning CNN model with the use of different meta-heuristic methods
and different datasets. In terms of accuracy, precision, recall, specificity, F1-score, AUC,
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and loss, our proposed IMG-CNN model outperformed those of the previous studies, with
values of 94.14%, 100%, 91.0%, 100%, 95.3%, 93.6,% and 0.22%, respectively.

Based on the experiment conducted in this study, the following research directions
are suggested:

• Apply different large datasets and deeply analyze the effectiveness of converting these
datasets into images;

• Try to improve the performance of the predictive models by using other deep learn-
ing methods.
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