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Abstract

Cells in organ primordia undergo active proliferation at an early stage to generate sufficient

number, before exiting proliferation and entering differentiation. However, how the actively

proliferating cells are developmentally reprogrammed to acquire differentiation potential dur-

ing organ maturation is unclear. Here, we induced a microRNA-resistant form of TCP4 at

various developmental stages of Arabidopsis leaf primordium that lacked the activity of

TCP4 and its homologues and followed its effect on growth kinematics. By combining this

with spatio-temporal gene expression analysis, we show that TCP4 commits leaf cells within

the transition zone to exit proliferation and enter differentiation. A 24-hour pulse of TCP4

activity was sufficient to impart irreversible differentiation competence to the actively dividing

cells. A combination of biochemical and genetic analyses revealed that TCP4 imparts differ-

entiation competence by promoting auxin response as well as by directly activating HAT2, a

HD-ZIP II transcription factor-encoding gene that also acts downstream to auxin response.

Our study offers a molecular link between the two major organ maturation factors, CIN-like

TCPs and HD-ZIP II transcription factors and explains how TCP activity restricts the cell

number and final size in a leaf.

Author summary

Cells in a young organ primordium proliferate to generate sufficient number, before they

exit division cycle and enter differentiation programme at later stages. While factors that

drive cell cycle progression have been identified and studied in detail in diverse eukaryotic

species, developmental factors that promote exit from division and entry into differentia-

tion are less known, especially in the plant kingdom. Here, we show that the class II TCP

proteins, notably TCP4, irreversibly reprogram the mitotic cells to exit division and

acquire differentiation competence by auxin response as well as direct activation of HAT2
transcription. Our work offers a molecular link between class II TCP and HD-ZIP II genes

during the cell differentiation and leaf maturation.
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Introduction

Cells in an early organ primordium undergo active proliferation to generate sufficient number,

while increasingly more cells exit division cycle and enter differentiation at later stages of

organ growth, thus ensuring a mature organ with defined size [1,2]. While genes that drive cell

cycle progression have been identified and studied in detail, developmental regulatory factors

that promote the exit from cell division and entry to differentiation during organ morphogen-

esis are less known. Arabidopsis leaf epidermis acts as an ideal system to study this process due

to its easy accessibility and since proliferation and differentiation take place in different

regions of the same primordium during its development [3–5]. Moreover, the absence of cell

migration and cell death as contributory factors to leaf epidermal morphogenesis makes the

leaf surface, and the constituent cells, easily traceable during blade expansion [6,7].

Early leaf growth is sustained by cell division and mitotic cell expansion, collectively

referred to as proliferation, which takes place throughout the primordium. As the primordium

increases in size, the domain of this proliferation zone increases initially and is then main-

tained at constant size [4]. As cell number increases within the proliferation zone, the distal

cells lose division potential and form a transition zone where they acquire differentiation com-

petence [8]. Once the transition to differentiation is acquired, the pavement cells, which are

the primary constituent cells of the lamina, do not revert back to division cycle under normal

circumstances and start expanding in size to form the distal-most expansion zone. As more

cells exit the transition zone, the relative size of the expansion zone increases and that of the

proliferation zone decreases, giving the transition zone an appearance of a moving front in the

basipetal direction [4,9]. All these three growth zones have diffused boundaries that overlap

with the adjacent zones.

Cell number in a mature leaf depends on the size of the proliferation zone, the rate of prolif-

eration within it and the rate at which cells exit proliferation and enter differentiation within

the transition zone; perturbation in any of these parameters leads to altered cell number and

final leaf size [10,11]. Many transcription factors have been identified over the years that pro-

mote cell proliferation and leaf size, the important ones being AINTEGUMENTA (ANT),

GROWTH-REGULATING FACTORS (GRF) and GRF-INTERACTING FACTORS (GIF)

[10,12,13]. Their inactivation results in smaller leaves with fewer cells while their over-expres-

sion yields larger leaves due to longer/ faster proliferation. The proteins that suppress cell pro-

liferation in a leaf primordium have also been identified and include DA1/DAR, BIG

BROTHER and the class II TCP (TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERAT-

ING CELL FACTOR1/2) transcription factors [14–18].

The TCP genes are predicted to encode non-canonical, basic helix-loop-helix transcription

factors [19,20] that regulate multiple aspects of plant development [21]. Five miR319-regutated

class II TCP proteins in Arabidopsis, namely TCP2, 3, 4, 10 and 24, and their orthologues in

snapdragon and tomato, regulate leaf morphogenesis by limiting the number of pavement

cells [8,14,15]. In the Arabidopsis jaw-D plants where the level of these five TCP transcripts are

reduced due to the overexpression of endogenous miR319a, leaf size is increased as a result of

excess number of pavement cells, whereas leaves with elevated level or activity of these TCP

proteins are smaller in size with reduced cell number due to precocious differentiation

[9,17,22,23]. Based on these functional studies, together with the localization of their tran-

scripts in the transition zone [14,15], it has been hypothesized that these class II TCP proteins

promote differentiation potential in the proliferating leaf cells within their expression domain

[24]. However, so far this has not been tested experimentally, primarily due to the high degree

of functional redundancy among these proteins.
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TCP-mediated cell differentiation and organ maturation has been linked to the biosynthesis

and response pathways of the major phytohormone, auxin [21]. Auxin controls cell prolifera-

tion and maturation in a context-dependent manner. Plants expressing a dominant, repressive

form of TCP15 display up-regulation of multiple auxin biosynthesis genes YUCCA1, 4 and 6,

suggesting that TCP15 is a negative regulator of auxin biosynthesis [25]. Similarly, TCP3

inhibits auxin response by inducing IAA3 (INDOLE-3-ACETIC ACID INDUCIBLE3)/ SHY2
(SHORT HYPOCOTYL2), a negative regulator of auxin signaling, and PIN1 (PIN-FORMED1),

5, 6, AUX1 (AUXIN RESISTANT1), the polar auxin transporters [21,26]. By contrast, TCP4

induces auxin response by activating YUC5, an auxin biosynthetic gene [27]. Even though the

regulation of auxin response by TCP proteins has been studied in some detail, the role of auxin

in cell maturation and transition zone formation has been studied only in roots [1] but not in

leaves.

The role of the plant-specific homeodomain-leucine zipper (HD-ZIP) transcription factors

has been implicated in leaf morphogenesis. The HD-ZIP members are classified into four sub-

groups (I to IV) based on sequence similarity within the DNA-binding homeodomain [28,29].

Function of the class III HD-ZIP proteins such as REVOLUTA (REV), PHABOLUSA (PHB),

PHAVOLUTA (PHV), ARABIDOPSIS THALIANA HOMEOBOX 8 (ATHB8) and ATHB15

is the most well-studied among the family members and their role has been linked to the estab-

lishment of leaf/ embryo polarity and meristem maintenance [30–32]. Members of the class II

subgroup including HOMEODOMAIN ARABIDOPSIS THALIANA1 (HAT1) and HAT2

have been implicated in growth adaptation to the environmental signals and in organ matura-

tion in response to hormone signaling [33–35]. Recent reports show that the class II HD-ZIP

proteins ATHB4 and HAT3 physically interact with REV and form a functional repression

complex which suppresses the miR165/166 expression, thereby establishing the adaxial/abaxial

polarity in leaves [36]. Interestingly, ATHB4 and HAT3 are downstream targets of REV, point-

ing to a complex interconnection among the HD-ZIP genes during leaf morphogenesis. In

addition, some members of the class II HD-ZIP genes, specifically HAT1/2, are activated by

auxin response and promote cell expansion and organ maturation [33,34,37,38]. Plants over-

expressing either HAT1 or HAT2 produce smaller leaves with reduced cell number and elon-

gated hypocotyl cells [34,37,38], which is also seen in plants with gain-of-function of class II

TCP genes [22,23,27]. However, it is not clear whether and how the HD-ZIP II proteins are

linked to other cell differentiation factors in promoting organ maturation.

Here, we induced a dominant form of TCP4 protein at various developmental stages of

Arabidopsis leaf primordium that lacked class II TCP function and followed its effect on leaf

growth kinematics. By combining this with spatio-temporal expression of endogenous TCP4,

we show that the class II TCP proteins irreversibly reprogram the mitotic cells to exit division

and acquire differentiation competence within the transition zone. Induction of cell matura-

tion is mediated by auxin response as well as by direct activation of HAT2 transcription by

TCP4.

Results

Altered number and size of pavement cells in the leaves with modified TCP

activity

The class II TCP genes are heterochronic regulators of leaf development and their function has

been implicated in the repression of cell division [22] and the promotion of differentiation

[17]. In order to examine the specific role of the five redundant, miR319-targeted, class II TCP
genes–TCP2, 3, 4, 10 & 24—in cell division/ differentiation of Arabidopsis leaves, we com-

pared the mature first leaf pair and their epidermal cells of wild type (Col-0) with those in the
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loss-of-function mutants tcp2;4;10 [27] and jaw-D, where all the five TCP transcripts are

down-regulated due to the over-expression of miR319a [15]. The tcp2;4;10 and jaw-D leaves

measured>1.5 times larger than the Col-0 leaves (Fig 1A), as was reported previously [9,17].

The number of the abaxial epidermal cells in the mutant leaves increased ~2.5-fold (Fig 1B),

suggesting that the increased mutant leaf area is due to an excess of cell proliferation. To deter-

mine if class II TCP activity is sufficient to repress proliferation, we induced a miR319-resis-

tant, dexamethasone (DEX)-inducible form of TCP4 protein (mTCP4-GR) expressed under

ProTCP4 and Pro35S [27]. DEX-grown, homozygous ProTCP4:mTCP4:GR or Pro35S:mTCP4:

GR plants in the Col-0 background (hereafter referred to as Col-0;GR or 35S;GR, respectively)

showed smaller leaves with reduced cell number (Fig 1C and 1D and S1A–S1D Fig). A more

pronounced relative reduction in the final leaf size (by ~70%; Fig 1C and 1E) and cell number

(by>80%; Fig 1D and 1F) were observed in the DEX-grown ProTCP4:mTCP4:GR plants in

the jaw-D background (hereafter referred to as jaw-D;GR) compared to the mock treatment,

demonstrating that TCP4 is a strong cell proliferation inhibitor. Similar negative effect of

TCP4 on leaf size and cell number was also observed in three independent transgenic lines

where three different gain-of-function forms of TCP4 were expressed constitutively under a

leaf primordia-specific promoter (ProBLS:rTCP4:GFP) [17], a ubiquitous promoter (Pro35S:

TCP4:3F6H) [39] or the endogenous promoter (ProTCP4:TCP4:VP16) [23] (S1F–S1I Fig).

Concomitant with the increased number, the area of mature pavement cells reduced to

almost half in jaw-D and tcp2;4;10 leaves (Fig 1G and S2A Fig). Induction of TCP4 activity,

however, had little effect on the final cell area in the Col-0;GR and 35S;GR leaves (Fig 1H and

1I and S1E Fig) and merely restored the cell size defect found in the jaw-D;GR leaves to the

wild-type level (Fig 1I and S2B Fig). Pavement cell area also remained unaltered in the three

other dominant lines of TCP4, ProBLS:rTCP4:GFP, Pro35S:TCP4:3F6H and ProTCP4:TCP4:

VP16 (S1J and S1K Fig). These results suggest that the class II TCP proteins are required for

pavement cell maturation during leaf development but are not sufficient to promote pavement

cell expansion per se, even though they do so in the hypocotyl [27]. Contrary to the miR319-re-

sistant inducible form of TCP4, constitutive expression of a miR319-susceptible form of TCP4

protein in the homozygous Pro35S:TCP4:GR plants (hereafter referred to as 35S;sGR) showed

no effects on leaf size, cell number and pavement cell area (Fig 1C, 1D and 1I), demonstrating

that the effects of mTCP4:GR induction described above resulted specifically from miR319

activity on the class II TCP transcripts and not from artifacts due to GR fusion or to the site of

insertion [27].

The requirement of TCP genes for developmental cell maturation was also apparent in the

reduced differentiation status of the pavement cells in the TCP loss-of-function leaves. The

abaxial surface of mature Col-0 leaf is composed mostly of large epidermal cells with jigsaw

shape (Fig 1H, S2A and S2C Fig), a characteristic marker for differentiation [17,40]. By con-

trast, mature tcp2;4;10 and jaw-D leaves were composed mostly of smaller cells (Fig 1J, S2A

and S2C Fig), a differentiation defect that was totally rescued by TCP4 induction (Fig 1K).

However, induction of TCP4 in the Col-0 background did not alter the cell size distribution

(S2D Fig).

Kinematic analysis of TCP-mediated leaf growth

The results described above suggest that the class II TCP proteins restrict cell number and pro-

mote cell maturation during leaf development. To examine their role in cell proliferation/ mat-

uration at early growth phase, we compared the kinematics of growth of the first pair of jaw-D;
GR leaves under TCP4 inductive and non-inductive conditions. Col-0 leaf blade expanded

slowly at an early growth stage, from 6–10 days after stratification (DAS), during which the
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average area of the abaxial pavement cells remained small (~500 μm2 or less) and their number

increased exponentially (Fig 2A–2C, S3A and S3B Fig). At 10 DAS, the blade acquired ~10%

of its final area and ~75% of its final pavement cell number. Later, the blade expanded at an

exponential rate up to 16–18 DAS, before reaching a plateau at ~22 DAS (Fig 2A and S3A Fig).

The pavement cells also expanded faster during this period, and continued to do so beyond 22

DAS (Fig 2C and S3B Fig). The number of pavement cells reached its maximum at the mid-log

phase of blade expansion and no further proliferation was observed beyond 12 DAS (Fig 2B),

at which stage the blade acquired approximately half of its final area. These kinematics results

are in general agreement with the earlier reports on Arabidopsis leaf published by other labo-

ratories [5,41].

Fig 1. Perturbation in number and size of pavement cells in leaves with altered activity of miR319-targeted TCP genes. (A) and (B) Mature first leaves (A,

left), average area of their lamina (A, right), and number (B) of their abaxial pavement cells. Sample size (N), 10–12. Scale bar, 2 mm. (C) and (D) Images of

mature first leaves (C, left) from plants grown in the absence (M, Mock) or presence (DEX) of 12 μM dexamethasone and average area of their lamina (C,

right), and number (D) of their abaxial pavement cells. N, 12–15. Scale bar, 2 mm. Col-0;GR, jaw-D;GR, 35S;GR and 35S;sGR indicate Col-0;ProTCP4:mTCP4:

GR; jaw-D;ProTCP4:mTCP4:GR, Col-0;Pro35S:mTCP4:GR and Col-0;Pro35S:TCP4:GR, respectively. (E) and (F) Mature leaf area (E) and number of pavement

cells (F) from DEX-treated Col-0;ProTCP4:mTCP4:GR and jaw-D;ProTCP4:mTCP4:GR plants relative to respective mock-treated values. Note that the relative

value for jaw-D;ProTCP4:mTCP4:GR is smaller than that of Col-0;ProTCP4:mTCP4:GR since the denominator (mock value) for the former is more than that

for the latter. (G) Average pavement cell area of leaves shown in (A). (H) and (I) Outline of the abaxial pavement cells (H) of leaves shown in (C) and their

average area (I). Scale bar, 100 μm. For (G) and (I), total 125–150 cells per leaf at different regions were measured and averages from 5–8 leaves are shown. (J)

and (K) Frequency distribution of pavement cell size in mature first leaves based on their size, of indicated genotypes (J), and of jaw-D;ProTCP4:mTCP4:GR
plants grown without (Mock) or with (DEX) 12 μM dexamethasone (K). (L) Mature rosette leaves from 32-day old jaw-D;ProTCP4:mTCP4:GR plants grown in

mock control (Mock), in continuous 12 μM dexamethasone (DEX), in dexamethasone for first 10 days and then transferred to mock (D!M), and in mock for

first 10 days and then transferred to dexamethasone (M!D). The numbers indicate leaf positions. Scale bar, 1 cm. Error bars, � and ns indicate SD, p<0.05

and not significant, respectively. Unpaired Student’s t-test was used to determine significant differences.

https://doi.org/10.1371/journal.pgen.1007988.g001
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The overall trend of the growth kinematics of jaw-D leaf blade was by and large similar to

Col-0, with a slow (6–10 DAS), exponential (10–18 DAS) and saturating (18–22 DAS) phase.

However, the jaw-D blades started expanding at a rate faster than that of Col-0 from the earli-

est stage measured (6 DAS; inset in Fig 2A), and consequently its area remained higher

throughout the growth. The increased jaw-D blade area was due to excess number, and despite

reduced size, of the pavement cells. The jaw-D cells accumulated at a faster rate than Col-0,

but the proliferation ceased at almost similar growth stage (~12 DAS) in both the genotypes,

resulting in ~2.5 times more cells in the mature jaw-D leaf compared to Col-0 (Figs 1B and

2B). As in Col-0, the size of the jaw-D pavement cells remained small in the slow phase (6–10

DAS) and then increased exponentially until 16 DAS, before saturating rather abruptly (Fig

2C). However, the average area of jaw-D pavement cells remained 1.6 ± 0.16 fold smaller than

that in Col-0 throughout the growth phase of the leaf (S1 Table).

All the cellular defects of the jaw-D leaf were rescued by continuous induction of TCP4

throughout the growth phases (Fig 2A–2C and S3A Fig). The DEX-grown jaw-D;GR blade

expanded at the same rate as Col-0 until 12 DAS and then at a slower rate, before ceasing to

expand at 18 DAS to a final area that was smaller than the Col-0 blade (Fig 2A and S3A Fig).

Upon TCP4 induction, the pavement cells accumulated in the jaw-D;GR blade for almost the

Fig 2. Kinematic growth analysis of leaves with altered TCP4 activity. (A) to (F) Kinematic growth parameters of the first leaf pair of jaw-D;ProTCP4:

mTCP4:GR plants grown in the absence (Mock) or presence (DEX) of 12 μM dexamethasone are compared to the wild type (Col-0) control. (A) Average leaf

area. Magnified data at 6 days after stratification (DAS) for Col-0 (open bar) and mock-grown jaw-D;GR (filled bar) leaves are shown in inset. (B) Average

number of abaxial pavement cells per leaf (note that the Y-axis scale is in log2 scale). (C) Average area of abaxial pavement cells. (D) and (E) Frequency

distribution of smaller (D,<1500 μm2) and larger (E,>3000 μm2) pavement cells are shown. For each time point, total 30–40 cells per leaf at base, mid or tip

[5,41] were measured and averages from 5–7 leaves are shown. (F) Stomatal index expressed as percentage of total epidermal cells. N, 9–12 leaves. Error bars

indicate SD and � indicate p<0.05.

https://doi.org/10.1371/journal.pgen.1007988.g002
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same duration (till ~12 DAS) as in Col-0, but at a slower rate, resulting in fewer cells at matu-

rity compared to Col-0 (Figs 2B and 1D). While both blade area and cell number were smaller

than the Col-0 values in the jaw-D;GR leaves grown under DEX, the average size of the pave-

ment cells was rescued up to the Col-0 value at all stages of leaf growth (Figs 2C and 1I).

The growth kinematics described above shows that class II TCP activity is essential for

reducing the total number, and for increasing the average size, of the pavements cells during

leaf development. A growing leaf blade, however, is composed of cells of heterogeneous size

and proliferation status; the smaller, dividing cells are located at the proximal end and the

larger, differentiating cells towards more distal side [4]. To examine if TCP4 activity is specific

to a stage of cell maturation, we determined the proportions of smaller (arbitrarily defined as

<1500 μm2 in area) and larger (>3000 μm2) pavement cells in expanding Col-0 lamina (S2C

Fig) and compared with jaw-D. During early growth (6–8 DAS), nearly all Col-0 pavement

cells measured<1500 μm2, and their proportion sharply declined to ~30% at 22 DAS as the

blade expanded (Fig 2D and S3C Fig). The larger cells started appearing at 10 DAS and steadily

increased to ~40% at 22 DAS (Fig 2E). The fraction of the smaller cells in the jaw-D;GR blade

without TCP4 induction, however, declined at a slower rate and stabilized at>60% at 16 DAS

(Fig 2D and S3D Fig). Consequently, the jaw-D;GR larger cells increased in proportion rather

slowly and reached the maximum value of little over 10% at 16 DAS (Fig 2E). TCP4 induction

in the jaw-D;GR blade restored the proportions of smaller and larger cells close to the Col-0

levels at all growth stages (Fig 2D and 2E and S3E Fig).

Taken together, these kinematic results suggest that a major function of the class II TCP

proteins is to convert the smaller pavement cells to larger cells, possibly by promoting their

proliferation to differentiation competence. The differentiation-inducing activity of the TCP

proteins is also apparent in the altered stomatal index (the proportion of epidermal cells

assuming stomatal lineage), a measure of leaf maturation [41], in the mutant leaves. 20.5 ±
1.2% Col-0 epidermal cells assumed stomatal identity at 6 DAS, a value that steadily increased

during leaf maturation and reached to a maximum value of 37.4 ± 2.6% at 22 DAS (Fig 2F).

However, only 13.8 ± 2.7% jaw-D;GR cells were converted to stomatal lineage at 6 DAS, and

this value increased to a maximum of 26.7 ± 2.8% at 22 DAS. Induction of TCP4 activity in the

jaw-D;GR leaves nearly restored the defect in stomatal index to wild-type level.

Temporal control of leaf growth by TCP4

All jaw-D;GR rosette leaves were smaller with smoother margin when grown with continuous

presence of DEX (Fig 1L), indicating that TCP4 induction is active throughout the vegetative

growth. However, when jaw-D;GR seedlings were grown under inductive condition for first 10

days and then transferred to non-inductive medium, the first few leaves resembled those

grown under continuous DEX, but the leaves that emerged later showed progressively more

jaw-D-like phenotype. Conversely, when the seedlings were grown under non-inductive con-

dition for first 10 days and then transferred to inductive condition, the first few leaves resem-

bled jaw-D leaves but the later leaves were smaller with smoother margin (Fig 1L). This

suggests that DEX application can be used to induce TCP4 activity at any point of time during

plant development.

To determine the developmental timing of TCP4 function during leaf maturation, we

induced TCP4 activity in the jaw-D;GR leaves after growing them in the non-inductive

medium for various number of days after stratification (4 to 15 DAS; Fig 3 and S4A Fig) and

compared their blade area, cell number and cell size at maturity (29 DAS). Without TCP4

induction, the jaw-D;GR lamina grew to 32.6 ± 2.5 mm2 that contained 17450 ± 1336 pave-

ment cells of average area 1870 ± 170 μm2 (Fig 3). On the other hand, the lamina under
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Fig 3. Temporal induction of cell differentiation by TCP4. TCP4 activity was induced at indicated DAS in the jaw-
D;ProTCP4:mTCP4:GR seedlings by shifting them from mock to dexamethasone (12 μM)-containing medium and the

mature first leaf at 29 DAS was analyzed. (A) Images of mature first leaves after shifting them from mock to DEX at

indicated DAS. Leaves grown in continuous absence (Mock) or presence (DEX) of dexamethasone are shown as

controls. (B) to (D) Average leaf area (B), and average number (C) and size (D) of abaxial pavement cells of leaves that

are shown in (A). N, 12–15. For (D), total 120–140 cells per leaf were measured and averages from 5–7 leaves are

shown. Mock and DEX (gray filled circles) indicate values for plants continuously treated with either mock solvent or

dexamethasone, respectively. Broken lines are drawn through the values of the mock-treated controls. Error bars

indicate SD. Scale bar, 5 mm.

https://doi.org/10.1371/journal.pgen.1007988.g003
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continuous TCP4 induction grew to 12.0 ± 1.7 mm2 with much fewer cells (4130 ± 579) of the

average area 2920 ± 140 μm2. The blade area progressively increased from 12.0 ± 1.7 mm2 to

the non-inductive value of 32.6 ± 2.5 mm2 when TCP4 was induced at 4, 5 or 6 DAS, even

though their final cell numbers were much fewer than the non-inductive value. When TCP4

was induced at 6 DAS, its blade area at maturity was close to the jaw-D value (30.4 ± 2.3 mm2),

even though its cell number was almost half of that in jaw-D leaf (Fig 3A–3C). This is because

the defect in the pavement cell size was rescued in these leaves to the wild-type value

(3130 ± 170 μm2) (Fig 3D).

When TCP4 was induced at 7, 8, 9 or 10 DAS, the final jaw-D;GR blade area progressively

increased to a maximum of 46 mm2, nearly 1.5-fold bigger than the jaw-D blade (Fig 3A and

3B and S5A and S5B Fig). When TCP4 was induced at 10 DAS, the mature first leaf had pave-

ment cell number (15420 ± 1220) that was close to the jaw-D value, but the cells (2940 ±
240 μm2) were larger than the jaw-D cells (1870 ± 170 μm2), ultimately yielding a mature leaf

that was bigger than even the jaw-D leaf. It may be noted here that the jaw-D leaves were at the

peak of its exponential phase of proliferation at 10 DAS, when almost all pavement cells were

smaller in size (<1500 mm2; Fig 2B and 2D). When TCP4 was induced at 11, 12, 13, 14 and 15

DAS, the mature blade area progressively reduced to the jaw-D value (Fig 3A and 3B). At 15

DAS of TCP4 induction, the blade area, cell number and cell area were comparable to the

respective jaw-D values, demonstrating that TCP4 induction at 15 DAS or later failed to rescue

the size defect of the jaw-D pavement cells. At 15 DAS, the jaw-D cells ceased to proliferate

and the proportion of the smaller cells are at its minimum level (Fig 2B and 2D).

When TCP4 was induced at various developmental stages of Col-0;GR and 35S;GR leaves,

similar effect on final blade area was observed (S5C–S5E Fig). Leaves of both genotypes grew

to ~26 mm2 under non-inductive condition and to 9.2 ± 2.0 mm2 (Col-0;GR) and 12.7 ± 1.0

mm2 (35S;GR) upon continuous TCP4 induction (Fig 1C and S5C–S5E Fig). When TCP4 was

induced at 4, 6, 8, 9 and 10 DAS in these plants, the final blade area progressively increased to

the un-induced value but, unlike in jaw-D;GR, never surpassed it. This is consistent with the

observation that TCP4 failed to promote pavement cell expansion beyond the wild type level

(Figs 1I and 3D). On the contrary to the Col-0;GR and 35S;GR leaves, when DEX-induction

was performed in the expanding 35S;sGR blades, the final blade area remained more or less

unaffected at all stages of TCP4 induction (S5C and S5F Fig), implying that the collective

effects of TCP4 induction on jaw-D;GR, Col-0;GR and 35S;GR leaf growth dynamics described

above resulted from miR319 activity on the TCP4 transcript.

These results, together with those shown in Fig 2, strongly suggest that TCP4 promotes

maturation in proliferating pavement cells, perhaps by committing them to differentiation,

within the developmental window of the proliferative phase.

TCP4 irreversibly changes the cell fate from proliferation to differentiation

Developmental cell maturation is a unidirectional process where the fully expanded pavement

cells do not revert back to proliferative fate under normal circumstances. The transcripts of the

miR319-regulated class II TCP genes that induce leaf differentiation are abundant in young

lamina and their level steadily declines as the lamina matures [42]. Therefore, it is possible that

these TCP genes activate the proliferation!differentiation transition in the pavement cells in

an irreversible manner. To test this, we grew jaw-D;GR seedlings under TCP4 inductive condi-

tion for 0.5, 1, 2, 3, 4, 5 or 6 DAS, shifted them to non-inductive condition until 29 DAS (S4B

Fig) and monitored leaf area and cell number of their mature first leaves (Fig 4A–4D). Arabi-

dopsis seeds germinated (emergence of radicle) at 1 DAS and the first leaf pair initiated at 2

DAS (Fig 4A). When the plants were grown for 0.5 or 1 DAS in the presence of DEX, there
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was no effect of TCP4 induction on the final leaf area (Fig 4B and 4C), possibly because the

leaf primordia were barely formed at 1 DAS. When TCP4 was induced for 2 DAS, the leaf mar-

gin defect was totally rescued (Fig 4B) and leaf area reduced to almost half (Fig 4C). TCP4

induction for 4 DAS yielded mature leaf as small as what was observed with continuous DEX

induction (Fig 4B and 4C), suggesting that miR319-mediated inhibition of class II TCP tran-

scripts for the first 2 days post leaf initiation (that is, 4 DAS), when the average length of leaf

primordium was 274 ± 35 μm (Figs 4A and 5B), is crucial for normal leaf growth.

Fig 4. TCP4 irreversibly commits the proliferating cells of leaf primordia to differentiation. (A) Scanning electron micrographs of jaw-D;ProTCP4:mTCP4:GR
seedlings after indicated DAS. A germinated seed (1 DAS) and the meristematic region of seedlings are shown. Scale bars, 500 μm (1, 6 DAS) and 100 μm (2, 3, 4 DAS).

(B) Mature first leaf (29 DAS) of jaw-D;ProTCP4:mTCP4:GR seedlings grown in the presence of 12 μM dexamethasone for the indicated DAS and then shifted to

medium without dexamethasone. Leaves grown in continuous absence (Mock) or presence (DEX) of dexamethasone are shown as controls. Scale bar, 5 mm. (C)

Average size of leaves shown in (B). N, 12–15 leaves. (D) Number of pavement cells in leaves shown in (B). (E) GUS reporter analysis of first leaf from 8-day old jaw-D;
ProTCP4:mTCP4:GR X ProCyclinD3;2:GUS seedlings grown in the presence of dexamethasone for the indicated DAS and then shifted to medium that lacks

dexamethasone. Mock indicates seedlings grown without dexamethasone. (F) Average area of mature first leaves (N, 12–15) of jaw-D;ProTCP4:mTCP4:GR seedlings

treated with 12 μM dexamethasone for indicated durations at 4 DAS. (G) Average area (N = 10–15) of mature first leaves of jaw-D;ProTCP4:mTCP4:GR seedlings

treated with 12 μM dexamethasone for 24 hours at indicated DAS. Mock indicates no treatment; DEX, continuous dexamethasone treatment. (H) Average area of

mature first leaves from jaw-D;ProTCP4:mTCP4:GR seedlings treated with 2 mM hydroxyurea (HU) and/or 12 μM dexamethasone (DEX) for 36 hours at 3 DAS. Mock

indicates no treatment. N, 8–12 leaves. (I) and (J) Mature first leaf (I) from seedlings grown in the presence of dexamethasone for the indicated DAS and then shifted to

medium that lacks dexamethasone, and their average size (J). N, 10–15 leaves. (K) Nuclear ploidy analysis of first leaf pair from 8-day old seedlings grown in the absence

(Col-0, M) or presence (DEX) of 12 μM dexamethasone. Averages from biological triplicates are shown. Error bars indicate SD. � indicates p<0.05. Unpaired Student’s

t-test was used.

https://doi.org/10.1371/journal.pgen.1007988.g004
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Consistent with the reduction of blade area, TCP4 induction for 4 DAS also reduced the

pavement cell number to 4550 ± 910, similar to the value obtained with continuous TCP4

induction (Fig 4D). Lower cell proliferation activity was also reflected in the reduction of the

cell cycle marker CyclinD3;2 [43] in young leaves. Up to 1 DAS of TCP4 induction did not

reduce the GUS activity to a noticeable extent in 8-day old jaw-D;ProTCP4:mTCP4:GR X Pro-
CyclinD3;2:GUS seedlings (Fig 4E). However, the GUS activity much reduced when TCP4 was

induced for 2 or 4 DAS, and totally disappeared at 6 DAS of induction.

In order to determine the minimum duration of TCP4 activity that is sufficient to induce

differentiation commitment in proliferating cells, we provided pulse of TCP4 function of vari-

ous durations from 0 to 48 hours in 4-day old jaw-D;GR seedlings and compared their mature

leaf area at 29 DAS. Leaves without TCP4 induction grew to a maximum area of 36 ± 3.8 mm2

(Fig 4F). A 3-hour pulse of TCP4 induction reduced the area to a noticeable extent, and the

area continued to reduce with longer pulses, finally stabilizing to a minimum value (23.2 ± 2.0

mm2) with a 24-hour pulse. This suggests that TCP4 activity for the duration of 24 hours is suf-

ficient to impart commitment to differentiation in a dividing cell. Consequently, a 24-hour

DEX pulse at 4, 6, 8, 9, 10 and 12 DAS (S6 Fig) altered the mature leaf area of mock-grown

jaw-D;GR seedlings to nearly the same extent (Fig 4G) as in continuous DEX-induction start-

ing from the respective DAS (Fig 3B). When we treated 3-day old jaw-D;GR seedlings with

hydroxyurea, a widely used cell cycle inhibitor that induces reversible G1/S arrest [44,45], only

for a duration of 36 hours, the mature first leaf grew as big as the untreated control (Fig 4H),

implying that reversible cell arrest for a short while does not adversely affect the overall cell

proliferation in a growing leaf. However, similar treatment with DEX reduced the final leaf

size to a great extent (Fig 4H), suggesting that TCP4 initiates irreversible cell cycle arrest in a

proliferating leaf.

When TCP4 activity was induced in the 35S:GR seedlings for 0.5, 1, 2, 3, 4, 5 or 6 DAS, the

final leaf area progressively reduced with increased duration of induction (Fig 4I, 4J and S7

Fig), as observed for jaw-D;GR leaves (Fig 4B and 4C). However, when similar induction

experiment was performed on 35S;sGR seedlings, the final leaf area remained unaltered, sug-

gesting that miR319 activity at early stage of leaf growth contributes to blade expansion.

Increased cell maturation upon TCP4 induction was also reflected in the elevated level of

nuclear ploidy, a typical cell differentiation marker [46], in cells of DEX-induced leaves. Flow

cytometry analysis of the nuclei isolated from 8-day old Col-0 leaves revealed a ploidy distribu-

tion of 57.5% 2C, 39.6% 4C and 2.9% 8C cells (Fig 4K). In the jaw-D;GR leaves grown in mock

condition, the proportion of 2C nuclei increased modestly to 69.5% and that of 4C (28.7%)

and 8C (1.7%) nuclei decreased, suggesting a less differentiation status of this cell population.

Conversely, when TCP4 function was induced in these leaves, the fraction of 2C nuclei

reduced to 34.8%, with a concomitant increase in the proportion of 4C (55.7%) and 8C (9.5%)

nuclei. Together these results demonstrate that TCP4 makes the proliferative cells exit division

cycle and enter into endoreplication.

MiR319-mediated spatial regulation of class II TCP transcripts establishes

the transition zone

To correlate the function of the miR319-TCP module with their expression dynamics in

expanding leaf blade, we localized miR319c and TCP4 promoter activity and TCP4 protein at

various growth stages of transgenic leaves expressing GUS reporter. In a 19-day old ProTCP4:

GUS seedling, strong GUS activity was detected throughout the blade of the 9th rosette leaf (1.2

mm long), which was progressively restricted towards the proximal end in the more mature

8th, 7th and 6th leaves (Fig 5A). Since the maturation states of younger to older leaves in an
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Arabidopsis rosette recapitulate the ontogeny of a leaf on a specific node [17], it can be con-

cluded that TCP4 promoter activity progressively gets restricted towards leaf base as the blade

differentiates, before disappearing completely, as observed previously for TCP4 and its ortho-

logues [8,14,47]. GUS activity in the ProCyclinD3;2:GUS leaves [43] resembled that of

ProTCP4:GUS leaves (Fig 5A), suggesting that TCP4 promoter is active in the proliferative

zone of the expanding leaf blade.

GUS reporter was detected in a small domain at the base of the young 9th leaf (0.8 mm

long) of PromiR319c:GUS seedlings (Fig 5A), and expression was reduced and restricted to

more proximal region in the 8th leaf (1.9 mm long); no detectable GUS activity was found in

the 7th and the 6th leaves. These results are in agreement with the earlier reports [48], and sug-

gests that miR319c promoter is active during a small temporal window at the earliest stage of

leaf growth. Consequently, the TCP4:GUS reporter activity in young ProTCP4:TCP4:GUS leaf

at the 9th position was not detected in the corresponding basal region where miR319c pro-

moter is active at this stage, suggesting that miR319 activity excludes TCP4 transcript [15] and

its protein product (Fig 5A) from its expression domain.

Fig 5. Spatio-temporal expression analysis of miR319-TCP4 module. (A) and (B) GUS reporter analysis in young leaves of 19-day old seedlings (A) and in

the first leaf pair in 4-day old seedlings (B). White arrows point to the leaf base. (C) GUS activity in the fifth leaf at two developmental stages. (D) ProTCP4:

TCP4:GUS activity in 10-day old mock grown Col-0 and jaw-D;GR seedlings. (E) and (F) GUS activity of YUC5 promoter in the first leaf (E) and in 5-day old

seedlings grown in the absence (Mock) or presence (DEX) of 12 μM dexamethasone (F). The boxed regions in the top panel of (F) are magnified below to

highlight GUS activity in the first leaf. Numbers indicate leaf length in mm (A) (B) (C) and (E) or leaf position (D).

https://doi.org/10.1371/journal.pgen.1007988.g005
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To compare the relative expression domains of miR319c, TCP4 transcript and TCP4 pro-

tein in young leaf primordia where miR319 promoter is active, we studied the GUS expression

pattern in 4-day old transgenic seedlings where the first leaf pair just initiated (Fig 4A). In

~300 μm long first leaf, TCP4 and CyclinD3;2 promoters were active throughout the leaf,

whereas the miR319 promoter was detected in a small region at the very base (Fig 5B and S8

Fig). Activity of the TCP4:GUS fusion protein was, however, detected only in the distal half of

young leaf primordia (Fig 5B and 5D and S8 Fig), and was excluded from the proximal region

where miR319c promoter is active. Similar expression patterns have been reported for endoge-

nous TCP4 transcript in wild-type [15], and for a miR319-susceptible form of ProTCP4:GUS
transcript in transgenic leaf primordia [47].

In young fifth leaf primordium (~300 μm long), barely detectable TCP4:GUS activity was

found towards the distal extreme (Fig 5C), implying that miR319 activity is present in a

broader basal domain in this leaf. In agreement with this, strong GUS activity was detected

across the basal half of a PromiR319c:GUS leaf primordium of similar length (Fig 5C). At a

later growth stage, PromiR319c activity was restricted more towards the base, where it reduced

the TCP4:GUS signal. Since TCP4:GUS activity retracted from the distal end in these leaves

owing to the lack of ProTCP4 activity in differentiated cells, the TCP4:GUS protein was

detected in a band-like domain in the middle of the leaf with diffused proximal and distal

boundaries (Fig 5A, 5C and 5D), which has been proposed as the transition zone where prolif-

erating cells acquire differentiation competence [3,4,8,24]. Ectopic expression of miR319

throughout the leaf blade completely abolished the TCP4:GUS activity in the jaw-D;GR X

ProTCP4:TCP4:GUS seedlings (Fig 5D and S8 Fig), highlighting the importance of class II

TCP activity within the transition zone in leaf maturation.

Cells proximal to the transition zone are expected to remain proliferative whereas the distal

cells would differentiate. In agreement with this, the promoter activity of YUCCA5 (YUC5), a

known differentiation marker [27,49], was initiated at the distal end in a ~300 μm long first

leaf of 4-day old ProYUC5:GUS seedlings, and the expression extended towards more proximal

direction as the leaf matured (Fig 5E). The GUS signal reduced when the class II TCP genes

were down-regulated in the jaw-D;GR X ProYUC5:GUS leaves (Fig 5F), and increased when

gain-of-function TCP4 activity was induced by DEX application, suggesting that the distal

expression of YUC5 in young leaves is indeed mediated by TCP4 activity.

TCP4-induced auxin response is required for pavement cell maturation

The expression dynamics of TCP4 described above, together with the kinematic data (Figs 2–

4), suggests that TCP4 activity imparts irreversible differentiation fate to the proliferating cells

within the transition zone of an expanding leaf blade. Auxin is known to play a key role in tis-

sue maturation by coordinating the cell division with differentiation [1,50]. TCP4 function has

been linked to the auxin biosynthesis and response in hypocotyl cells [27]. We observed that

TCP4 activation increased GUS reporter activity in both jaw-D;GR X ProYUC5:GUS and jaw-
D;GR X ProDR5:GUS rosettes (Figs 5F and 6A), demonstrating that TCP4 promotes YUC5
transcription and auxin response in developing leaves. In agreement with this observation, the

levels of many SAUR and HD-ZIP II transcripts, which are known targets of auxin signaling

[34,51,52], were altered upon TCP4 induction (S9 Fig) when a previously reported jaw-D;GR
microarray dataset was analyzed [27]. Fourteen SAUR transcripts were also elevated upon

heightened auxin response or upon external application of auxin (Fig 6B) in the microarray

datasets available in the GENEVESTIGATOR database [33,34,51–53]. The SAUR and HD-ZIP
II genes are known to be involved in multiple developmental events including cell proliferation

and differentiation [34,37,50,51], suggesting a link between TCP4 function and auxin
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responsive genes in cell differentiation. RT-qPCR analysis demonstrated that the transcripts of

SAUR19, 20, 21, 24, 62 and 63 increased in the jaw-D;GR seedlings grown under constitutive

TCP4 activation (Fig 6C). In addition, GUS reporter activity in the jaw-D;GR X ProSAUR63:

GUS seedlings increased upon dexamethasone treatment (Fig 6D), suggesting that TCP4 acti-

vates the SAUR genes in planta. SAUR activation was abolished in the jaw-D;GR seedlings

when TCP4 was induced for 4 h in the presence of cycloheximide, a general protein synthesis

inhibitor (Fig 6E) [54], suggesting that the promotion of SAUR by TCP4 is an indirect effect,

possibly mediated by elevated auxin response.

Fig 6. TCP4-mediated cell differentiation requires auxin signaling. (A) GUS reporter assay of 17-day old seedlings grown in the absence (Mock) or presence

(DEX) of dexamethasone. (B) Expression analysis of 14 SAUR genes in previously reported microarray datasets of indole-3-acetic acid (IAA)-treated seedlings

using the signature tool of Genevestigator database (https://www.genevestigator.com/gv/plant.jsp). Top 12 transcriptome profiles of IAA-treated microarrays are

shown. (C) Relative transcript levels of SAUR genes determined by RT-qPCR analysis in 9-day old jaw-D;ProTCP4:mTCP4:GR seedlings grown in the absence

(Mock) or presence (DEX) of 12 μM dexamethasone. Averages from independent biological triplicates are shown. YUC5 level has been used as a positive

control. (D) GUS analysis of 4-day old seedlings grown on mock and DEX containing medium. Scale bar, 1 mm. (E) Relative transcript levels of indicated genes

estimated by RT-qPCR analysis in 9-day old jaw-D;ProTCP4:mTCP4:GR seedlings treated either with 40 μM cyclohexamide (CHX) or with a combination of

40 μM cyclohexamide and 20 μM dexamethasone (CHX DEX) for 4 hrs. PP2A/TUB2 was used as internal controls. (F) to (J) Average leaf area (F), number of

total pavement cells (G), average pavement cell area (H) and relative cell number (J) in mature first leaves of indicated genotypes grown in the absence (Mock)

or presence (DEX) of dexamethasone are shown. 30-day old rosettes pictures of indicated genotypes are shown in (I). Cell number in the DEX-grown leaf was

normalized to that of Mock-grown leaf (J). (K) Frequency distribution of pavement cell size in mature first leaves. j;G X C and j;G X s indicate jaw-D;ProTCP4:

mTCP4:GR X Col-0 and jaw-D;ProTCP4:mTCP4:GR X shy2-2, respectively. M and D indicate Mock and DEX, respectively. Total 130–150 cells from 5–7 leaves

were analyzed for (H) and (K). Error bars indicate SD. Scale bar, 2 mm (I). N, 12–15 leaves (F).

https://doi.org/10.1371/journal.pgen.1007988.g006
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To examine whether the elevated auxin response by TCP4 is capable of inducing leaf cell

maturity, we studied the effect of TCP4 induction on pavement cell area/number in short
hypocotyl2-2 (shy2-2), where cells are insensitive to auxin response due to the sequestration of

AUXIN RESPONSE FACTORs (ARF6 and 8) by a dominant, non-degradable form of AUX/

INDOLE-3-ACETIC ACID3 (IAA3) inhibitor protein [55]. Mature first leaves of jaw-D;GR X

Col-0 heterozygous seedlings grew to 29 ± 2.6 mm2, consisting of 18850 ± 1670 pavement cells

with average area of 1550 ± 165 μm2 (Fig 6F, 6G and 6H). TCP4 induction in these leaves

reduced the blade area to 19.0 ± 2.2 mm2 and cell number to 5240 ± 650, while increased the

average cell area to 3490 ± 180 μm2. The average area of mature jaw-D;GR X shy2-2 leaves

(Fig 6I) under non-inductive condition was 18.0 ± 2.3 mm2, with the total cell number

14080 ± 1660 and average cell area 1350 ± 200 μm2 (Fig 6F, 6G and 6H), possibly indicating a

TCP-independent role for auxin response in leaf blade expansion. TCP4 induction, however,

failed to reduce the jaw-D;GR X shy2-2 leaf area to any noticeable extent (Fig 6F), even though

it increased the pavement cell area ~2-fold, as in jaw-D;GR X Col-0 control leaves (Fig 6H).

While TCP4 induction reduced the total pavement cell number by ~75% in the jaw-D;GR X

Col-0 leaves, it reduced the jaw-D;GR X shy2-2 cell number by ~50% (Fig 6G and 6J), suggest-

ing that at least a part of the TCP4 effect on the repression of cell number is mediated by

IAA3-dependent suppression of auxin signaling.

The pavement cell population of the mature jaw-D;GR X Col-0 and jaw-D;GR X shy2-2
leaves showed similar size distribution under un-induced condition (Fig 6K), with ~70% cells

of smaller area (<1500 μm2) and<10% cells of larger area (>3000 μm2). Upon TCP4 induc-

tion, the fraction of the smaller cells decreased to ~25% and that of larger cells increased to

~50% in jaw-D;GR X Col-0, indicating a rescue of the cell size defect by TCP4 activity. The

extent of rescue was, however, less (~40% smaller cells and ~30% larger cells) in the jaw-D;GR
X shy2-2 leaves, suggesting that TCP4 partly requires auxin response to induce cell maturity.

TCP4 activates HAT2 independent of auxin response

HAT2 and its closest homologue HAT1 have been recognized as immediate auxin responsive

genes and control cell proliferation in leaves and cell elongation in hypocotyls, functions that

overlap with miR319-targeted TCP genes [22,27,33,34]. HAT1 and HAT2 transcripts were con-

sistently up-regulated in multiple independent microarray datasets performed upon external

auxin application (Fig 7A) [34]. HAT2 transcript was also up-regulated at both 2 and 4 h of

TCP4 induction in an earlier microarray experiment (S9 Fig) [27]. RT-qPCR analysis showed

that the transcript of HAT2 alone, and not of HAT1 or the clade members, was up-regulated

upon constitutive TCP4 induction in the Pro35S:mTCP4:GR seedlings (Fig 7B). HAT2 was

induced within 1 h of TCP4 induction (Fig 7C), and the level was maintained for at least 4 h.

In addition, HAT2 level was elevated in TCP4:VP16 seedlings, a gain-of-function line of TCP4

with enhanced transcriptional activity [23], while that was significantly reduced in the loss-of-

function line jaw-D (Fig 7D). Together, these results suggest that HAT2 is an early downstream

target of TCP4.

Since class II TCP proteins induce auxin biosynthesis [27,56] and HAT2 is an early auxin

responsive gene, it would appear that HAT2 activation is an indirect effect of TCP4 induction.

However, we found that TCP4 induction activates HAT2, but not the SAUR genes, in the jaw-
D;ProTCP4:mTCP4:GR seedlings even when both auxin biosynthesis and polar auxin transport

were inhibited by administering a combination of L-kynurenine and N-1-naphthylphthalamic

acid (Fig 7E) [57]. Moreover, TCP4 induction in the jaw-D;GR X shy2-2 seedlings, where

auxin response was genetically depleted by expressing a degradation-resistant form of IAA3

[55], also promoted HAT2 expression (Fig 7F). These results suggest that TCP4 is capable of
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promoting HAT2 expression independent of auxin response, and possibly by direct transcrip-

tional activation.

HAT2 is a direct target of TCP4

Consistent with this hypothesis, TCP4 induction increased HAT2 transcript level in jaw-D;
ProTCP4:mTCP4:GR and Pro35S:mTCP4:GR seedlings even when new protein synthesis was

Fig 7. TCP4 directly activates HAT2 transcription. (A) Comparative transcript levels of Class II HD-ZIP genes in Arabidopsis seedlings in previously reported

microarray datasets upon auxin treatment using the signature tool of Genevestigator database (https://www.genevestigator.com/gv/plant.jsp). Top 9 transcriptome

profiles are shown. (B) and (D) Relative transcript levels of class II HD-ZIP genes in jaw-D;ProTCP4:mTCP4:GR (B) and HAT2 in indicated genotypes (D) determined

by RT-qPCR in 9-day old seedlings grown without dexamethasone (Mock) or in the continuous presence 12 μM dexamethasone (DEX). (C) RT-qPCR analysis of HAT2
expression in 9-day old jaw-D;ProTCP4:mTCP4:GR seedlings treated with 12 μM dexamethasone for indicated durations. (E) RT-qPCR analysis of indicated transcripts

in 9-day old jaw-D;ProTCP4:mTCP4:GR seedlings treated either with DEX alone or with DEX plus and combination of NPA and L-Kyn, pharmacological inhibitors of

auxin transport and synthesis respectively, for 2 hrs. Solvent treatment (Mock) has been used a negative control. (F) HAT2 transcript levels determined by RT-qPCR in

9-day old seedlings grown without (Mock) or with (DEX) 12 μM dexamethasone. j;GR X C indicate jaw-D;ProTCP4:mTCP4:GR X Col-0 and and j;GR X s indicate jaw-
D;ProTCP4:mTCP4:GR X shy2-2. Transcript levels were initially normalized to PP2A/TUB2 internal control and then compared to respective mock controls. (G) and

(H) HAT2 transcript levels analyzed by RT-qPCR in 9-day old jaw-D;GR (jaw-D;ProTCP4:mTCP4:GR) (G) or Pro35S:GR (Pro35S:mTCP4:GR) (H) seedlings treated

either with 40 μM cyclohexamide (CHX) or with a combination of 40 μM cyclohexamide and 20 μM dexamethasone (CHX DEX) for 4 hrs. (I) Schematic representation

of the HAT2 locus. Exons are shown in gray box and translation start site is indicated with an arrow. BS1-BS3 represent the putative TCP4-binding motifs that are used

for EMSA experiments in (J). R1-R4 indicate the regions that are used for ChIP-qPCR analysis shown in (K). (J) Electrophoretic mobility shift assay demonstrating the

retardation of the oligonucleotides corresponding to the TCP4-binding sites in the HAT2 locus shown in (I) by recombinant MBP-fused TCP4 domain (MBP-TCP4D).

250-fold of un-labeled oligonucleotides was used as competitors. For super shift, anti-MBP antibody was used. (K) ChIP-qPCR analysis of the HAT2 chromatin regions

R1-R4 (shown in I) with anti-FLAG antibody. LOX2 and TUB2 were used as positive and negative controls, respectively. For RT-qPCR analyses in (B-H) and Chip-

qPCR in (K), averages of biological triplicates are shown. Error bars indicate SD. � indicates p<0.05, ns indicates not significant, Unpaired Student’s t-test was used.

https://doi.org/10.1371/journal.pgen.1007988.g007

TCP4 induces irreversible exit from cell proliferation

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007988 February 11, 2019 16 / 30

https://www.genevestigator.com/gv/plant.jsp
https://doi.org/10.1371/journal.pgen.1007988.g007
https://doi.org/10.1371/journal.pgen.1007988


blocked by applying cycloheximide (Fig 7G and 7H). This suggests that TCP4 directly activates

HAT2 possibly by binding to its genomic locus. Analysis of HAT2 genomic sequence yielded

three putative TCP4 binding elements (BS1-3); two in the promoter region and the third in the

coding region (Fig 7I). Electrophoretic mobility shift assay showed that recombinant MBP

(maltose binding protein)-tagged TCP4 protein [20] binds to oligonucleotides corresponding

to these elements with sequence specificity (Fig 7J). To test whether the TCP4 protein is

recruited to the HAT2 chromatin in planta, we performed chromatin immuno-precipitation

(ChIP) assay in the Pro35S:TCP4:3F6H transgenic line using anti-FLAG antibody [39]. TCP4

recruitment was observed in the HAT2 upstream regulatory regions that corresponded to the

TCP4 binding motifs (Fig 7K), but no recruitment was found in the HAT2 coding regions.

Consistent with this result, formaldehyde-assisted isolation of regulatory elements (FAIRE)

experiment [58] suggested that the HAT2 chromatin assumed more open conformation in the

regions corresponding to the putative TCP4-binding sites and not in a distant region when

TCP4 was activated in the Pro35S:mTCP4:GR seedlings by dexamethasone treatment (S10A

Fig).

Even though we identified one putative TCP4 binding site in the HAT1 upstream regula-

tory region and another in the coding region (S10B Fig), we suspected that HAT1 is not a tar-

get of TCP4 since its transcript level remained unaltered upon TCP4 induction (Fig 7B). ChIP

assay also suggested that TCP4 protein is not recruited at the HAT1 locus (S10C Fig). Based on

these results, and on the observation of a general overlap in the expression levels of TCP4 and

HAT2 at various developmental stages (S11 Fig), we conclude that HAT2, and not HAT1, is a

direct target of TCP4.

CIN-TCPs require HD-ZIP II transcription factors for limiting cell

number and leaf size

Both TCP4 and HAT2 restrict cell number in leaves and promote cell expansion in hypocotyl

[27,34]. Since TCP4 directly activates HAT2 (Fig 7), it is likely that TCP4 requires HAT2 activ-

ity in planta to promote developmental cell maturation. To test this, we crossed the jaw-D;GR
line to the hat1;hat2 double mutant, since there is a high degree of functional redundancy

between HAT1 and HAT2 and their single mutants cause little phenotypic alterations [59].

However, the dominant jaw-D phenotype was suppressed in the jaw-D;GR X hat1;hat2 F1

individuals possibly due to transgene silencing, a phenomenon that commonly occurs with the

viral 35S promoter [60,61]. To overcome this, we established the Col-0;GR;hat1;hat2 line and

analyzed its leaf parameters upon TCP4 induction. The Col-0;GR leaves, which resemble Col-0

under non-inductive condition [27], were reduced to ~38% in area upon TCP4 induction, pri-

marily due to a corresponding reduction in the number of pavement cells (Fig 8A–8C) that

were mildly but significantly larger than the un-induced cells (Fig 8D). Though the mature

hat1;hat2 leaves resembled wild type leaves in shape and size (Fig 8A), they were made up of

an increased number of pavement cells that were smaller in area (Fig 8B and 8D), an indication

of differentiation defect frequently observed in the mutants of CIN-TCP genes (Fig 1) [17].

When TCP4 was activated in the absence of HAT1 and HAT2 gene function in the hat1;2;GR
line, leaf blade area reduced only to ~70% with a corresponding reduction in the pavement cell

number. Further, TCP4 activation failed to sustain the increase in the pavement cell size in the

absence of HAT function (Fig 8D). Taken together, these results suggest that TCP4 requires

HAT2, and perhaps HAT1 as well, to limit cell proliferation and leaf size.

It has been shown that overexpression of HAT2 inhibits the leaf size and promotes the cell

elongation in hypocotyl similar to that of TCP4 activity in leaf and hypocotyl, respectively

[27,34,59]. Pro35S:HAT2 line shows only a mild effect in reducing leaf size and cell number in
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the wild-type background (60). However, this line reduced the size of the jaw-D leaf by ~30%

and its pavement cell number by ~50% (Fig 8E–8G). Further, Pro35S:HAT2 rescued the small-

size phenotype of the jaw-D pavement cells nearly to the wild type level (Fig 8H and 8I).

Since HAT1 and HAT2 are functionally redundant partners and their overexpression yields

comparable changes in leaf and hypocotyl [33–35,37], we tested whether HAT1 overexpression

can also rescue jaw-D phenotype. Similar to TCP4 dominant effect (Fig 8A), overexpression of

HAT1 in the Pro35S:JAIBA:GFP line (JAB:GFP) [37] reduced leaf size to a third of the wild

type value with ~60% decrease in pavement cell number (S12A–S12C Fig), demonstrating that

Fig 8. TCP4 requires the HD-ZIP II transcription factors for leaf maturation. (A) to (D) Mature first leaves (A, left) of plants grown without (Mock) or with (DEX)

12 μM dexamethasone, their average area (A, right), total number of pavement cells (B), cell number upon TCP4 induction relative to mock-induction (C) and average

abaxial pavement cell area (D). Sample number, 10–13 leaves. Col-0;GR and hat1;2;GR indicate Col-0;ProTCP4:mTCP4:GR and hat1;2;ProTCP4:mTCP4:GR,

respectively. For (A), ��� indicates p<0.0001 (Unpaired Student’s t-test was performed). (E) to (I) Mature first leaves from 29-day old seedlings of indicated genotypes

(E, left), their average area (E, right), total pavement cell number (F), cell number relative to Col-0 (G), outline of abaxial pavement cells (H) and their average area (I).

N, 8–12 leaves. jaw-D;GR and HAT2 indicate jaw-D;ProTCP4:mTCP4:GR and Pro35S:HAT2, respectively. For (D) and (I) total 125–150 cells per leaf were measured and

averages from 3–7 leaves are shown. Error bars indicate SD. � indicates p<0.05. Unpaired Student’s t-test was used. (J) A schematic diagram proposed to describe the

mechanism of TCP4-induced commitment to differentiation of proliferating cells in a wild type leaf. The proliferative basal zone (green) remains devoid of TCP4

activity due to the action of miR319 and expresses cyclins and GRF [22,65]. The transition zone (red) above the base expresses miR319-regulated class II TCP proteins

that induce cell commitment within this region via auxin response as well as HAT2 activation. TCP4 activity declines in the differentiated zone towards the tip (white),

which expresses the direct targets of TCP4 such as YUC5 and miR396 [22,27]. Scale bars, 2 mm (A), 5 mm (E) and 100 μm (H).

https://doi.org/10.1371/journal.pgen.1007988.g008
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HAT1 is a strong cell proliferation inhibitor in developing leaves. Moreover, HAT1 overex-

pression rescued the effect of class II TCP down-regulation on the leaf size and pavement cell

number of the jaw-D;GR leaves nearly to the Col-0 values (S12A–S12D Fig). Intriguingly, over-

expression of HAT1 resulted in a significant decrease in pavement cell area (S12E and S12F

Fig), a phenotype that contrasts TCP4 overexpression. This negative effect of HAT1 on pave-

ment cell size remained unaltered even in the jaw-D;GR background, possibly indicating an

effect of HAT1 independent of TCP4.

Taken together, these genetic interaction studies show that TCP4 induces pavement cell

maturation in part via direct activation of HAT2, and not HAT1. However, HAT1 (along with

HAT2) is likely to be an indirect target of TCP4 as it is an auxin response gene (Fig 7A) [34]

and TCP4 is known to promote auxin level through YUC5 activation (Fig 6A) [27]. Conse-

quently, overexpression of each of these clade-members (HAT1 and HAT2) rescued jaw-D
phenotype (Fig 8E–8I and S12 Fig).

Discussion

Constitutive down-regulation of class II TCP activity resulted in the accumulation of more

cells with smaller average area while increased TCP function reduced cell number without

affecting the average size (Figs 1–3) [22], thus confounding the exact effect of TCP proteins on

cell proliferation and expansion. Frequency distribution of the pavement cell population based

on cell area identified increased proportion of smaller cells in the jaw-D and tcp2;4;10 leaves, a

defect that was rescued by TCP4 induction (Figs 1 and 2). Cell size in an organ primordium

remains small as long as cells proliferate and starts to expand when they differentiate [2], sug-

gesting that TCP4 converts the dividing cells to differentiation. This is further supported by

our growth kinematics analysis that demonstrated that the effect of TCP4 on cell number is

confined within the proliferation phase and TCP4 induction beyond this phase had no effects

on final cell number and leaf area (Fig 3 and S5 Fig) [17], thus discounting any role for TCP4

in regulating differentiation-associated leaf cell expansion. TCP4 activity for the first two days

of leaf initiation, when the primordium measured <300 μm in length, had the same effect on

cell number and leaf size as observed with continuous TCP4 activity throughout the growth

phase (Fig 4). Further, a 24-hour pulse of TCP4 activity in the leaf primordium reduced the

final leaf area as much as the continuous TCP4 activity did (Fig 4). These results suggest that

TCP4 imparts irreversible differentiation competence to the dividing cells of leaf primordium.

The mature miR319 is active at the base of young leaves (Fig 5A–5C) [48], restricting its tar-

get TCP transcripts towards more distal region of the blade [15,47]. Since the promoter activity

of these TCP genes are excluded from the distal differentiated zone (Fig 5A) [62], their tran-

scripts and protein products are restricted to a broad transition zone within a growing leaf

blade that interfaces, and overlaps with, the more distal differentiation zone and the proximal

proliferation zone, where they provide morphogenetic competence to the leaf blade (Fig 8J)

[8,24].

To explain the precise role of class II TCP proteins in leaf cell proliferation/ maturation,

here we propose a model (Fig 8J) that incorporates the expression domain of the miR319/TCP
module and the function of the TCP proteins based on the growth kinematics results. The

transcripts of class II TCP genes are undetectable at the base of the leaf primordia due to the

activity of mature miR319, even though their promoters are active in this zone. Lack of TCP

activity helps the basal cells maintain their mitotic status [4]. Distal to this proliferation zone,

TCP proteins are active in the transition zone where they commit the dividing cells to exit divi-

sion and acquire differentiation competence. As the basal region expands due to cell prolifera-

tion, more dividing cells are incorporated within the transition zone where they encounter
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TCP proteins that commit them to exit cell division cycle. Since TCP activity imparts irrevers-

ible differentiation status to the leaf cells in the transition zone (Figs 3 and 4), the cells in the

distal differentiation zone, though devoid of TCP activity, remain committed to differentiation

and start expanding.

Our model explains the leaf phenotype with reduced or elevated TCP activity. Due to the

absence of TCP proteins from jaw-D leaves (Fig 5D), increased proportion of cells within the

transition zone remain mitotic and therefore smaller in size (Fig 2D) since fewer cells exit the

division cycle (Fig 2E). This yields a lower cell area when averaged over the entire lamina (Fig

2C). Higher proportion of mitotic cells in the jaw-D leaves ultimately results in increased cell

number at maturity (Fig 2B). When TCP4 activity was induced in the transition zone of the

jaw-D;ProTCP4:mTCP4:GR leaves, the proportion of cells exiting proliferation was restored to

the wild-type level (Fig 2D and 2E), resulting in the correction of the defects in cell size and

number. However, since jaw-D;ProTCP4:mTCP4:GR leaves express a dominant form of TCP4

that cannot be degraded by miR319 [15], the ectopic TCP4 activity at the base prematurely

converts the proliferating cells to differentiated fate, thereby reducing the final cell number

and leaf size at maturity (Fig 2).

Young leaf primordia with or without TCP4 induction contained nearly similar number of

pavement cells (Fig 2B), but the TCP4-induced leaves had higher fraction of cells with

increased ploidy compared to the un-induced leaves (Fig 4K). Increased nuclear ploidy result-

ing from endoreplication cycle is used as a differentiation marker since it commits the cells at

G2 phase to bypass mitosis and directly enter into the S-phase [46]. The cyclin-dependent

kinase inhibitors KRP1 and KRP2 inhibit entry to mitosis and promote the onset of endorepli-

cation in leaves [63,64]. Further, KRP1 is directly activated by TCP4 during leaf development

[22], suggesting that KRP-induced endoreplication forms an important component of TCP-

mediated onset of cell differentiation within the transition zone.

Suppression of the GRFs that redundantly promote cell proliferation in the leaf primordia

is yet another likely mechanism of TCP-mediated restriction of cell number in leaves

[12,65,66]. This possibility is further supported by a recent observation that the promoter of

miR396, a microRNA that degrades the transcripts of several GRF genes, is activated by TCP4

[22]. However, the effects of the miR319-TCP module on cell proliferation and differentiation

are distinct from those of the miR396-GRF module in several aspects. First, TCP activation

restricts the pavement cell number without a noticeable increase in size, whereas lack of GRF
products results in a reduction in pavement cell number with a concomitant increase in cell

size. Second, lack of TCP activity increases the cell number as well as decreases its average size,

whereas overexpression of GRF proteins increase cell number without affecting the size.

Third, while the class II TCP proteins are expressed only within the transition zone, the activity

of miR396 promoter in the leaf primordia is initiated in the distal expansion zone and that of

its target proteins is detected in the entire leaf base including the proliferation zone [12,22,66].

These differences point to a GRF-independent function of TCP proteins in promoting cell dif-

ferentiation. Nevertheless, a yet unidentified link between the activities of TCP and GRF pro-

teins within the transition zone cannot be ruled out.

The GRF-independent TCP function is likely mediated by multiple parallel pathways that

possibly converge to the commitment of proliferating cells to differentiation within the transi-

tion zone. One arm of this function is via auxin response originating from TCP-mediated

YUCCA activation [27,56]. An auxin minimum has been shown to promote a cellular switch

from division to differentiation in root transition zone [50], whereas auxin response appears

to be required for TCP-mediated differentiation commitment (Figs 6 and 8J). Auxin response

activates the transcription of HAT2, a gene that restricts cell number and leaf size in Arabidop-

sis [33,34,37,38]. Consistent with this, hat1;hat2 leaves contain excess cells with reduced size
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(Fig 8B and 8D). Interestingly, the class II TCP proteins also promote division to differentia-

tion switch in leaf pavement cells independent of auxin by directly activating HAT2 transcrip-

tion (Fig 7). These parallel pathways possibly ensure a robust HAT activation by TCP proteins.

The downstream events of HAT activation triggering cell differentiation are currently unclear.

The possibility of the HAT transcription factors directly promoting the KRP cell cycle inhibi-

tors to initiate endoreduplication, as shown for TCP4 [22], needs to be tested.

Materials and methods

Plant materials and growth conditions

Col-0 was used as the wild type control in all experiments. The mutant lines tcp2;4;10, jaw-D,

shy2-2 and hat1;2 were reported previously [9,15,33,55]. The Col-0;Pro35S:mTCP4:GR #2 line

was screened and established in the T2 generation. The cloning methodology and primers

information was previously reported [27]. The homozygous transgenic lines Col-0;ProTCP4:

mTCP4:GR, jaw-D;ProTCP4:mTCP4:GR, Col-0;Pro35S:mTCP4:GR, Col-0;Pro35S:TCP4:GR,

ProYUC5:GUS, ProDR5:GUS, ProCyclinD3;2:GUS, PromiR319c:GUS, ProSAUR63:GUS,

Pro35S:JAB:GFP, Pro35S:HAT2, Pro35S:TCP4:3F6H, ProBLS:rTCP4:GFP and ProTCP4:TCP4:

VP16 used in this study are all established lines reported previously [17,23,27,37,39,43,48,59,

67,68]. The F1 genetic crosses of jaw-D;ProTCP4:mTCP4:GR X ProYUC5:GUS, Col-0 X

ProTCP4:GUS, jaw-D;ProTCP4:mTCP4:GR X ProTCP4:GUS, Col-0 X ProTCP4:TCP4:GUS,

jaw-D;ProTCP4:mTCP4:GR X ProTCP4:TCP4:GUS, jaw-D;ProTCP4:mTCP4:GR X ProDR5:

GUS, jaw-D;ProTCP4:mTCP4:GR X ProSAUR63:GUS, Col-0 X Pro35S:HAT2 and jaw-D;
ProTCP4:mTCP4:GR X Pro35S:HAT2 were used in this study. Col-0;ProTCP4:mTCP4:GR line

was established in the hat1;2 background by genetic cross in F4 generation. The homozygous

jaw-D;ProTCP4:mTCP4:GR;Pro35S:JAB:GFP line was established by genetic cross in F3 gener-

ation. All experiments were performed under long day conditions (16 hours light/8 hours dark

at 22˚C). 12 μM DEX was used for TCP4 induction in all the experiments unless specified

otherwise.

Plasmid constructs and transgenic lines

The 2.16 kb upstream region of TCP4 including 5’ untranslated region was amplified using the

forward primer 5’-AATTGACCCTTTTCTATCATGC-3’ and the reverse primer 5’-TGGTAG

AGCATATTCGTCGAGA-3’, pfu DNA polymerase and Col-0 genomic DNA and cloned into

pGEMT-Easy vector by TA cloning (Promega; pGEMT-Easy-ProTCP4) [27] and then moved

into pCAMBIA 1304 using NcoI and SacI digestion to generate ProTCP4:GUS construct.

The TCP4 cDNA fragment of pBSKS-TCP4:GR [27] was digested with the SalI and BamHI

and moved into pCAMBIA-1391Xa to generate TCP4:GUS cassette. The NotI released 2.16 kb

ProTCP4 fragment of pGEMT-Easy-ProTCP4, described above, was end filled with Klenow

DNA polymerase and cloned upstream of the TCP4:GUS cassette by blunt end ligation to gen-

erate ProTCP4:TCP4:GUS construct. The transgenic lines were generated in Col-0 background

by Agrobacterium tumefaciens-mediated floral dip method [69].

Measurement of leaf size, epidermal cell size and cell number

For the measurement of leaf size the crinkled leaves were flattened and photographed using a

Canon PowerShot S110 camera. Leaf area measurement was made in the photographs using

Image J software (rsbweb.nih.gov/ij/). The first leaf from 29-day old plants were cleared with

70% alcohol and processed in choral hydrate:water:glycerol (8:2:1) solution and lactic acid for

one to three weeks. In another method, leaves were collected in 70% ethanol followed by
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shifting them to ethanol:glacial acetic acid (7:1) and kept overnight (12–14 h) at room temper-

ature. After clearing, the leaf tissues were treated with 1 M KOH for maximum 30 min in con-

stant rotating followed by two times washing with double-distilled water. Image of abaxial

epidermal cells were taken using differential interference contrast microscope (Olympus,

USA) and analyzed with Image J software. For cell size analysis, 400–750 cells area was mea-

sured from different fields of 4–7 leaves and averaged to obtain the final cell size. The total

number of cells per leaf was calculated by using the average cell size and leaf area.

Kinematic analysis

The kinematic analysis of Col-0 and mock and DEX-grown jaw-D;GR leaf development was

performed as described earlier [5,9,41,70]. Initially seedlings were grown on Murashige Skoog

(MS) medium up to 10 days and then the plants were transplanted to soil. For DEX induction,

the MS medium was supplemented with 12 μM DEX or ethanol control. For continuous DEX

induction, seedlings were transplanted to DEX (12 μM)- or ethanol (0.04%)-treated soil and

sprayed with DEX or ethanol on alternate days until experiment was completed. One of the

first leaf pair from at least 9–12 plants was used for each time point of kinematic study. The

leaf area, cell number and cell size were analyzed as described above. The stomatal index was

analyzed as described earlier [5,41].

Gene expression and GUS reporter analyses

Total RNA samples were isolated by Trizol (Sigma, USA) method after treatment with ethanol

solvent (Mock) or 12 μM dexamethasone. To check the relative expression of respective genes,

quantitative RT-PCR was performed using SYBER Green qPCR kit (SensiFAST SYBR Lo-

ROX Kit, Bioline, USA) according to the manufacturer’s instructions. Results were analyzed

using ABI Prism 7900HT SDS software (Applied Biosystems, USA) and ΔΔCT values were

determined after normalization with internal control. Intensity ratios were calculated using

the formula 2-ΔΔCT. Detailed experimental protocols for dexamethasone induction and primer

sequences for RT-qPCR were described earlier [27,70]. GUS assay, EMSA and FAIRE experi-

ments were performed according to the earlier protocols [9,27]. The list of primers used in this

study is provided in S2 Table.

Flow cytometry

1st pair of leaves from 8-day old seedlings of indicated genotypes were collected after removing

hypocotyl and cotyledons. Ploidy levels were measured using the protocol provided earlier

[71,72]. In brief, leaves were placed in ice-cold Galbraith’s buffer (45 mM MgCl2, 30 mM

sodium citrate, 20 mM 4-morpholinepropane sulfonate, and 1% Triton X-100, pH 7.0) and

finely chopped using sharp razor blade followed by homogenizing in the buffer. The homoge-

nate was filtered through Miracloth (22–25 μm) and treated with 10 μl/ml RNaseA (1mg/ml

stock) for 20–30 min followed by nuclear DNA staining with 50 μl/ml of propidium iodide

(1 mg/ml stock) and kept in dark at 4˚C for 30 min. Samples were run through BD FACS verse

(USA) flow cytometer and analyzed using BD FACS unit software. It was considered that the

left-most peak corresponds to 2C [71,72]

Chromatin immunoprecipitation (ChIP) assay

ChIP protocol was followed as mentioned earlier [39]. In brief, approximately 1.5–2 gm of

fresh 10-day old Pro35S:TCP4:3F6H seedlings were harvested and crushed into fine powder in

liquid nitrogen. The powder was homogenized in the nuclei extraction buffer 1 (0.4 M sucrose,
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10 mM Tris-HCl pH 8.0, 10 mM MgCl2, 5 mM β-mercaptoethanol, 0.1 mM PMSF, 1 mM

Na3VO4, 1 mM NaF, and Complete protease inhibitor cocktail tablets [Roche]) and proceeded

for cross-linking. 37% formaldehyde was used for crosslinking by gentle rotating in 4˚C for 10

min and 2 M glycine was added to stop the reaction. After quenching the cross-linked samples

were filtered through two layers of Miracloth and centrifuged for 10 min at 10 k rpm at 4˚C.

The pellets containing the nuclei were resuspended and washed twice with extraction buffer 2

(0.25 M sucrose, 10 mM Tris-HCl pH 8.0, 10 mM MgCl2, 1% (w/v) Triton X-100, 5 mM β-

mercaptoethanol, 0.1 mM PMSF, 1 mM Na3VO4, 1 mM NaF, and Complete protease inhibitor

cocktail tablets) and transferred to ice-cold 1.5mL Eppendorf tubes followed by centrifugation

at maximum rotor speed for 10 min at 4˚C to isolate the nuclei. The isolated nuclei were lysed

using Nuclei lysis buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS, 1 mM PMSF, and

Complete protease inhibitor cocktail tablets) and proceeded for sonication to shear the chro-

matin (~ 500 bp to 1 kb size fragments) using Bioruptor (Condition; 30 sec ON 45 sec OFF, 45

cycles). The sheared chromatin were diluted in ChIP dilution buffer (16.7 mM Tris-HCl pH

8.0, 167 mM NaCl, 1.1% Triton X-100, 1.2 mM EDTA, 0.1 mM PMSF, 1 mM Na3VO4, 1 mM

NaF, and Complete protease inhibitor cocktail tablets) to make the volume up to 1.5 mL and

centrifuged at maximum speed for 5 min at 4˚C. From the collected chromatin solution, 30 μL

(2%) was kept as input for the assay and rest of the solution was divided into two parts from

which one was immunoprecipited using anti-FLAG antibody (Sigma; F1804; 1 mg/mL) and

the other using Anti-IgG antibody (Sigma; A9044). Magnetic Dynabeads Protein G (Life tech-

nologies) were used for Immunoprecipitation for which first the beads were pretreated with

the anti-FLAG antibody (Sigma; F1804; 1 mg/mL) or anti-IgG antibody for 20 min by rotating

at room temperature and diluted in ChIP dilution buffer after washing twice with 1X PBST.

The antibody-bound beads were incubated with chromatin solution (26 μL Dynabeads and

3 μL antibody per 600 μL of chromatin solution) for 20 min in ice followed by 2 h rotating at

4˚C. After immunoprecipitation, the immunocomplex was washed using low salt buffer (20

mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA) and high salt

buffer (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA)

and TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA). To elute the immunocomplex from

the beads, 50 μL of nuclei lysis buffer was added and incubated for 20 min at 65˚C and the elu-

tion was repeated twice. Eluted immunocomplex along with the input samples were reverse

cross-linked by adding 6 μL of 5 M NaCl and incubating at 65˚C overnight. Proteinase K and

RNase A was treated to digest all proteins and RNA, respectively, and finally DNA were

cleaned up by phenol:chloroform:isoamyl alcohol (15:24:1) followed by precipitation using

sodium acetate and 100% ethanol. The final extracted DNA was dissolved in 50 μL of nucle-

ase-free water and proceeded for qPCR using 0.8 μL DNA as template per reaction.

To quantify the relative enrichment on the respective gene element, qPCR was performed

using 0.8 μL of immunoprecipited DNA and SYBER Green qPCR kit (SensiFAST SYBR Lo-

ROX Kit, Bioline, USA) in a 10 μL reaction volume according to manufacturer’s protocol. Rel-

ative enrichment was calculated using the formula 0.02 X 2(Ct input- Ct IP) X 100 and normalized

to IgG control. The final fold enrichment was plotted in relative to Col-0 value.

Supporting information

S1 Fig. Effects of various gain-of-function forms of TCP4 on leaf area, cell number and cell

size. (A) Mature first leaves from 29-day old Pro35S:mTCP4:GR #2 plants grown in the

absence (Mock) or presence (DEX) of 12 μM dexamethasone. (B) Level of TCP4 transcript

(relative to PP2A) in 9-day old seedlings of indicated genotypes analyzed by RT-qPCR. Aver-

ages of three biological replicates are shown. (C) to (E) Averages of leaf area (C), cell number
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(D) and abaxial pavement cell size (E) of leaves shown in (A). Sample number, 20. (F) to (K)

Mature first leaves (F) collected from 29-day old plants, their area (G), total cell number (H),

relative cell number reduction to Col-0 (I), abaxial pavement cell size (J) and relative cell area

to Col-0 (K). Sample number, 8 to 12 leaves. Error bars indicate SD. � indicates p<0.05.

Unpaired Student’s t-test was used. For (E) and (J), 120–140 cells per leaf were measured and

averages of 3–4 leaves are shown. Scale bars in (A, F), 2.5 mm.

(TIF)

S2 Fig. MiR319-targeted TCP genes are essential and sufficient for cell differentiation. (A)

Outline of epidermal cells on the abaxial surface of mature first leaf. (B) Area of pavement cells

in mature first leaves from DEX-treated Col-0;ProTCP4:mTCP4:GR and jaw-D;ProTCP4:

mTCP4:GR plants relative to the mock-treated values. (C) Frequency distribution of abaxial

pavement cell size in the first leaf shown in (A). Total 120–150 cells per leaf were measured

and averages from 5 leaves are shown. (D) Frequency distribution of pavement cell size on the

abaxial surface of mature first leaf from Col-0;ProTCP4:mTCP4:GR plants grown in the

absence (Mock) or presence (DEX) of dexamethasone. Error bars indicate SD. � indicates

p< 0.05. Unpaired Student’s t-test was performed. Scale bars, 100 μm (A).

(TIF)

S3 Fig. Kinematic growth analysis of leaves with altered TCP4 activity. (A) Average width

of the first leaf pair of Col-0 and jaw-D;ProTCP4:mTCP4:GR plants grown in the absence

(Mock) or presence (DEX) of 12 μM dexamethasone. (B) Schematic of a leaf (left) to highlight

the region on the abaxial surface (yellow square) used for cell size analysis and morphology of

epidermal cells on the abaxial surface of the first leaf pair of Col-0 in the corresponding regions

at two different growth stages (right). (C) to (E) Proportion of smaller (<1500 μm2) and large

(>1500 μm2) cells on the abaxial surface of first leaf at different days after stratification in Col-

0 (C) plants and jaw-D;ProTCP4:mTCP4:GR (jaw-D;GR) plants grown in the absence (Mock,

D) or presence (DEX, E) of dexamethasone. N, 10–13 leaves. For each time point, total 30–40

cells per leaf at specified region shown in (B) were measured and averages from 5–7 leaves

shown. Error bars indicate SD.

(TIF)

S4 Fig. Schematic representation of the treatment regime of dexamethasone. (A) and (B)

TCP4 function was induced in the jaw-D;ProTCP4:mTCP4:GR plants by shifting the seedlings

from Mock!DEX (A) or DEX!Mock (B) at indicated days after stratification (DAS). All the

leaf parameters shown in Fig 3 and Fig 4 were analyzed in the mature first leaves at 29 DAS.

(TIF)

S5 Fig. Kinematic growth analysis of leaves expressing miR319-resistant/ susceptible

TCP4. (A) and (B) Average area (A) of the first leaf from jaw-D;ProTCP4:mTCP4:GR seedlings

grown in the absence of dexamethasone and then shifted to dexamethasone-containing

medium at 8 or 10 days after stratification (DAS) and size of their pavement cells on the abaxial

surface (B). N, 12–15 leaves. For each time point, total 30–40 cells per leaf at specified region

(S2B Fig) were measured and averages from 5–7 leaves shown. The corresponding values for

plants grown in continuous Mock medium (broken lines) are reproduced from Fig 2 for com-

parison. (C) to (F) Images of mature first leaves (C) and their average size (D) to (F) of Col-0;

ProTCP4:mTCP4:GR (Col-0;GR), Col-0;Pro35S:mTCP4:GR (35S;GR) and Col-0;Pro35S:TCP4:

GR (35S;sGR) plants treated with 12 μM dexamethasone for 48 hours at indicated days after

stratification (DAS). Plants grown in continuous absence (M, Mock) or presence (D, DEX) of

dexamethasone are shown as controls. Dotted lines indicate the values corresponding to
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Mock. N, 10–15 leaves. Error bars indicate SD.

(TIF)

S6 Fig. Schematic representation of 24-hour dexamethasone pulse. Pulse of dexamethasone

treatment was performed in the jaw-D;ProTCP4:mTCP4:GR plants by shifting the seedlings

from Mock!DEX for 24 hours at indicated days after stratification (DAS) and then again to

Mock condition. Mature first leaf size was analyzed at 29 DAS.

(TIF)

S7 Fig. Commitment to differentiation in leaf pavement cells by TCP4. (A) Mature first

leaves of 29-day old Pro35S:mTCP4:GR #2 plants grown either in the total absence of dexa-

methasone (Mock) or in the presence of 12 μM dexamethasone (DEX) for the indicated num-

ber of days and then shifted to Mock till 29 DAS. (B) Average area (N = 10–15) of leaves

shown in (A). The dotted line is drawn through the Mock value parallel to the X-axis.

(TIF)

S8 Fig. Ectopic miR319 abolishes TCP4 from the transition zone. GUS reporter analysis of

the first leaf pair in 4-day old seedlings grown in the absence of dexamethasone. All genotypes

were analyzed in the F1 generation. Numbers indicate leaf length in mm.

(TIF)

S9 Fig. Differential expression of 29 SAUR transcripts and 3 HD-ZIP II transcripts upon

2 h and 4 h of TCP4 induction in the jaw-D;ProTCP4:mTCP4:GR seedling as found in a

previously reported microarray dataset [27].

(TIF)

S10 Fig. HAT2 FAIRE results and HAT1 locus. (A) Quantitative PCR analysis of the HAT2
upstream regulatory regions (R1-R3 shown in Fig 7I) by FAIRE experiment on chromatin

DNA isolated from 10-day old Pro35S:mTCP4:GR seedlings before (Mock) or after (DEX)

12 μM dexamethasone treatment for 4 h. YUC5 was used as a positive control [27] and R3

serves as an internal negative control. All values were normalized to TA3. Averages of biologi-

cal triplicates are shown. Error bars indicate SD. ns, not significant, � indicates p<0.05,

unpaired Student’s t-test was used. (B) A schematic representation of HAT1 genomic struc-

ture. Exons are shown in gray boxes and the translation start site is shown by an arrow. Two

putative TCP4 DNA-binding motifs (TGGCCC) are indicated. The four regions used for the

ChIP-qPCR amplification (in C) are shown as R1-R4. (C) ChIP-qPCR analysis of HAT1 locus

(R1-R4 in B) with anti-FLAG antibody. LOX2 and TUB2 were used as positive and negative

controls, respectively (shown in Fig 7K, since this experiment was performed together with the

HAT2 ChIP experiment). Averages of biological triplicates of qPCR analysis are shown.

(TIF)

S11 Fig. Expression analysis of TCP4, HAT1 and HAT2 at various developmental stages.

(A) and (B) Levels of TCP4, HAT1 and HAT2 transcripts at various developmental stages as

analyzed by Genevestigator tool (https://genevestigator.com/gv/doc/intro_plant.jsp) (A) and

estimated by RT-qPCR (B). For (B), RNA samples were isolated from seedlings (2, 4 and 6

DAS) and from first pair of leaves (8, 10 and 14 DAS). PP2A was used as an internal control.

Error bars indicate SD.

(TIF)

S12 Fig. Partial rescue of jaw-D phenotype by HAT1 overexpression. (A) to (F) 30-day old

first leaves (A), their average area (B), total pavement cell number (C), cell number relative to

Col-0 (D), outline of abaxial pavement cells (E) and their average area (F). N, 8–12 leaves. jaw-
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D;GR and JAB:GFP indicate jaw-D;ProTCP4:mTCP4:GR and Pro35S:JAB:GFP, respectively.

For (F) total 125–150 cells per leaf were measured and averages from 3–7 leaves shown. Error

bars indicate SD. � indicates p<0.05. Unpaired Student’s t-test was used.

(TIF)

S1 Table. Kinematic data shown in Fig 2C.

(XLSX)

S2 Table. List of primers used in this study.

(XLSX)
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