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Abstract: Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about
2%–3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but
an interaction between genetic and environmental factors has been recognized with an essential
modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally
represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation
of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased
capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key
role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a
vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the
relationship of depression and stress in its pathogenesis and development. In addition, this review
contains a focus on the possible use of natural products, thus pointing out their mechanism of action
in order to counteract clinical and psychological symptoms.

Keywords: psoriasis; immune system; immune cells; depression; stress; natural products

1. Introduction

Psoriasis is one of the most common chronic inflammatory skin diseases that affects
about ~2%–3% of the worldwide adult population [1,2]. Psoriasis affects both males and
females, without prevalence of gender [3], and its clinical lesions start to appear between
20 and 30 years of age, although children and adolescents may also be affected [4]. This
pathology can be classified into several forms: Psoriasis vulgaris, P. guttata, P. pustolosa,
P. erythrodermica, and P. inversa [5] (Figure 1).

The pathogenesis of the disease is quite complex, but an interaction between genetic
and environmental factors has been recognized [6–8]. Psoriasis is characterized by skin
lesions that appear as erythematous and reddened plaques with silvery lamelliform scales,
sometimes painful and itchy [9], especially in the elbows, knees, and scalp [10]. These
plaques are often the result of an abnormal proliferation and differentiation of keratinocytes,
thus resulting in dermal hyperplasia [11], immune cell infiltration, and increased capillar-
ity [12]. Because of the significant role of immune cells in the pathogenesis of psoriasis,
this disease is also classified as an autoimmune disease. In fact, different studies have
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already shown that the activation of T helper (Th)1 lymphocytes leads to an increase in
interferon (IFN)-γ and tumor necrosis factor (TNF)-α levels [13]. CD4+ T cells also produce
interleukin (IL)-17, which is responsible for the abnormal cell proliferation and stimulation
of keratinocytes, thus leading to cytokine release [14,15]. In this context, the IL-23/IL-17
axis would play a crucial role in psoriatic lesion formation [16,17]. These cytokines, with
particular reference to IL-17, are also produced by other immune cells, such as γδ T cells,
natural killer (NK) cells, NKT cells, and innate lymphoid cells (ILCs) [18], which are in-
volved in the pathogenesis of psoriasis [19]. Psoriasis also affects the psychological plane,
reducing the quality of life of patients [20,21]: the appearance of skin lesions can cause
discomfort in patients and may increase layoff and unemployment rates and depressive
states up to suicide rates [22,23]. Not only the affected patients are stressed out, but also
stressful conditions may represent contributing causes of psoriasis [24]. In fact, stress
can activate an inadequate response of the hypothalamic–pituitary–adrenal (HPA) axis,
thus stimulating corticotropin-releasing hormone (CRH) and vasopressin release in the
hypothalamus with the consequent adrenocorticotropic hormone (ACTH) increase [25].
ACTH regulates glucocorticoid secretion [25], but psoriatic patients are extremely reactive
to stress and show reduced cortisol levels, resulting in immune system hyperactivity and
increased inflammation [25–27]. As of today, the therapeutic approaches used for the treat-
ment of psoriasis mainly act by reducing its severity or even suppressing symptoms, but no
therapy is currently 100% effective. The most used treatments are monoclonal antibodies
against TNF-α, IL-17, and IL-23 and topical cortisone-based ointments that contribute to
the disappearance of plaques [28,29]. However, as mentioned, these approaches are not
definitively curative and are long-term therapies, thus causing a weakening of the immune
system [30]. For this reason, a growing interest is aimed at alternative treatments based on
natural product use, such as some nutraceuticals and polyphenols whose mechanism of
action is mainly antioxidant and that are recognized to be safe [31–36].
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In this review, immune cell involvement in psoriasis pathogenesis and the psycho-
logical consequences of psoriatic patients are reported. In addition, an overview of some
natural products that might be used to manage this complex disease is designed.
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2. Cell Types Involved in the Pathogenesis of Psoriasis
2.1. Keratinocytes

Keratinocytes are the most distributed cells in the skin characterized by a turnover that
occurs in about 50 days under physiological conditions and in 5 days only during psoriasis,
demonstrating an increased cell turnover and in particular of keratinocytes [37–39]. These
cells play a key role in maintaining the inflammatory balance [40]: any mechanism that can
alter this balance can lead to the development and evolution of chronic skin diseases, in-
cluding psoriasis [41]. Activated keratinocytes may contribute to the release of chemokines,
which are able to attract different defense cells to the site of phlogosis [42]. In particular,
keratinocytes regulate the expression of the antimicrobial peptide cathelicidin LL-37 [43]
and produce chemokine ligand (CXCL)8, also known as keratinocyte-derived chemokine 8
(KC8), which is responsible for neutrophil infiltration [44]; CXCL10; and chemokine recep-
tor (CXCR) 3, which activate monocytes and Th1 cells [45]. Furthermore, chemokine ligand
(CCL) 20 and IL-18 are implicated in the enrolment of Langerhans cells (LCs), dendritic cells
(DCs), and cutaneous lymphocyte-associated antigen (CLA) T cells [46,47]. In addition, ker-
atinocytes play the role of antigen-presenting cells, expressing the human leucocyte antigen
(HLA) or major histocompatibility complex (MHC) [48]. HLA-Cw6 is a valid candidate
for functional involvement in psoriasis. HLA-Cw6 participates in the cross-presentation
of the antigen on a DC surface, resulting in the activation of CD8+ antigen-specific T cells.
Cross-priming depends on the help of CD4+ T cells in the presentation of intracellular
antigens in the dermis (activation of resident memory T cells) and lymph nodes (activation
of naive T cells). Activated CD8+ T cells can migrate into the epidermis by binding to
HLA-Cw6 keratinocytes, triggering the release of cytokines, chemokines, and proinflam-
matory mediators. This process increases inflammation and induces the proliferation of
keratinocytes. The cyclical mechanism triggered in this way causes the psoriatic injury
(Figure 2) [49,50]. Among the receptors expressed by keratinocytes and immune cells, the
most important group is represented by the Toll-like receptors (TLRs), a class of phyloge-
netically conserved proteins [51–54], both in physiological and pathological conditions [55].
A reduced and increased expression was found in keratinocytes obtained from psoriatic
plaques of TLR-5 and TLR-1, respectively [56,57]. Furthermore, keratinocytes’ structural
integrity is maintained by keratins (KRTs), which play an important role in the patho-
genesis of psoriasis [58]. In stress conditions, keratinocytes release damage-associated
molecular patterns (DAMPs), which activate different molecular pathways, including the
mitogen-activated protein kinase pathway (MAPK) and the transcription factors nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB) and nuclear factor erythroid
2-related factor 2 (NRF-2), which in turn mediate KRT6, KRT16, and KRT17 transcription. A
high proliferative stage under pathological conditions is indicated by the increased expres-
sion of KRT16/17–KRT6; in particular, KRT17 expression is negligible in normal epidermis
but is overexpressed in hyperproliferative diseases, such as psoriasis. KRT17 activates
cell proliferation through the mTOR–AKT signaling, an important intracellular pathway
involved in the regulation of the cell cycle. KRT17 may also act as an autoantigen, thus
activating DCs and triggering the cytokine cascade, which in turn acts on keratinocytes
by activating extracellular signal-regulated kinases (ERK)1/2 and signal transducers and
activators of transcription (STAT)1/3. This activation further increases keratin gene ex-
pression, creating a loop that contributes to psoriasis appearance [59]. All these reported
pieces of evidence highlight the important role played by keratinocytes in the formation
and development of this chronic inflammatory disease.

2.2. Dendritic Cells

Different types of dendritic cells can be detected in the skin under both physiological
and pathological conditions [60,61]. These cells can act as antigen-presenting cells (APCs),
but also as an important source of chemical mediators of inflammation, such as TNF-α and
IL-23 [62].
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2.2.1. Plasmacytoid Dendritic Cells (pDCs)

Plasmacytoid dendritic cells (pDCs) are a cell population present in the blood and sec-
ondary lymphoid organs [63]. They are involved in the antiviral immune response and can
secrete large amounts of IFN-α [64]. Once stimulated by the viral antigen, these cells can
differentiate into DCs [65] or dendritic myeloid cells (mDCs), which can modulate the in-
flammatory response by Th1 lymphocytes [66]. pDCs may accumulate in peripheral tissues
during noninfectious phlogosis states, such as psoriasis [67]. pDCs have also been found in
inflamed tissues of psoriasis-like diseases, such as systemic lupus erythematosus [68] and
rheumatoid arthritis [69]. The activation of pDCs occurs by TLR-7 and TLR-9 [70,71]. This ac-
tivation would therefore represent the trigger point of the pathogenesis of psoriasis, leading
to a mechanism that contributes to the appearance of the psoriatic phenotype. Several stud-
ies, including murine models, have shown that an increase in IFN-α produced by pDCs can
be found in the skin damaged with psoriatic plaques [67,72]. In addition to viral antigens,
their recruitment and activation can also be induced by keratinocyte-released chemokines,
such as CXCR4, CXCR3, and CCR5 [73,74]. The monoclonal antibody antiblood DC antigen
2 (BDCA2) is able to inhibit the development of psoriatic lesions, blocking the activation of
pDCs [72]. Further studies using imiquimod [75], a synthetic imidazoquinolinone recog-
nized by TLR-7 [76], have demonstrated the induction and activation of pDCs with IFN-α
release [77].

2.2.2. Myeloid Dendritic Cells (mDCs)

Myeloid dendritic cells (mDCs) are highly represented in psoriatic skin lesions [62]
and may be recognized as CD11c + CD1c (phenotypically immature cells) and CD11c +
DC-LAMP + DEC-205/CD205 + BDCA-1+ (phenotypically mature cells). CD11c + CD1c
cells are responsible for the production and release of TNF-α, IL-6, IL-20, IL-23, and IL-12
and produce inducible nitric oxide synthase (iNOS) [78]. Thus, these cells are particularly
involved in the formation of psoriatic lesions [79–82], acting as mediators of inflammation
and playing a key role in the pathogenesis of this chronic disease [60]. Although these
cells are capable of releasing a large number of chemical mediators of inflammation, they
primarily secrete IL-23, which interacts with the IL-17-mediated immune response [80,82].
Several studies have also shown that the presence of mDCs in psoriatic skin is 30 times
higher than in healthy skin [78]. The CD11 + Dc-LAMP + DEC-205/CD205 + BDCA-1+
mDCs may be considered APCs, and their number does not appear to increase in psoriasis-
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injured skin compared with that in healthy skin [81]. The mDCs can also be activated and
recruited by keratinocytes releasing CCL20 and promoting a recall of the Th17 lymphocytes
to the phlogosis site [12,83]. The data collected clearly show not only the involvement of
mDCs in the pathogenesis of psoriasis but also the crucial role that these cells play in the
development of the disease.

2.2.3. Langerhans Cells (LCs)

Langerhans cells (LCs) are specialized dendritic cells with a defense role through
antigen recognition and phagocytosis and are characterized by the presence of Birbeck
granules in their cytoplasm, which are involved in endocytosis processes [84]. Studies
on murine models have shown that LCs can play a role in acute psoriasis [85], increasing
in number, and then decreasing after administration of an anti-IL-β antibody [86], which
is responsible for the migratory deficiency and inhibition of LCs [87]. LCs appear to
be involved in perpetuating psoriatic inflammation. LCs release different inflammatory
chemokines [88], including IL-23 [89,90]. Further studies have shown that DCs can secrete
TNF-α and iNOS [79,82] and can activate allogeneic T cells and induce the release of IL-17,
IL-22, and IFN-γ [17], such as LCs in psoriatic skin [88,90]. Other studies have described
a protective and a modulating role in situ played by LCs through IL-10 release [91] and
neutrophil recruitment [92], respectively. LCs’ role is not fully understood, but these cells
appear to be involved in perpetuating inflammation and psoriatic injury.

2.3. Innate Lymphoid Cells (ILCs)

Innate lymphoid cells (ILCs) are heterogeneous immune cells involved in the forma-
tion of lymph nodes during fetal life and the remodeling of organs and tissues [93]. ILC2s
produce type 2 cytokines (e.g., IL-4, IL-5, IL-9, IL-13) that are implicated in the immune
response to allergens, helminths, cancer, and viruses [94]. ILC2s have also been identified
in greater levels in tissues with allergy symptoms, such as nasal polyps in patients with
chronic rhinosinusitis and the skin of individuals with atopic dermatitis [95]. Elevated con-
centrations of ILC2s in the blood are linked to atopic dermatitis, while high concentrations
of ILC3 are linked to psoriasis [96]. ILC3 releases IL-17 and IL-22 and expresses NKp44,
a natural cytotoxic receptor (NKR) involved in viral antigen recognition and interactions
with other immune cells [97–99]. The presence of these cells in psoriasis-injured skin is
higher than in noninjured skin [98].

Natural Killer Cells (NKs)

Natural killer cells (NKs) belong to the ILC family. They maintain the state of health of
the body and show cytotoxic and effector activity [97]. The cytotoxic effect is explained by
the release of substances that induce cell lysis, such as granzyme, perforin, and granulysin
(GNLY) [19], up to apoptosis induction [100,101]. NKs are found in excess in psoriatic
lesions [102]; NKs represent about 8% of the entire cell population infiltrated into the
lesion and express cytokines involved in psoriatic processes, such as IL-2, TNF-α, and
IFN-γ as well as IL-17 and IL-22 [103,104]. Furthermore, they stimulate chemokine re-
lease by keratinocytes, useful for the in situ recall of other immune cells, implementing
the inflammatory state [105]. NKs can express membrane NK receptors, such as killer
immunoglobulin-like receptor (KIR) [106]. HLA-G is a ligand of KIR-2DL4 [107].

2.4. T Cells (Lymphocyte T Helper, T Cytotoxin γδ T, Natural Killer T Cells)

T cells are responsible for innate immunity, acting as sentinels and intervening in
counteracting pathogenic antigens. They express TCRs (T cell receptors) consisting of an α

chain and a β chain; however, T cells γδ T express receptors consisting of a γ chain and a δ

chain [108]. T lymphocytes are widely represented in psoriasis-induced skin lesions [109]
and are responsible for the release of IFN-γ, TNF-α, and IL-17 [109]. They also act in
concert with keratinocytes, inducing the expression of HLA and IL-6 [109,110]. Specifically,
Th, CD4+, and cytotoxic T lymphocytes (CD8+) are involved in the development of the
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disease [17,111]. Studies in immunodeficient mice have shown that CD4+ is among the first
promoters of psoriasis [112]. In addition, CD4+ cell activation causes in situ recall and CD8+
cell stimulation, which are also involved in the pathogenesis of psoriasis [113]. The early
infiltration of cytotoxic T lymphocytes, and not of Th lymphocytes, induces the phlogistic
state typical of psoriasis [114,115]. In addition, keratinocytes express HLA-C*0602, which
has antigens typical of TCD8+ cells and not CD4+ cells [49]. The efficacy of treatment with
cyclosporin A [116,117] correlated with T lymphocyte inhibition and IL-2 reduction [116]
has highlighted the significant role played by these cells in the pathogenesis of the disease.
CD4+ Th17 can release IL-17, IL-23 [118], IL-22 [119], IFN-γ, and TNF-α. Th22 cells together
with NK cells contribute to IL-22 release [119]. Some studies have shown that the γδ T
cells are the T cells most involved in the release of IL-17 [17,120] and express different
chemokines, such as CCR6, thus implementing the inflammatory state [120]. Natural
killer T cells (NKTs) are a subpopulation of T cells that secrete IL-4 and IFN-γ and also
represent a link between the adaptive and the innate immune system. Additionally, NKTs
release cytokines (TNF-α, IFN-γ, IL-17, IL-22) and chemokines (CCR5, CCR6, CXCR3), thus
stimulating the infiltration of other immune cells [121–123]. In fact, NKs and NKTs may
contribute to the induction and maintenance of the inflammatory state, as also observed in
a murine model of psoriasis [122,123]. These cells recognize the antigen presented by the
surface receptor CD1d [124] and are highly represented in psoriatic skin, suggesting their
involvement in the pathogenesis of the disease [103].

2.5. Neutrophils

Neutrophils are the cells most involved in the innate immunity; in fact, these cells play
an important defense role through a respiratory burst, resulting in the release of reactive
oxygen radicals (ROS) and degranulation and formation of neutrophil extracellular traps
(NETs) [125]. Their activity is also related to the interaction and communication with APC
cells and lymphocytes [126,127]. In psoriatic plaque-injured skin, neutrophils work by
increasing respiratory bursts and releasing proteases, such as neutrophil elastase (NE),
cathepsin g, myeloperoxidase (MPO), and proteinase 3. These mechanisms contribute to the
increase in oxidative stress processes with consequent employment of the chemical media-
tors of phlogosis and the formation of autoantigen, typical of the psoriatic lesion [128,129].
However, the abundant presence of neutrophils is considered a typical histopathological
sign of psoriasis; in fact, the neutrophil/lymphocyte ratio (NLR) is significantly increased
in psoriatic patients [130,131]. The role played by NETs in the pathogenesis of psoriasis
appears crucial: increased levels have been observed in lesions and plaques of psoriatic
skin. A consequence of this numerical overload is the augmented release of IL-17 due to a
stronger cellular stimulation, with the further secretion of chemical mediators, which again
leads to a self-amplification of the number of neutrophils [128].

2.6. Mast Cells

Mast cells are related to innate immunity and primarily responsible for acute inflam-
matory processes [132]. Once activated, these cells secrete several substances contained in
the cytoplasmic granules such as heparin and histamine, nitric oxide (NO), leukotrienes,
and interleukins such as IL-8, IL-17, and IL-22 [133,134]. Moreover, mast cells are active in
skin lesions, contributing to the formation of psoriatic plaque [134]. The role of mast cells
in psoriasis is mainly related to IL-22 production, whereas their role in IL-17 secretion is
still unclear. IL-17 appears to be produced mainly by T cells and only to a small extent by
mast cells [134], although other studies support the hypothesis that mast cells are involved
in IL-17 production in both healthy and psoriatic skin [62]. The pathogenetic mechanism of
immune cells in psoriasis in summarized in Figure 3.
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Figure 3. The pathogenetic mechanism of psoriasis. DAMPs activate DCs and macrophages by
inducing the secretion of IL-23, IL-1β, IL-6, and TNF-α. They stimulate the TCD4+ (Th1, Th17,
Th22) and CD8+ (Tc1)-mediated immune response. Mast cells, neutrophils, NK and NKT cells, and
other immune cells infiltrate the site of phlogosis in the skin, contributing to disease progression
by releasing IL-17 and antimicrobial peptides. Treg cells lose their suppressive activity and, in
some cases, convert to Th17 cells, further increasing the local inflammatory reaction. Cytokines and
chemokines act on keratinocytes, inducing their hyperproliferation. Activated keratinocytes produce
CCL20 and CXCL1, 3, 8, 11, increasing cell infiltration. This creates an amplified continuous cycle
that leads to injury. Abbreviations: M, macrophages; K, keratinocytes. Created with BioRender.com
(accessed on 18 February 2022).

3. Psoriasis-Related Psychological Alterations

A peculiar psychological and personality profile can be outlined in patients with psori-
asis. Some studies have shown that patients with this disease generally have a type D (D for
“distressed”) personality, with high levels of social inhibition (SI) and negative affectivity
(NA) [135]. This means that these patients experience strong negative emotions, but they
avoid expressing them because of their fear of being disapproved [136]. In addition, they
are more likely to manifest early maladaptive patterns, including emotional deprivation
and vulnerability to harm [137], which are significant predictors of psychological distress,
leading to difficulties in communicating their needs and emotions [138]. Several studies
show that the quality of life of these patients is much lower than that of healthy patients,
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and that its impact is similar to that of other major chronic diseases [139]. Psoriasis and
mental disorders could also be considered in a syndemic context since they influence
each other on both a physiological and social level, which may suggest that they may
become acute or alleviate at the same time [140]. Therefore, according to this perspective,
a psychological intervention could be effective in alleviating both psoriasis and mental
disorders [141]. Cognitive behavioral psychotherapy (CBT) is effective in treating psoriasis,
especially in patients with moderate or severe forms, in terms of both area of reduction and
severity of the disease [142], as well as being useful in treating feelings of hopelessness and
other related comorbidities [142].

3.1. Psoriasis and Depression

Several studies have demonstrated a correlation between psoriasis and depression [143].
Kurd et al. (2010) examined the clinical reports of almost 1 million subjects, aimed to deter-
mine the incidence of levels of anxiety, suicide risk, and depression in both patients with
psoriasis and the rest of the population [144]. The results suggest that psoriatic patients
have a higher risk of developing depression [145] and anxiety and are at a higher risk of
committing suicide, especially young and male patients, as well as having greater comor-
bidities with other psychiatric disorders [144]. Furthermore, several studies suggest that
depressed patients show a 30% higher production of proinflammatory cytokines, such as
IL-1β, TNF-α, and C-reactive protein (CRP) [146,147], which affect the metabolism of some
neurotransmitters (such as dopamine, serotonin, and glutamate), neuroendocrine function,
and even neuroplasticity, resulting in neurotoxicity and neuronal apoptosis [148,149]. This
production of cytokines can play an important role in both the aggravation of psoriasis
and depression, confirming the link between the immune and neuroendocrine system
and human behavior, which is altered in these cases [146,150,151]. A mechanism that
elicits the onset of depression and at the same time chronic inflammation in patients with
psoriasis is the hyperactivity of the HPA axis, resulting in the release of increased levels
of CRH, ACTH, and cortisol and in a stimulation of the transcription factor NF-kB and
of the proinflammatory cytokines in the skin [152]. CRH stimulates the proinflammatory
cytokines IL-6 and IL-11 as well as the expression of the intracellular adhesion molecule-1
(ICAM-1) of keratinocytes, which promotes the migration of immune cells and facilitates
cell-mediated immune responses [153]. In addition, dysfunction of cortisol receptors (min-
eralocorticoids and glucocorticoids) downstream from the HPA axis reduces the sensitivity
of the anti-inflammatory effects of cortisol since the body is unable to skillfully regulate
corticosteroid levels (Figure 4) [154]. Recently, the role of Th17 cells in depression has been
investigated [155]. Several studies found that these cells were augmented in the blood of de-
pressed patients [156]. Patients with psoriasis who show high levels of cytokines, Th17 cells
and IL-17A, are more subjected to develop depression and anxiety disorders [144]. These
data suggest a strong correlation between depression and the immune system; therefore, a
relationship between depression and psoriasis may be hypothesized [157]: depression im-
provement might be observed following treatment of psoriasis, and conversely, depression
treatment might improve psoriasis symptoms [157].

3.2. Psoriasis and Stress

Stress influences the activity of the immune response by increasing the cascade of proin-
flammatory cytokines [158]. Two neurotransmitters are generally associated with stress
and psoriasis: serotonin (5-HT) and dopamine (DOPA). Serotonin is a potent neurotrans-
mitter involved in nervous, immune, and endocrine systems [159–164]. Low levels of 5-HT
increase the production of some inflammatory mediators, such as TNF-α and IL-1β, which
induces the activation and deterioration of keratinocytes via NF-kB, which is activated by
IL-17A in the prefrontal cortex and in the hippocampus, thus worsening the symptoms of
psoriasis [165,166]. Inflammation can also activate indoleamine 2,3-dioxygenase, which
induces tryptophan, a precursor of 5-HT, to break down into kynurenine [167], an antago-
nist of serotonin receptors, thus inducing depressive symptoms despite 5-HT availability.
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Moreover, kynurenine can break down into quinolinic acid, a neurotoxin that accumulates
in the anterior cingulate gyrus of depressed patients [168]. This whole process is also
adjuvated by IL-6, which increases the degradation of serotonin in the brain [169]. The
psoriatic inflammatory process can simultaneously decrease the production of serotonin
and may inhibit 5-HT receptors, thus contributing to its reduction (Figure 4).
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DOPA can regulate mast cell degranulation and consequently stimulates the release of
proinflammatory cytokines [170]; therefore, dopamine might be considered a risk factor
for psoriasis [171]. Both innate and adaptive immune systems are involved in the stress
response. Similar to what happens in the skin, damage-associated molecular patterns
stimulate innate immune cells [172] to produce different interleukins and TNF-α [173] and
to recruit an increasing number of monocytes that begin to circulate in the blood [174]. This
unresolved inflammatory state can lead to chronic psychological stress [175]. The adaptive
immune system can activate T cells in response to stress, thus stimulating cytokine release
and NK cell and DC recruitment [176]. Consequent to stress, the sympathetic nervous
system can endorse amine secretion, thus provoking the proliferation of myeloid cells
(such as monocytes). These pieces of evidence suggest a link between stress and etiology
of psoriasis.

4. Natural Compounds as an Alternative Treatment for Psoriasis

No definitive treatment is currently available to treat psoriasis; however, some bi-
ological therapies have shown encouraging results [177–179]. In particular, treatment
with monoclonal antibodies, such as infliximab, ixekizumab, risankizumab, bimekizumab,
guselkumab, secukinumab, and brodalumab, determined excellent outcomes in patients
with moderate to severe psoriasis [180]. These drugs are mainly anti-TNF-α, anti-IL12/23,
anti-IL-17, and anti-IL-23 antibodies and demonstrate the significant involvement of these
patterns in exacerbating psoriasis and the therapeutic significance of using them as tar-
gets [180]. However, the long-term administration of these drug is often related to the
appearance of different side effects [180,181]; for this reason, other therapeutic approaches
and natural medicine have recently gained much attention from the scientific world. Nat-
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ural products are potentially rich in bioactive compounds; in fact, different studies have
already shown that some of these natural extracts may play anti-inflammatory, antioxidant,
and antiproliferative effects [182,183]. These pieces of evidence demonstrate their possible
use for the treatment of different diseases and also of psoriasis even thanks to their safety
and the possible better compliance of patients [184–186]. In the following section, some of
the best-known natural compounds with antipsoriatic properties are reported (Figure 5).
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4.1. Aloe vera L.

Aloe vera L., a plant belonging to the Liliaceae family, contains polysaccharides, salicylic
acid, and vitamins that have anti-inflammatory and antipruritic properties [187]. Aloe
vera possesses an immunomodulating effect, stimulating macrophages and lymphocytes
to release NO and cytokines and activating the maturation of undeveloped dendritic
cells [187]. A study conducted by Leng et al. (2018) showed that Aloe vera can inhibit
overexpression of keratinocytes and overregulation of the NF-κB signaling pathway [188].
Clinical and preclinical studies demonstrated that ethanolic extract of Aloe vera exerts a
positive activity on psoriatic lesions, similar to traditional drugs [189]. In addition, Aloe
vera may have a significant antidepressant effect. The intake of at least 500 mg of Aloe
vera capsules reduced depressive state in patients after 8 weeks of treatment [190]. The
concomitant use of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), reduces
depressant symptoms in a mouse model [191].

4.2. Bergamot Essential Oil

Bergamot is the common name for Citrus bergamia, a plant belonging to the Rutaceae
family [192]. Bergamot essential oil is one of the herbal preparations derived from C.
bergamia, and it exerts antibacterial properties [193] and can help in the moderation of
mood disorders and stress-induced anxiety, as well as sleep induction, and neuroprotec-
tion [194]. A study by Valkova et al. (2007) showed that the combination of bergamot
essential oil and UVB rays significantly reduced the symptoms of psoriatic lesion [195]. This
is probably due to the action of 5-methoxypsoralen (5-MOP), the major constituent of berg-
amot essential oil, mainly used in cosmetics and medicine. The application of this molecule
in herbal medicine is useful, in fact, to combat skin damage, such as psoriasis-induced skin
lesions and vitiligo [196]. Moreover, bergamot essential oil has been shown to be useful in
neuroprotection (even during experimental brain ischemia), chronic pain control, and the
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management of stress, anxiety, and anxiety-related conditions in neuropharmacological
research [197].

4.3. Quercetin

Quercetin, well known for its antioxidant and anti-inflammatory activity [198], can
induce apoptosis through ROS generation [199] and can support keratinocyte-growth
inhibition induced by arsenic trioxide [200]. A study by Mestry et al. (2020) evaluated
the beneficial effect of a gel based on quercetin combined with Commiphora mukul in the
treatment of psoriasis [201]. Moreover, on the one hand, quercetin decreased TNF-α, IL-6,
and IL-17 levels, modulating the inflammatory state in psoriasis [202], and on the other
hand, it is also involved in the management of cholinergic and serotonergic functions, pro-
ducing an anxiolytic and antidepressant effect and enhancing memory performance [203].
A recent study has confirmed that quercetin significantly reduces anxiety behaviors in mice
subjected to mild traumatic brain injury and regulates ACTH and corticosterone levels in
the HPA axis, enhancing depressive states [204].

4.4. Baicalein

Baicalein, a traditional Chinese drug with anti-inflammatory and antiviral effects [205],
can regulate keratinocyte proliferation and differentiation [206]. It can decrease the severity
of chronic inflammations by improving the antioxidant status and reducing the oxida-
tive stress, regulating the secretion of cytokines and chemokines (IL-6 and TNF-α reduc-
tion) [207,208], inhibiting Th17 activation, and blocking the IL-17-induced inflammatory
cascade. Furthermore, baicalein can improve depressive symptoms, preventing the loss
of dopamine and brain-derived neurotrophic factor (BDNF) [183,209]. In particular, a
study on a murine model highlighted that baicalein treatment can alleviate depression-like
symptoms [210].

4.5. Curcumin

Curcumin can be used for the treatment of psoriasis. In fact, the active constituent
of Curcuma longa [211] shows an antiproliferative effect on keratinocytes [181]. Moreover,
curcumin may have significant anti-inflammatory effects by decreasing cytokine levels,
such as IL-1β, IL-6, IL-22, and TNF-α, suggesting new perspectives for its therapeutic
use [212]. Furthermore, curcumin inhibits phosphorylase kinases, which are increased in
patients with psoriasis [213]. Curcumin also showed a strong antidepressant effect [214]
thanks to its modulation of neurotransmitters, such as noradrenaline, dopamine, serotonin,
and monoamine, and through moderation of excessive corticosterone secretion, which
causes dysfunction in the HPA axis [215].

4.6. Resveratrol

Resveratrol is a polyphenol with anti-inflammatory and antioxidant properties con-
tained in several foods, especially red wine, which is a key element in the Mediterranean
food tradition [216–219]. Resveratrol acts by reducing the secretion of inflammatory cy-
tokines and inducing apoptosis in keratinocytes via silent mating type information reg-
ulation 2 homolog (SIRT1). Resveratrol may act by inhibiting the release of IL-17 [220].
In addition, a study by Khurana et al. (2020) proved that resveratrol-loaded polymeric
micelles act on psoriatic lesions with positive dermatological results [221]. A recent study
showed that resveratrol also plays a critical role in neuroprotection, inhibiting the expres-
sion of phosphodiesterase 4D (PDE4D), an enzyme that catalyzes the hydrolysis of cyclic
adenosine monophosphate (cAMP). PDE4D regulates cAMP expression at the intracellular
level, reducing the depressant- and anxious-like states of corticosterone induced by cell
lesion on a mouse model [222].

In summary, natural products analyzed here show antipsoriatic, antidepressant, and
anxiolytic activities.

The biological effects of natural compounds are summarized in Table 1.
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Table 1. Biological effects of natural compounds on psoriasis.

Natural Compounds Biological Effects References

Aloe vera L.
Immunomodulant and stimulant effect on macrophages,

lymphocytes, and dendritic cells. [187]

Antidepressant effect. [190,191]

Bergamot essential oil
Antibacterial and anti-psoriatic properties. [193,195]

Moderation of mood disorders and stress-induced anxiety.
Neuroprotective and sleep-inducing effect. [194]

Quercetin
Decrease in TNF-α, IL-6, and IL-17 levels. [202]

Regulation of cholinergic and sero-tonergic functions, anxiolytic
and anti-depressant effects, enhances memory performance. [203,204]

Baicalein
Antioxidant effect, inhibits the release of IL-17 and the

expression of IL-6 and TNF-α. [207,208]

Antidepressive and neuroprotective effect. [183,209]

Curcumin
Decrease in IL-1β, IL-6, IL-22, and TNF-α levels. [212]

Modulates serotonin, monoamine, noradrenaline, and
dopamine. Regu-lates the function of the HPA axis. [214,215]

Resveratrol

Reduces the secretion of inflammatory cytokines and induces
apoptosis in keratinocytes. Inhibits the release of IL-17. [220]

Anxiolytic and antidepressant effect by inhibiting the
expression of PDE4D, which regulates cAMP expression at the

intracellular level.
[222]

5. Conclusions

Psoriasis is the most common chronic autoimmune skin disease that seems to arise
from the interaction between external and internal factors, as well as vitiligo. High stresso-
genic conditions and alterations in the psychological picture seem to play a key role in the
development of these diseases. It results from a chronic inflammatory state orchestrated by
cells of the immune system, such as lymphocytes, mast cells, dendritic cells, and NK cells,
which interact with keratinocytes. Since not all pathogenetic mechanisms related to these
cells have been clarified, this review aims to evaluate the state of the art on the etiology of
psoriasis and to offer further reflection points. In addition, no definitive treatment for psori-
asis is available until now: commercial drugs cannot be administered for long times, so the
use of alternative treatments can improve the clinical, physical, and psychological features
of patients suffering from this disease. Further clinical and preclinical studies should be
conducted to adopt natural compound therapy as an adjunct to traditional medicines, as
these compounds act on the immune system, the skin, and the central nervous system.
In conclusion, since the inflammatory psoriatic state results from uncontrolled activation
of immune system cells, further studies on natural bioactive compounds that inhibit or
suppress these hyperactivations could be suggested.
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