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Abstract: The main aim of this study is determination of the basic probabilistic characteristics of the
effective stiffness for inelastic particulate composites with spherical reinforcement and an uncertain
Gaussian volume fraction of the interphase defects. This is determined using a homogenization
method with a cubic single-particle representative volume element (RVE) of such a composite and
the finite element method solution. A reinforcing particle is spherical, located centrally in the RVE,
surrounded by the thin interphase of constant thickness, and remains in an elastic reversible regime
opposite to the matrix, which is hyper-elastic. The interphase defects are represented as semi-
spherical voids, which are placed on the outer surface of this particle. The interphase is modeled
as hyper-elastic and isotropic, whose effective stiffness is calculated by the spatial averaging of
hyper-elastic parameters of the matrix and of the defects. A constitutive relation of the matrix is
recovered experimentally by its uniaxial stretch. The 3D homogenization problem solution is based
upon a numerical determination of strain energy density in the given RVE under specific uniaxial
and biaxial stretches as well as under shear deformations. The analytical relation of the effective
composite stiffness to the input uncertain parameter is recovered via the response function method,
using a polynomial basis and an optimized order. Probabilistic calculations are completed using
three concurrent approaches, namely the iterative stochastic finite element method (SFEM), Monte
Carlo simulation and by the semi-analytical method. Previous papers consider the composite fully
elastic, which limits the applicability of the resulting effective stiffness tensor computed therein. The
current study voids this assumption and defines the composite as fully hyper-elastic, thus extending
applicability of this tensor to strains up to 0.25. The most important research finding is that (1) the
effective stiffness tensor is sensitive to random interface defects in its hyper-elastic range, (2) its
resulting randomness is not close to Gaussian, (3) the semi-analytical method is not perfectly suited to
stochastic calculations in this region of strains, as opposed to the linear elastic region, and (4) that the
increase in random dispersion of defects volume fraction has a much higher effect on the stochastic
characteristics of this stiffness tensor than fluctuation of the strain.

Keywords: particulate composites; hyper-elasticity; stochastic perturbation technique; probabilistic;
homogenization method; stiffness tensor

1. Introduction

Multiscale computational methods and simulations have attracted scientists and
engineers for many years, which has been documented by the comprehensive review
presented in [1]. As is expected, such multiscale approaches are frequently connected
with averaging and also with the homogenization method [2,3], where these two last
techniques serve for remarkable reduction of computational complexity and material
heterogeneity on a micro- or nano-scale. As it is known, some specific model reduction
techniques [4] have also been concurrently resolved to minimize computer effort and
preserve numerical accuracy.
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Such multiscale homogenization methods have been worked out in solid mechanics
to predict the elastic effective properties of fiber-reinforced composites [5], metal–ceramic
composites with lamellar morphology [6] and polymeric agglomerated nanocomposites [7].
They have also used isogeometric FEM analysis to simulate thermomechanical contact
at the composite interfaces [8]. The homogenization method in the context of multiscale
modelling is employed in fluid mechanics, to model transport phenomena in some human
tissues [9], for thermal transport simulation in polymer nanocomposites [10], to model elec-
tromagnetic and elastic couplings in CFRP composites [11], and finally to simultaneously
carry out molecular simulations and multiscale homogenization in seepage and diffusion
problems [12].

Nevertheless, the problem of stochastic micro or nanostructure and the realistic impact
of the random spaces on the overall characteristics of the composite material (or system) is
rather infrequent, and this is why it shall be discussed in this paper.

The linear mechanical behavior of single phase isotropic and anisotropic materials is
well understood and has been proved by a firm theoretical background. This is also true
for composites with non-complex internal composition and geometry, for which analytical
solutions apply, and when geometry of the microstructure represents a certain pattern
and symmetries. This allows them to be included in certain class of behaviors, e.g., cubic
or orthotropic, etc. When such symmetries are not recognizable straight away, various
homogenization approaches are used that usually require multi-scale considerations; some
modern ones include the FE2 scheme [13] or neural networks [14]. In such cases, the
representative volume element is selected to perfectly reflect the complex material mi-
crostructure and, thanks to the application of the homogenization method, to determine its
effective properties whilst using a relatively small computational effort. Theoretical and
numerical error bounds for macroscopic material characteristics can be estimated even
before the final homogenization [15], but they may be very wide, especially for a larger
contrast of the constituents’ properties. Composites after homogenization are assumed to
be elastic and isotropic solids, but such an approach is perfect for small strain engineering
applications and returns remarkable modelling errors in the case of incremental or dynamic
loading and for the irregular microstructures. This has been illustrated in [16], where the
influence of microstructure on the deformation process of particulate composites has been
studied. This influence results from the fact that mechanical properties of composites in
their original configuration before homogenization have a certain degree of anisotropy,
which could be quantified by various measures, such as the Zener coefficient [17], universal
anisotropy index [18] or tensor anisotropy index [19]. Anisotropy comes directly from the
accidental microstructure and is present in all the composite stiffness tensor components
calculated with the use of a series of specific boundary conditions. The initial assumption
that this anisotropy will vanish together with an increase in the RVE may not be fully justi-
fied, even for particulate composites, and clearly depends on the manufacturing process as
well as the loading conditions during the exploitation of a certain composite. This is why a
convenient generation of composite microstructure is of paramount importance and needs
the application of various mesh generation algorithms [20]. This is also a reason for the
common usage of random geometry [21], where multiple realizations with a large set of
arbitrary internal structures are used to determine a representative strength, stiffness or
other, not only mechanical, properties [22,23]. Such studies, where randomness serves for a
specific intermediate step, are only able to return some mean material properties or, at least,
upper and lower bounds of these properties. When more information is required, the only
possibility is a stochastic or probabilistic approach, which allows for the determination of
further characteristics, such as the expected values, statistical dispersion or even the full
probability densities of these macroscopic properties; some examples are demonstrated
in [24,25]. A major problem in such considerations is a proper determination of the nature
and properties of the input probability densities. This is because they require a very high
number of repeated tests for identification of each random parameter; it is especially diffi-
cult for multi-scale analyses, where each scale has its own inputs. Sensitivity coefficients
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aid in solving this problem, because they determine the impact of all parameters on the
macroscopic properties prior to the main analysis; only a few of the most influential input
variables are sorted out to the final stochastic phase of computations. When statistical data
are scarce, the most frequent choice of the probability density function (PDF) is the Gaus-
sian one. Some studies based on other non-Gaussian inputs are also available, as in [26]
for example. They generally require a more complex stochastic finite element method
implementation and correspond to a situation, when statistical dispersion is not precisely
known, but is bound to some specific interval only.

Mechanical behavior in the non-linear regime of materials is already complex in the
isotropic case, where multiple constitutive laws may be utilized for the same material.
This is true for the hyper-elastic regime for instance, where these laws are usually defined
assuming material isotropy, so that the potential application area is strictly limited. There
also exists some hyper-elastic theories accounting for the anisotropy of material microstruc-
tures [27], however they are aimed at the representation of cartilage, arterial, brain or
other biological tissues. Homogenization based studies in this specific nonlinear regime
usually concentrate on a certain hyper-elasticity potential, for example the Ogden [28],
Neo-Hookean [29] or van der Waals model [30]; some of them also compare the results
of several potentials, as in [31]. Computation of random macroscopic properties in this
regime becomes much more challenging than in the reversible elastic case, not only because
of the lack of generality of the various laws but also from the computational view.

Independently from the composites’ response under the given loads, one of the
most important aspects of both deterministic and stochastic numerical modelling is the
connection of their constituents. A perfect bonding is not achieved in many cases because
of the chemical, thermal, electrical or mechanical properties’ incompatibilities and also
due to manufacturing processes. In such cases, an interphase is inserted in-between the
original constituents of the composite [32], which follows some engineering procedures
to increase the connectivity in-between the matrices and their reinforcements. Such an
interphase may significantly influence various properties of the entire composite [33], even
when it occupies a relatively small volume (or a small thickness) and this is especially true
when the interphase area to its volume ratio is relatively high. Interestingly, this interphase
may either increase the macroscopic stiffness, as for a bound rubber [34], or decrease it in
the presence of interface defects and some other geometrical or material imperfections.

The interface defects are considered in this work and the influence of uncertainty in
their volume fraction in the given interphase on effective mechanical properties of some
particulate composite is numerically studied using the generalized stochastic perturbation-
based computational analysis. We verify the impact of this input uncertainty and, indepen-
dently, of the strain level on the effective probabilistic stiffness tensor components, when
particles are linear-elastic and the matrix is hyper-elastic. The iterative stochastic finite
element method based on higher order Taylor expansions and polynomial bases is used
to determine the first four probabilistic characteristics of the effective tensor components.
Computational implementation has been completed using a hybrid application of the finite
element method system Abaqus Standard and computer algebra system Maple 2017.

2. Theoretical Background

Let us consider a periodic particulate composite Ω, whose particles are spherical
and surrounded with an interphase Ω = ΩR+ΩI+ΩM. The particles remain in an elastic
isotropic reversible regime, while the matrix and the interphase are hyper-elastic and
isotropic. The interphase is a constituent of the composite, whose properties are different
(weaker) than those of the neighboring faces. The weakening effect is caused by the
interface defects, specifically air voids located on the particle–matrix boundary. Each
void is semi-spherical, is localized with its diameter on the particle surface and is directed
outwards from the particle center. An interface defect is statistically scattered according to the
Gaussian distribution radius R(i,j) and this radius is uniquely defined by its first two moments

E
[
R(i,j)

]
and Var

[
R(i,j)

]
at the given particle–matrix interface. The interface around any
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particle of this composite has a thickness of ∆j= E
[
R(i,j)

]
+3
√

Var
[
R(i,j)

]
, j = 1 . . . r [19,35].

The volume fraction of the interface defects w is calculated as a ratio of the volume of the
interface defects and the volume of the interphase as VD/VI. The volume of defects is
calculated as Vd= n·2/3ΠR(i,j)

3, where n is the number of defects at the particle–matrix
interface. All the phases of this composite are isotropic and its possible anisotropy may
result from the accidental location of the particles into the larger composite volume only.
Let us further assume that the reinforcing particle is significantly stiffer than the matrix, and
a spatial distribution of the particles is periodic, while their volume is small in comparison
to the entire composite specimen; this composite RVE is shown schematically in Figure 1a.
The particles are so stiff that their deformation is relatively small, and we finally assume
that these particles do not directly interact with each other, so that the initial symmetries in
the internal microstructure hold true during the entire cyclic deformation process.
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Next, the effective composite stiffness Ceff
ij is introduced and with the aforementioned

assumptions we consider only three components Ceff
11 , Ceff
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other. All of them naturally depend upon the strain level applied on the RVE

Ceff
kl
(
εij
)


Ceff
11
(
εij
)

Ceff
12
(
εij
)

Ceff
12
(
εij
)

0 0 0
Ceff

11
(
εij
)

Ceff
12
(
εij
)

0 0 0
Ceff

11
(
εij
)

0 0 0
Ceff

44
(
εij
)

0 0
sym. Ceff

44
(
εij
)

0
Ceff

44
(
εij
)


(1)

Energy contributions to this effective stiffness come from the hyper-elastic matrix and
the interphase as well as from the elastic particles∫

Ω
C(eff)
αβχδε

′
αβε

′
χδdΩ =

∫
Ω

C(R)
αβχδε

′
αβε

′
χδ +

∫
Ω

C(M)
αβχδε

′
αβε

′
χδ +

∫
Ω

C(I)
αβχδε

′
αβε

′
χδ dΩ (2)

The interphase and the matrix work according to the Arruda–Boyce hyper-elastic
potential [36]. This potential could be read as

UAB= C1

((
1
2

I1 − 3
)
+

1
20λ2

A
+

1
1050λ4

A

(
I3
1 − 27

)
+

19
7000λ6

A

(
I4
1 − 81

)
+

519
673750λ8

A

(
I5
1 − 243

))
(3)
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where the two unknown parameters of the matrix C1 and λA are determined on the basis of
the laboratory tests obtained for the high-density polyurethane (HDPU) Laripur LPR5020
reinforced with the carbon black (fullerenes C60). It was selected as the closest approxi-
mation of the matrix response coming from laboratory tests in this specific case study. A
constitutive relation of the interphase σI,ij

(
εij
)

is considered as hyper-elastic according to
the Arruda–Boyce theory. It is calculated from the rule of mixture, where the weakening
of the entire stress–strain curve of the interphase in respect to the one of the matrices is
inversely proportional to the volume fraction of defects σI,ij

(
εij
)
= σM,ij

(
εij
)
·(1−w). It is

adopted because the defects do not contribute to the stiffness of the interphase so that
σD,ij

(
εij
)
= 0. Details of this interface model and its stochastic aspects can be found in [37].

Elastic properties of the particles include the Young modulus of ER= 10 GPa and Poisson
ratio of υR = 0.3.

The representative volume element (RVE) of the composite used in the finite element
method (FEM) computations has a single centrally located particle, which is surrounded
by an interphase of constant thickness, and they are both inserted into the matrix; this
composition is shown in Figure 1b. The carbon black particles (fullerenes C60) occupy 5% of
the RVE, 5% of the interphase, and the last 90% of this composite is filled with a matrix. The
mesh of this composite (Figure 1a) is made of about 50,000 20-noded brick finite elements
with a second-order stress approximation; FEM computations are completed according to
the implicit scheme using the full Newton technique including large strains.

A source of randomness in this work is the statistical dispersion of the volume fraction
of interface defects w. Such a parameter is selected because the interface defects are
extremely difficult to be directly measured and discretized, so that both their radius and
total number at the particle–matrix interface vary for different particles and their interfaces.
These two parameters both contribute to a dispersion of w, which is considered here as
Gaussian parameter, having the following probability distribution function (PDF):

p(w) =
1

σ(w)
√

2π
exp

(
− (w− E(w))2

2σ2(w)

)
; w ∈ R (4)

where E(w) is the expected value of the volume fraction of the interface defects and
σ(w) is the standard deviation of this parameter. All further probabilistic calculations are
conducted in the framework of the iterative stochastic finite element method (ISFEM) based
on the generalized iterative stochastic perturbation technique [38]. In this method, the
random input variable of Ceff

ij is replaced by a Taylor series of nth order in the following way

Ceff
ij
(
w, εij

)
= Ceff,0

ij

(
w0, εij

)
+ε

∂Ceff
ij
(
w, εij

)
∂w

∣∣∣∣∣
w=w0

∆w + . . .+
εn

n!

∂nCeff
ij
(
w, εij

)
∂wn

∣∣∣∣∣
w=w0

∆wn (5)

ε in this equation is the so-called perturbation parameter, Ceff,0
ij
(
w0, εij

)
constitutes the

expected value of the input uncertain parameter, and the nth order variation is following
εn∆wn. The expected value of the uncertain parameter is calculated iteratively in the
following manner:

E
(

Ceff
ij

)
= Ceff,0

ij

(
w0, εij

)
+
ε2

2!

∂2Ceff
ij
(
w, εij

)
∂w2 µ2

(
w, εij

)
+ . . .+

εn

n!

∂nCeff
ij
(
w, εij

)
∂w2 µn

(
w, εij

)
(6)

while the central moment for the Gaussian PDF µp is computed as

µp
(
w, εij

)
=

{
0; p = 2k + 1(

σ
(
w, εij

)p
(p− 1)!!; p = 2k

) (7)

where p stands for the order of the given central probabilistic moment. The closed form
formulas for higher order probabilistic characteristics in the presence of input Gaussian
uncertainty are available in [38].
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Computations of the effective properties of the composite are made in the following
order: firstly, a set of computations is completed in the FEM system Abaqus according to
the boundary conditions shown schematically in Figure 2, together with the isosurfaces of
the principal strain. They include prescribed uniaxial tensions, biaxial tensions and uniaxial
shears that are applied on the RVE of the composite. The prescribed strains assigned on
the outer edges are incrementally increased from the zero strain up to εij = 0.25. This is
performed for a set of volume fractions of defects w ∈ {0.1, 0.2 . . . 0.9} and in a ±10%
neighborhood to these values of w. This effectively ends up in 98 nonlinear computations
that are evenly placed in the domains of εij ∈ (0, 0.25) and w ∈ (0, 0.9). The strain
energies Uij

(
εij, w

)
coming from these stretches are then recalculated into effective stiffness

Ceff
ij according to the Arruda–Boyce hyper-elastic potential. These discrete results are

approximated with use of the weighted least squares method (WLSM) with equal weights
to retrieve a bivariate polynomial representation of Ceff

ij
(
εij, w

)
, which is further called the

response function. An order of polynomial is optimized with use of the minimization of the
WLSM total error; such an approach proved to have an error below 5% for all data points
taken into consideration. The effective stiffness is then subjected to symbolic procedures
in the computer algebra program Maple 2017, which defines its first four probabilistic
coefficients. In these computations an input uncertainty comes from the unknown coef-
ficient of random dispersion of volume fraction of defects w. This uncertain parameter
varies according to a Gaussian probability density function (PDF). Symbolic procedures are
conducted according to the iterative stochastic finite element framework (ISFEM), where
the probabilistic characteristics are defined independently, using a semi-analytical method
(SAM), a crude Monte Carlo simulation (MCS) [39] with 50,000 trials per each realization,
as well as using the stochastic perturbation technique with the statistically optimized
order [38,40]. Characteristics include expected values, coefficients of variation, skewness
and kurtosis, all as functions of the coefficient of random dispersion for the input random
parameter (volume fraction of voids w). They are all based on the response function instead
of the discrete data points of Ceff

ij,k coming directly from the FEM; this ensures their contin-
uous character in the entire region of interest for

(
εij, w

)
. This character, of course, does

not hold for the MCS, which returns discrete results repeated to evenly cover the domain
of interest. The SAM consists of numerical derivation of the probabilistic characteristics
with a bound of ±3σ, where σ is the standard deviation of the input uncertain parameter
w. Further numerical results are presented here separately for the three components of
Ceff

ij resulting from unique stretches of the RVE shown in Figure 2, i.e., for uniaxial tension,
biaxial tension and uniaxial shear.
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3. Composite Simulation Results

Final diagrams of the effective stiffness tensor (Figures 3–6) Ceff
ij include its first

four probabilistic coefficients, i.e., expected value E
(

Ceff
ij

)
, coefficient of variation α

(
Ceff

ij

)
,

skewness β
(

Ceff
ij

)
and kurtosis κ

(
Ceff

ij

)
in the domain of the input coefficient of the random
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dispersion of the volume fraction of defects α(w) ∈ (0, 0.25) and the corresponding strain
εij ∈ (0, 0.25). Each of the three-dimensional graphs is presented for the three components
of this effective stiffness (Ceff

11 , Ceff
12 and Ceff

44 ), and is computed for the expected value of
volume fraction of defects of E(w)= 0.05. The characteristics of the uniaxial coefficient
are exclusively shown in part (a), the biaxial ones in part (b) and shearing ones in part (c)
of these graphs. Colors on these graphs distinguish the three independent probabilistic
methods applied, i.e., the iterative stochastic finite element method (ISFEM, red color),
the Monte Carlo simulation (MCS, green color) and the semi-analytical method (SAM,
blue color) that were used in the computations. The ISFEM and SAM produce continuous
results in the entire domain of α(w) and εij, while the MCS discrete points are evenly
distributed through this domain, which is a trait of the MCS. In the following paragraph,
the general properties of the resulting probabilistic characteristics are reported and in the
consecutive ones each characteristic is considered separately.

The expected values and the coefficients of variation for all the components and
probabilistic methods are exclusively positive, skewness is predominantly negative and
kurtosis is positive for the MCS and SAM, while negative for the ISFEM. All the coefficients,
despite the expected values, increase in magnitude together with an increase in input
uncertainty α(w) and always have a smaller dispersion than the input parameter (volume
fraction of defects) up to 3.5 times. This means that the stiffness is less spread than w. This
is because defects occupy only a very limited volume of the composite −Ωd= 0.0025 Ω.
The resulting PDFs of the effective stiffness coefficients Ceff

ij could not be Gaussian because
of the nonzero skewness and kurtoses for practically the entire domain of interest in α(w)
and εij. Skew for these PDFs is negative and the concentration of probability density close
to the expected value is relatively high. An influence of the strain εij is mostly visible for

E
(

Ceff
ij

)
and it is not high for α

(
Ceff

ij

)
, β
(

Ceff
ij

)
and κ

(
Ceff

ij

)
, where it is still not negligible.

Unlike for the stiffness tensor in linear elastic materials, the three probabilistic methods are
not perfectly matching for the expected values and coefficients of variation. While the MCS
and the ISFEM return exactly the same results for E

(
Ceff

ij

)
and α

(
Ceff

ij

)
, the SAM is a little

distant. When skewness and kurtosis is considered, either the ISFEM returns the results
between the MCS and SAM or the MCS is very close to the SAM. Differences in-between
the three probabilistic methods generally increase together with an increase in the order
of characteristics; this is especially visible for kurtosis. All the probabilistic characteristics
differ in magnitude and dependence on εij and α(w) for the respective stiffness coefficients
and, because of this, application of a single PDF for all the stiffness coefficients would be
erroneous for this specific material.
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The expected values of the effective stiffness tensor E
(

Ceff
ij

)
are presented in Figure 3

in function of α(w) and εij. The ones corresponding to uniaxial tension (Figure 3a) and
biaxial tension (Figure 3b) are decreasing with an increase in strain, while the shearing
one (Figure 3c) slightly increases by up to 4%. The steepest rate of change together with εij

has E
(

Ceff
12

)
at around 1.6% per percent of strain and the other components below 1% per

percent of strain. An increase in the scatter of the input uncertain parameter α(w) does not
at all affect E

(
Ceff

12

)
, while it causes a decrease in E

(
Ceff

11

)
and E

(
Ceff

44

)
of less than 1%. The

three probabilistic methods return perfectly the same results for the uniaxial coefficient,
while the SAM overestimates the expectation around 1% for the biaxial and up to 10% for
the shearing component.
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Figure 6. Kurtosis (a) κ
(
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, (b) κ

(
Ceff

12
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and (c) κ

(
Ceff
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w.r.t. α(w) and corresponding strain εij.

The coefficients of variation of the effective stiffness tensor α
(

Ceff
ij

)
are reported in

Figure 4. They always increase in an exponential manner together with an increase in
α(w), are much less affected by εij than by α(w) and are always lower than the coefficient
of random dispersion of the input (α(w)). The components corresponding to tension
slightly increase together with an increase in εij, while the one corresponding to shear
decreases. This change of magnitude, however, does not exceed 5%. The ISFEM and MCS
return perfectly the same results and SAM always underestimates the α

(
Ceff

ij

)
; only for

Ceff
11 are the results of SAM close to the other methods, especially for α(w) < 0.15. The

coefficient of variation is a little higher for the shear component (maximum of 0.1) than for
the tensional ones, where it reaches up to 0.07. Obviously, for α(w)= 0 the α

(
Ceff

ij

)
also

approaches zero.
Skewness of the effective stiffness β

(
Ceff

ij

)
is presented in Figure 5. It is always nega-

tive for all the stiffness components, approaches zero for α(w)= 0 and has considerable
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differences in magnitude for each of Ceff
ij . It either increases (β

(
Ceff

12

)
and β

(
Ceff

44

)
) or

decreases (β
(

Ceff
11

)
) together with an increase in εij. Similarly to the coefficient of variation,

these changes are relatively small and below 5%. Results reported by the three probabilistic
methods slightly differ from each other. The higher bound of skewness is always returned
by the MCS, the lower one by the SAM and the ISFEM returns results in-between the other
methods, close to the MCS. This is not true for β

(
Ceff

11

)
, where the ISFEM is distant and

smaller from the other methods. For this component the ISFEM reports skewness of magni-
tude close to other stiffness components (min

(
β
(

Ceff
44

))
= −2 min

(
β
(

Ceff
44

))
= −0.9 and

min
(
β
(

Ceff
44

))
= −1.4) and the other methods seem to overestimate it.

Kurtosis of all the effective stiffness tensor components is presented in Figure 6 in
relation toα(w) and εij. It is either only positive (κ

(
Ceff

11

)
), or positive for the SAM and MCS

and negative for the ISFEM (κ
(

Ceff
12

)
and κ

(
Ceff

44

)
). The agreement of the three probabilistic

methods is not perfect and the weakest from all of the considered characteristics. It is
the ISFEM that is the most distant especially for α(w) > 0.1 and produces always the
smallest result; it underestimates the kurtosis. The influence of εij is especially relevant for

κ
(

Ceff
12

)
, where all three methods return an increase in κ

(
Ceff

ij

)
together with an increase

in εij. Kurtosis is monotonic with respect to εij and α(w), it always increases magnitude
together with an increase in α(w) and converges to zero as α(w)= 0.

4. Concluding Remarks

This work reports a successful determination of the random nonlinear cubic effective
stiffness tensor Ceff

ij of particulate composites with spherical reinforcement and with an
interface with stochastic imperfections and it is calculated in the framework of the iterative
stochastic finite element method. Probabilistic characteristics are determined using three
concurrent numerical methods: the semi-analytical method, Monte Carlo simulation, and
stochastic perturbation method. This study concerns a composite with HDPU matrix rein-
forced with C60 spherical fullerenes surrounded by the interphase defects. It is conducted
in a hyper-elastic regime of this material, where the constitutive relation of the matrix has
been adopted after initial laboratory tests.

The resulting effective stiffness tensor is sensitive to uncertainty in the volume fraction
of the interface defects and it cannot have a Gaussian distribution regardless of the strain
intensity applied. It has more than twice the lower uncertainty level than the input one
and, unlike for the linear elastic case, its probabilistic characteristics highly depend upon
the strain imposed on the RVE; this dependence has no evident pattern for the respective
components and different probabilistic characteristics but it is basically monotonic. An
influence of statistical scattering of the interface defects on the expected values of the
effective stiffness tensor components is relatively small (limited to±1%) but it is remarkably
larger when higher order statistics of this tensor are taken into account.

A coincidence of the three probabilistic methods is relatively high for the expectations
E
(

Ceff
ij

)
and coefficients of variation α

(
Ceff

ij

)
, where the ISFEM and MCS perfectly match

with each other and are limited for the higher order characteristics, such as skewness
β
(

Ceff
ij

)
and kurtosis κ

(
Ceff

ij

)
. The ISFEM usually returns result in-between the MCS

(higher bound) and SAM (lower bound) for β
(

Ceff
ij

)
, while it is in agreement with the other

methods in the case of κ
(

Ceff
ij

)
when α(w) < 0.08.

There is no doubt that experimentally-based homogenization of particulate composites
with stochastic interface defects brings new interesting results, so that further SFEM
computational studies will concern numerical simulation of hysteresis of such a composite
in the probabilistic context.
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30. Sokołowski, D.; Kamiński, M. Hysteretic Behavior of Random Particulate Composites by the Stochastic Finite Element Method.
Materials 2019, 12, 2909. [CrossRef]

31. López Jiménez, F. Modeling of soft composites under three-dimensional loading. Compos. Part B-Eng. 2014, 59, 173–180.
[CrossRef]

32. Lüth, H. Solid Surfaces, Interfaces and Thin Films; Springer: Berlin/Heidelberg, Germany, 2001.
33. Javili, A.; Ottosen, N.S.; Ristinmaa, M.; Mosler, J. Aspects of interface elasticity theory. Math. Mech. Solids 2018, 23, 1004–1024.

[CrossRef]
34. Goudarzi, T.; Spring, D.W.; Paulino, G.H.; Lopez-Pamies, O. Filled elastomers: A theory of filler reinforcement based on

hydrodynamic and interphasial effects. J. Mech. Phys. Solids 2015, 80, 37–67. [CrossRef]
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40. Kamiński, M. On the dual iterative stochastic perturbation-based finite element method in solid mechanics with Gaussian

uncertainties. Int. J. Num. Mech. Eng. 2015, 104, 1038–1060. [CrossRef]

http://doi.org/10.1038/s41598-018-22964-9
http://doi.org/10.1115/1.4043400
http://doi.org/10.1016/j.compstruct.2016.01.038
http://doi.org/10.1016/j.compstruct.2018.11.082
http://doi.org/10.1080/10255842.2012.670854
http://www.ncbi.nlm.nih.gov/pubmed/22764882
http://doi.org/10.1002/zamm.201500255
http://doi.org/10.1007/s10665-009-9359-y
http://doi.org/10.3390/ma12182909
http://doi.org/10.1016/j.compositesb.2013.11.020
http://doi.org/10.1177/1081286517699041
http://doi.org/10.1016/j.jmps.2015.04.012
http://doi.org/10.1016/j.ijsolstr.2004.11.001
http://doi.org/10.1016/0022-5096(93)90013-6
http://doi.org/10.1016/j.compstruct.2020.112118
http://doi.org/10.1080/01621459.1949.10483310
http://www.ncbi.nlm.nih.gov/pubmed/18139350
http://doi.org/10.1002/nme.4976

	Introduction 
	Theoretical Background 
	Composite Simulation Results 
	Concluding Remarks 
	References

