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Abstract

The interplay between extrinsic signaling and downstream gene
networks controls the establishment of cell identity during develop-
ment and its maintenance in adult life. Advances in next-generation
sequencing and single-cell technologies have revealed additional layers
of complexity in cell identity. Here, we review our current understand-
ing of transcription factor (TF) networks as key determinants of cell
identity. We discuss the concept of the core regulatory circuit as a set
of TFs and interacting factors that together define the gene expression
profile of the cell. We propose the core regulatory circuit as a compre-
hensive conceptual framework for defining cellular identity and discuss
its connections to cell function in different contexts.

Keywords cell identity; core regulatory circuit; GRN; regenerative medicine;

transcription factor

Subject Categories Chromatin, Transcription & Genomics; Development;

Stem Cells & Regenerative Medicine

DOI 10.15252/embj.2020106785 | Received 14 September 2020 | Revised 3

February 2021 | Accepted 4 February 2021 | Published online 5 May 2021

The EMBO Journal (2021) 40: e106785

Introduction

The nature of cell identity is a central problem in biology. Accurate

identification of cell types deserves significant attention due to its

impact on many areas of research and clinical applications, including

regenerative medicine. Cell identities are influenced by external stimuli,

such as signaling molecules, growth factors, and intercellular communi-

cation, which in turn affect downstream gene expression and jointly

dictate cell phenotype and function(s) (Holmberg & Perlmann, 2012;

Wagner et al, 2016). Even though these distinct facets of a cell’s identity

are interdependent, they are often considered separately. Nevertheless,

the cell’s phenotype and functional characteristics ultimately represent

the readout of a specific gene-expression program. Typically, a small

number of transcription factors (TF), which show a lineage-restricted

expression pattern, are considered sufficient to establish gene expres-

sion programs that define the identity of a cell (Holmberg & Perlmann,

2012; Zaret & Mango, 2016). Often, these TFs have the ability to bind

to inaccessible nucleosomal DNA, acting as “pioneer” TFs (Zaret &

Carroll, 2011; Zaret & Mango, 2016).

The concept that differentiated cell identity is established and

continuously maintained by a set of TFs was proposed several decades

ago (Blau & Baltimore, 1991). This was supported by pioneering stud-

ies with cell hybrids and heterokaryons, in which terminally differenti-

ated cells could be successfully reprogrammed into muscle cells by

cell fusion (Weiss & Green, 1967; Blau et al, 1983; Pomerantz et al,

2009), and later by gain-of-function approaches based on key TFs

(Davis et al, 1987). While these experiments established that cell iden-

tity is actively maintained by TFs, it was only in 2008 that Hobert

proposed the term of terminal selector gene (TSG) (Hobert, 2008). A

TSG was defined as a gene that specifies individual identities by

directly controlling the expression of a set of downstream differentia-

tion genes (a.k.a. effector genes) via common cis-regulatory motifs

(a.k.a. terminal selector motifs) (Hobert, 2008). Though initially

described within the context of neuron-specific lineage determination

and maintenance in C. elegans (Etchberger et al, 2007), the existence

of TSGs has been confirmed in a plethora of other cell types and also

in vertebrate model systems (Hobert, 2008) (Box 1). Features of

neuronal cell TSG expression that may well apply to other cell types

are as follows: (i) the initiation and maintenance of TSG expression

are independent events; (ii) the initiation may be the result of tran-

sient expression of distinct regulatory factors, either extrinsic signals

or TFs; (iii) after initiation, TSGs autoregulate their expression, ensur-

ing continuous expression and regulation of downstream targets

(Hobert, 2008, 2011).

In higher vertebrate species, acquisition of a differentiated cell

identity seems to require more complex circuitries, whereby a larger

panel of TFs act in a combinatorial manner (Fig 1A) (Holmberg &

Perlmann, 2012). Target/effector genes are not all controlled by a

similar cis-regulatory logic, but instead different combinations of

lineage-specific TFs co-regulate different subsets of target genes in

distinct ways. Thus, only when the complete set of TFs is co-

expressed in a cell, the full repertoire of differentiation genes is

induced and maintained (Holmberg & Perlmann, 2012). Davidson

pioneered the concept of gene regulatory networks (GRN) governing

the development of body plan and organ formation in the embryo
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Box 1. Building the CRC of dopaminergic neurons

Efforts to classify neuronal identity have greatly contributed to our understanding of CRCs, with studies in C. elegans being the first to conceptualize
various components of CRCs such as TSGs (Hobert, 2008). For example, PBX/CEH-20, part of the PBX TALE (three-amino-acid loop extension) home-
odomain proteins (Selleri et al, 2019), was first identified to initiate and maintain the terminally differentiated state of dopaminergic (DA) neurons,
thereby acting as a TSG (Doitsidou et al, 2013). It was later found that PBX factors, in particular Pbx1, have a conserved role in mouse midbrain DA
neurons (Villaescusa et al, 2016). More recently, a genetic approach was used to specifically ablate Pbx1 expression in mouse DA neurons to achieve
temporal control over its expression, confirming the involvement of Pbx1 in an evolutionarily conserved CRC (Remesal et al, 2020). This study not only
confirmed the involvement of Pbx1 in the production of dopamine, but also showed that this TF is required for the expression of a broad range of
olfactory bulb DA effector genes (Remesal et al, 2020). Such a genetic approach enabled the distinction between the late roles of Pbx1 in terminal dif-
ferentiation and preservation of neuronal identity (Remesal et al, 2020) and its early activities in neuroblasts as well as in midbrain DA neuron specifi-
cation (Grebbin et al, 2016; Villaescusa et al, 2016) (Box 1 Figure).

Box 1 Figure. The role of Pbx1 in the CRC of olfactory bulb DA neurons.
Pbx1 is a TF that is continuously expressed from progenitor to mature neurons. Conditional knockout approaches were key for elucidating the role of Pbx1 not
only in the specification of midbrain DA neurons (Villaescusa et al, 2016), but also specifically in the CRC of olfactory bulb DA neurons (Remesal et al, 2020). DA:
dopaminergic.

The transcriptional characterization of cell populations can be facilitated by the prior knowledge of TFs that promote cell identity and unfold a CRC
network. For instance, the use of known DA lineage marker genes enabled Fernandes and colleagues to describe a previously unknown heterogeneity
of DA neurons derived from human induced pluripotent stem cells (Fernandes et al, 2020). Using scRNA-seq to obtain an unsupervised clustering of
the population of cells, the group identified six distinct cell types, two being neuron progenitor populations and four being subpopulations of DA neu-
rons. Although these populations differed in expression of certain genes, all expressed typical DA lineage markers, including Pbx1. Additionally, the
in vitro transcriptional data overlapped well with single-cell transcriptomic datasets of post-mortem substantia nigra, which validated the transcrip-
tional heterogeneity found in subpopulations of human DA neurons.
Given that DA neurons are degenerated in individuals with Parkinson’s disease, building the CRC network in DA neurons will not only enrich our under-
standing of this cell type, but also, potentially, contribute to the development of disease therapies (see section “Assigning functional relevance to CRCs”).
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(Davidson & Erwin, 2006). TFs and transcriptional regulators are

GRN components, and their target sites are the cis-regulatory DNA

modules. Because each module is regulated by multiple TFs and

each TF interacts with multiple modules, it is possible to represent

developmental patterns of gene expression as an interlocking

network (Peter & Davidson, 2016). Beyond early embryonic

processes, GRN circuit design has been applied to describe the tran-

scriptional control of binary fate choices in stem cell differentiation,

for example, in the hematopoietic lineage (Graf & Enver, 2009;

Davidson, 2010; Xia & Yanai, 2019). Furthermore, seminal studies

from embryonic stem cells (ESCs) have revealed that a small set of

TFs, such as NANOG, SOX2, and OCT4, called core TFs, not only

bind to their own loci, but also mutually regulate one another,

thereby forming cross-regulated feed-forward loops that maintain

pluripotency (Boyer et al, 2005). The core TFs and their intercon-

nected auto-regulatory loops have been termed “core regulatory

circuitry” (CRC) (Boyer et al, 2005; Young, 2011).

Arendt et al (2016) further extended these models and introduced

the concept of core regulatory complex (CoRC), whereby cell type-

specific gene expression not only requires the activity of a specific

combination of terminal selectors but also depends on their physical

cooperativity. Based on such a model, the origin of a new cell type

in evolution coincides with the occurrence of a unique CoRC,

distinct from its evolutionary sister cell type (Arendt, 2008; Arendt

et al, 2016). While the primary function of CRC or CoRC factors is to

keep cells in a stable differentiated state, the notion of GRN

describes a temporally hierarchical framework of gene expression

that controls a differentiation process and adapts in response to

external signals and other influences during development (David-

son, 2010; Marioni & Arendt, 2017) (Fig 1B).

Since CRC factors provide the ultimate instructive “code” under-

lying the expression of the effector genes in differentiated cells,

cellular identifiers, such as the functional output, cannot be consid-

ered separately. Thus, the CRC concept might provide a standard-

ized and comprehensive definition of a cell type, as the TF

regulatory network, which is necessary for the induction and main-

tenance of cell type-specific gene expression program in differenti-

ated cells.

In this review, we discuss how CRC TFs can be employed to

define cell identity in the context of differentiation strategies, which

can benefit regenerative medicine.

Identifying a core regulatory circuit

Several efforts have been made to identify individual components of

cell type-specific CRCs (Graf & Enver, 2009; Xia & Yanai, 2019). To

date, most of our knowledge is based on the use of expression

profiles of core TFs as a proxy for CRCs. However, to build the

network, transcriptomic data need to be integrated with chromatin

analyses in computational models for protein–protein, gene–protein,

and regulatory element interactions (Fig 1A).

INTRINSIC INFLUENCE

Epigenetically inherited
cell memory

CRC

Other TFs/
circuits

Effector gene expression

Effector protein expression

Cell function | Behaviour | Morphology

EXTRINSIC INFLUENCE

Signalling/microenvironment Terminally
differentiated cells

Undifferentiated
developing cells

A B

Self-sustaining
network

GRN1 GRN2 CRC

Temporally
transient networks

©
 E

M
B

O

Figure 1. Cell identity is regulated by CRCs.

(A) Conceptualizing different types of information (e.g., transcriptomics, epigenomics) in the flow of biological information from DNA to function in order to shape our
knowledge of CRCs. Downstream processes (purple), such as gene and protein expression, are routinely measured using transcriptomics and proteomics. Further
downstream of this is cellular phenotype, a more complex readout which is measured using various assays and microscopy techniques. Factors that influence the CRC of
a cell (green) include intrinsic factors and extrinsic factors, such as epigenetic memory and the external environment, respectively. While an overall flow of information is
unidirectional (from top to bottom), many factors influence each other in more complex ways. (B) Model of cell identity being regulated by GRNs through development
and CRCs in differentiated cells. We propose that CRCs define differentiated cell types and GRNs are temporally transient networks which drive cellular differentiation
during development. GRNs adapt in response to external signals and other influences during development, resulting in a series of different developing cell states. Once
cells become terminally differentiated, the TF network becomes more stable and can be defined as a CRC, which is autoregulating and activates the expression of the
terminal effector gene battery. While GRNs and CRCs can be identified using similar methods, studies of GRNs additionally benefit from lineage tracing and pseudotime
analysis to account for their temporal aspect.
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Transcriptomics: from population to single-cell analyses
Cell type-enriched sets of TFs, the main components of CRCs, are

still primarily discovered by transcriptome analyses (Xia & Yanai,

2019) (Fig 2A). Over the last decades, the shift from bulk transcrip-

tomics to single-cell or single-nucleus RNA-sequencing (scRNA-seq

and snRNA-seq, respectively) has started to provide new insights

into gene modules underlying individual cell types (Menon, 2018).

Moreover, these approaches in genomics and transcriptomics at a

single-cell resolution have led to depositories such as the Human

Cell Atlas (HCA). The HCA is a global initiative, which aims to

create a comprehensive reference map of all human cell types based

on their molecular profiles and their classical cellular descriptions

(Regev et al, 2017). The purpose is to provide a unique identifi-

cation of each cell type and a common framework for understanding

biological processes in health and disease. Single-cell atlases are

already available for adult human tissues, including the lung,
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Figure 2. Methods employed to identify CRCs.

(A) Single-cell transcriptomics allows the identification of cell populations or states (top). Putative CRC components for these cell identities can be identified by defining
the TFs and downstream genes enriched in these cells (bottom). (B) Epigenetic methods allow the identification of cis-regulatory elements that make up the CRC.
Chromosome conformation capture (3C/HiC) identifies regions of DNA, which are in close contact with each other, potentially including enhancer–promoter interactions
(left). ATAC-/DNase- and ChIP-seq for histone modifications identify regions of open chromatin, which can be used to identify enhancers as well as promoters and
actively transcribed genes (right). (C) Computational methods are used in multiple aspects of CRC identification. Clustering of single-cell transcriptomics data allows
discovery of previously unknown cell types, while pseudotime analysis help identify transcriptional states when cell fate decisions along developmental trajectories are
made (top). Several algorithms can make data-driven predictions of CRCs by analyzing TF co-expression and performing GRN inference (middle). Other relevant data
supplied by users or deposited in databases can inform on CRC mechanisms (e.g., chromatin accessibility, promoter and enhancer states, TF-binding and protein–protein
interactions) and be integrated to refine CRC predictions (bottom).
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kidney, pancreas and liver, and sequencing of fetal tissues is also

ongoing (https://data.humancellatlas.org/).

To date, transcriptome analyses have enabled the classification

of specific mammalian brain cells in spatiotemporal and cell-type

databases (Keil et al, 2018; Arlotta & Pas�ca, 2019). The spatial

transcriptome atlas of the adult human brain from the Allen

Human Brain Atlas (AHBA), for example, comprises histological

analysis and comprehensive microarray profiling of nearly 900

neuroanatomically precise microdissected sites of the brain in two

individuals (Hawrylycz et al, 2012). More recently, in 2014, the

U.S. National Institutes of Health funded the BRAIN Initiative Cell

Census Consortium (BICCC) (Ecker et al, 2017). The initiative

combines ten pilot projects spanning multiple approaches, includ-

ing single-cell omics and species (mice, rats, zebrafish, and

humans) with the final goal to classify brain cell types based on

integrated analysis of their molecular, anatomical, and physiologi-

cal properties. The BICCC network works closely with the HCA to

develop a comprehensive atlas of all cell types in the human

body within a common coordinate framework (Regev et al,

2017). BICCC groups developed new technologies for profiling

single neurons that identified new cell types or cell states in the

nervous system (Tasic et al, 2016).

The availability of single-cell data has allowed the characteriza-

tion of heterogeneous transcriptional profiles, context-dependent

regulatory relationships, and functional interactomes with higher

granularity (Aibar et al, 2017; Mohammadi et al, 2019). Kelley et al

(2018) used scRNA-seq data to examine cell-type variations across

brain regions in intact human tissue. This resulted in a robust strat-

egy to define gene modules enriched in major neuronal subtypes,

which they termed “core transcriptional identities” (Kelley et al,

2018; Menon, 2018).

Despite its many advantages, scRNA-seq techniques are

susceptible to several influences, which can bias the results (Chen

& Zhou, 2017; Keil et al, 2018). Several technical factors can

introduce variations in the sequencing data; cell dissociation and

suspension preparation may introduce technical noise; and stress

to the cell-type viability could lead to alterations in the gene

expression profiles (Ecker et al, 2017; Menon, 2018; Kelley et al,

2018). As some classes of cells are more fragile and prone to

rupture than others, this will introduce bias in the populations

captured. Other challenges include transcripts of short length or

of low abundance in a single cell. The low amount of material

may result in uneven RNA loss leading to gene drop-out events

which can be difficult to measure accurately (Chen & Zhou, 2017;

Keil et al, 2018). In particular, Mawla and Huising have illus-

trated the limitations of pancreatic islets transcriptomics where

the impact of endocrine cells, other than the insulin-producing b-
cells, or auxiliary cells in the disruption of blood glucose home-

ostasis is often overlooked due to their lower abundance (Mawla

& Huising, 2019). Although whole islet analysis is limited by the

mixture of cells, which differ in abundance, Bramswig and Kaest-

ner discussed the reliability of adding a sorting strategy to deter-

mine cell type-specific changes (Bramswig & Kaestner, 2014).

Another challenge of developing a comprehensive human cell

atlas is that scRNA-seq requires fresh tissue and therefore relies on

limited tissue donations collected either surgically or post-mortem

(Ecker et al, 2017; Kelley et al, 2018). A valuable alternative is

snRNA-seq which can be applied to archived frozen samples and

provides less biased cellular coverage (Bakken et al, 2018). In fact,

Lake et al (2016) revealed 16 neuronal subtypes using nuclear RNA

from single nuclei harvested from post-mortem tissue, demonstrat-

ing snRNA-seq as a promising method to analyze the human brain.

Similarly, snRNA-seq overcame the technical problems due to rapid

enzymatic RNA degradation upon resection of pancreatic tissue,

which historically have led to underrepresentation of exocrine cells

and hampered comprehensive sequencing of human exocrine

pancreatic cells (Tosti et al, 2021).

An additional challenge in single-cell transcriptomics is to clas-

sify cell variability, to define cell “types” and to distinguish them

from transient cell “states”. A consensus on whether a cell going

through different states should still be considered the same cell type

has not yet been achieved. Xia and Yanai proposed a “periodic

table” approach to distinguish cell types from cell states. Typically,

scRNA-seq analysis relies on unsupervised clustering algorithms

based on the differential expression of genes to identify the cell

types (Xia & Yanai, 2019). This uncovers modules of genes and

provides an initial map of the relative proportions of different cell

types (Regev et al, 2017; Menon, 2018). However, clustering based

on differential gene expression might overlook the fact that cell

states, such as the cell cycle or stress, are also captured (Kiselev

et al, 2019). By contrast, by defining cell identity using the concept

of CRCs, a given cell is expected to show a unique set of TFs regard-

less of its state, which would help to distinguish between cell types

and cell states. Hence, Xia & Yanai propose a cell clustering

approach that combines both differentially expressed genes and the

expression profile of TFs (Xia & Yanai, 2019). This represents a

practical approach for distinguishing cell states within the cluster of

a given identity.

Epigenetic modifications and chromatin landscapes
Defining CRC factors and building a network requires elucidation of

the relationships between the regulators of gene expression (TFs)

and the target genes (effector genes). TFs activate or inhibit the

expression of genes by binding specific regulatory sequences,

including promoters and enhancers (Spitz & Furlong, 2012). Identi-

fying the enhancers that regulate genes of interest or are bound by

key TFs is therefore crucial to understand the connections between

the players in the CRC. As enhancers cannot be uniquely character-

ized by a particular sequence or feature (Coppola et al, 2016), they

are identified using multiple approaches combined (Fig 2B).

Coordinated experiments interrogating transcriptional responses

and chromatin binding via chromatin immuno-precipitation with

next-generation sequencing (ChIP-seq) can offer insights into dif-

ferent levels of gene regulation, TF-binding motifs, DNA and chro-

matin modifications, and how each component is coupled to a

functional output (Holmberg & Perlmann, 2012; Wilson & Filipp,

2018). Examples of CRCs in specific lineages are included in Box 1

and Box 2.

The majority of enhancers, in order to influence gene expression,

are located in proximity to their target gene’s promoter. Pairs of

genomic loci which are nearby in 3D space can be identified using

chromosome conformational capture (3C) (Dekker et al, 2002) or

Hi-C (Belton et al, 2012). More conveniently, the genome can be

scanned for accessible chromatin regions. Accessibility can be

assayed by DNase-seq (Boyle et al, 2008) or ATAC-seq (Buenrostro

et al, 2015), which work by partial DNA digestion or transposases,
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Box 2. A CRC view of the pancreas

Mist1 and Ptf1a, two TFs involved in the CRC of pancreatic acini, exemplify the way in which various technologies complement one another to inform
our knowledge of CRCs. The function of Mist1 and Ptf1a in acinar tissue has been established thanks to mouse genetic studies (Krapp et al, 1996;
Lemercier et al, 1997; Pin et al, 2001). Together, Mist1 and Ptf1a bind and drive the transcription of over a hundred downstream acinar genes through
reiterated feed-forward regulatory loops (Jiang et al, 2016). However, the depth and nature of these TFs’ involvement in acinar cell identity was not
understood until more recently when a combination of epigenetic and transcriptomic analyses revealed that they are part of a CRC (Jiang et al, 2016).
ChIP-seq analysis revealed that Mist1 and Ptf1a share many target genes with highly juxtaposed binding sites. Ptf1a drives expression of Mist1
through binding to its enhancer, thus generating a self-sustaining regulatory loop between the two factors capable of maintaining not only itself, but
also expression of effector genes essential for acinar cell identity.
Within the endocrine compartment of the pancreas, loss-of-function experiments also uncovered the roles of potential CRC constituents [comprehen-
sively reviewed in (Romer & Sussel, 2015)]. Specifically, the development of insulin-producing b-cells depends on several TFs such as Pdx1, Ngn3, and
Nkx6.1 (Murtaugh, 2007; Best et al, 2008; Arda et al, 2013; Romer & Sussel, 2015; Jennings et al, 2015). While some of these developmentally crucial
TFs are also members of the CRC governing terminal b-cell identity, additional TFs such as MafA and MafB are required to maintain the mature b-cell
phenotype through regulation of downstream effector genes involved in b-cell function (Kataoka et al, 2002; Matsuoka et al, 2004; Nishimura et al,
2015; Zhu et al, 2017; Russell et al, 2020).
scRNA-seq studies have unveiled a remarkable heterogeneity within mouse and human b-cells (Baron et al, 2016; Muraro et al, 2016; Segerstolpe et al,
2016; Xin et al, 2016; Lawlor et al, 2017; Mawla & Huising, 2019), which has further contributed to our understanding of these cell types. Wang and
colleagues have taken advantage of single-cell transcriptomic data to model the relationship between eight master TFs (Pdx1, Ptf1a, Nkx6.1, Sox9,
Hes1, Arx, Ngn3, and Pax4) in the pancreatic cell lineage (Wang et al, 2020). An adaptive landscape was constructed in which states were annotated
either as mature or progenitor cell types based on prior knowledge of the relationships between these factors (Wang et al, 2020). The model infers
additional transition states along different pancreatic lineage trajectories as well as previously unrecognized progenitors characterized by distinct CRC
systems (Wang et al, 2020).

Box 2 Figure. CRCs maintain distinct endocrine and exocrine cell type in the pancreas.

The pancreas contains several highly specialized cell types with distinct physiological secretory roles; these unique cell identities are maintained by independent
CRCs. (A) In the acinar CRC, Rbpjl and Ptf1a drive expression not only of acinar terminal selector genes (orange arrows), but also of themselves and other CRC
members (light green arrows). This is an example of the self-sustaining nature of CRCs. (B) Numerous TFs guide the development and maturation of the insulin-
secreting b-cells. Among these TFs, Ngn3 is extremely important during development but does not participate in the CRC of mature b-cells, while MafA and MafB
are essential TSGs at later stages for b-cell functionality. Finally, some TFs, such as Pdx1, are important in both development and in the CRC governing long-term
cell type maintenance.
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respectively. As promoters and actively transcribed genes are also

located in accessible chromatin regions, chromatin accessibility

measurements need to be combined with other datasets to predict

enhancers. For example, Thibodeau and colleagues were able to

effectively predict enhancers from ATAC-seq data by combining it

with sequence information such as GC% and known motifs (Thi-

bodeau et al, 2018).

Chromatin accessibility can also be detected indirectly by search-

ing for associated histone or DNA modifications using ChIP-seq

(Creyghton et al, 2010; Rada-Iglesias et al, 2011). High levels of

histone H3 lysine-27 acetylation (H3K27ac) typically mark active

proximal and distal (e.g., enhancers) regulatory elements, while

monomethylated H3 lysine-4 (H3K4me1) marks primed or active

enhancers in the absence or presence of H3K27ac, respectively

(Shlyueva et al, 2014). This is a general phenomenon reported in

various cell types, including human and mouse ESCs undergoing

differentiation (Creyghton et al, 2010; Rada-Iglesias et al, 2011).

Tiwari et al (2018) integrated transcriptomic and epigenomic analy-

ses to delineate gene regulatory programs that drive the develop-

mental trajectory from mouse ESCs to astrocytes. By examining

H3K4me1 enrichment patterns at stage-specific H3K27ac sites

during astrogliogenesis, they were able to define regulatory

elements unique to each stage. Next, by inferring the most highly

associated TF-binding motifs at these elements, they unveiled

drivers of the underlying differentiation trajectory. In this way, NFIA

and ATF3 were identified as drivers of astrocyte differentiation from

neural precursor cells, while RUNX2 promotes astrocyte maturation

(Tiwari et al, 2018). Another histone modification, trimethylated H3

lysine-4 (H3K4me3), is commonly used to identify promoters (Guen-

ther et al, 2007). The number and range of histone modifications

that can be assessed is limited by the availability of appropriate anti-

bodies (Satterlee et al, 2010), which can be of variable quality (Park,

2009). Another limitation of ChIP-seq is the requirement for cross-

linking the DNA, which can cause epitope masking and technical

artifacts (Satterlee et al, 2010; Baranello et al, 2016) meaning a large

amount of starting material is required for accurate results, typically

10 million cells (Park, 2009).

High levels of H3K27ac, together with high abundance of TFs,

transcriptional coactivators, and chromatin remodelers binding

characterize a class of regulatory elements that have been termed

super-enhancers (Hnisz et al, 2013; Whyte et al, 2013; Moorthy

et al, 2017). These are major regulatory components of the gene

expression program that shapes cell identity (Wang et al, 2019).

Core TFs typically bind super-enhancers of their own genes, posi-

tively regulating their own expression, as well as the super-enhan-

cers of many other cell type-specific genes, thereby establishing an

interconnected regulatory network (i.e., CRC) (Hnisz et al, 2013;

Whyte et al, 2013). Saint-Andr�e and colleagues have mined super-

enhancers as an unbiased approach to identify core TFs in human

ESCs, creating a map of the transcriptional regulatory circuitry

involved in pluripotency and other cell lineages (Saint-Andr�e et al,

2016). Integrated and interactive databases of super-enhancers for

human and mouse genomes have been made available as resources

(Khan & Zhang, 2016; Qian et al, 2019; Jiang et al, 2019). Super-

enhancers have been recently identified as having a unique role in

transcriptional regulation in cancer (Bradner et al, 2017). As onco-

genic events can go hand in hand with a loss of cell identity, further

investigation of transcriptional dysregulation in cancer may shed

light on transcriptional programs in normal cells and unveil cell

type-specific CRCs (Bradner et al, 2017).

Similar to transcriptomes, epigenetic signatures can be detected

at single-cell level resolution. For example, single-cell ATAC-seq

(scATAC-seq) can reveal cell-specific regulatory signatures charac-

teristic of CRCs (Fullard et al, 2018). Single-nuclear ATAC-seq of the

mouse forebrain has identified cell type-specific genomic elements,

many of which are distal enhancer elements (Preissl et al, 2018).

TFs that bind these elements are candidate master regulators of dif-

ferent neuronal identities (Preissl et al, 2018). Recent studies based

on single-nucleus methylomes have also expanded the atlas of brain

cell types and identified regulatory elements that drive conserved

brain cell diversity (Luo et al, 2017). Taken together, these studies

highlight how studying chromatin modifications across different cell

types can help identify candidate CRCs.

Although single-cell epigenomics has allowed more precise cell

type-specific modifications to be detected, it faces similar challenges

to those of scRNA-seq. Assays based on single-cell sequencing

require amplification strategies and individual cell isolation which

limit the analysis of cells of lower abundancy and end-sequencing of

mRNA transcripts (Clark et al, 2016). For example, techniques like

scATAC-seq require a “cut and paste” mechanism to examine chro-

matin accessibility, which not only introduces bias but also results

in extensive signal loss and generation of unusable fragments (Sun

et al, 2019; Philpott et al, 2020). Furthermore, mitochondrial DNA

could be present in ATAC-seq reads (Sun et al, 2019). Future tech-

nological advances addressing these areas will improve the ability

of ATAC-seq to capture a whole coverage of open chromatin sites

and to detect TF information.

Computational approaches to predict CRCs

Advances in high-throughput sequencing technologies have led

to the development of multiple computational algorithms designed

to predict candidate core TFs and map CRCs (Fig 2C). Some

approaches allow the integration of data using gene–gene, protein–

protein, gene–protein, and regulatory element interactions and

provide resources and insights into basic principles governing tran-

scriptional regulatory networks (Neph et al, 2012; Rolland et al,

2014; Saint-Andr�e et al, 2016; Khan & Zhang, 2016; Qian et al, 2019;

Jiang et al, 2019; Moore et al, 2020).

Computational methods have been established to predict the

minimum combination of TFs required for inducing changes in cell

identity as well as improving the efficiency of reprogramming to

pluripotency (Cahan et al, 2014; D’Alessio et al, 2015; Rackham

et al, 2016; Biddy et al, 2018; Nicetto & Zaret, 2019; Schiebinger

et al, 2019). Based on just transcriptomic data, a simple method to

select TFs is to calculate expression specificity for each cell type

against multiple cell types. This measurement provides information

about transcriptional control of cell identity and candidates can then

be verified by reprogramming experiments (D’Alessio et al, 2015).

However, this prediction may include false positives due to oversim-

plification. Other computational algorithms have tackled this prob-

lem by inferring GRNs. These algorithms explore and model the

relationships between TFs and target genes based on the expression

patterns across samples. For example, ARACNe is an algorithm

which identifies potential TFs and putative target genes by “mutual

ª 2021 The Authors The EMBO Journal 40: e106785 | 2021 7 of 12

Nathalia Almeida et al The EMBO Journal



information”, a measure of mutual dependence in information

theory (Basso et al, 2005). GENIE3 is a machine learning method

that infers GRNs by learning the complex co-expression relation-

ships of TFs and candidate target genes (Huynh-Thu et al, 2010). It

weighs TFs by their ability to predict expression of target genes and

construct a TF network with the highest weights. A common limita-

tion to GRNs inference is the requirement for large amounts of gene-

expression data. The data complexity, partially in the form of

expression variability, is key to constructing gene-gene relation-

ships, such as co-expression. This variability is assumed to be repre-

sentative of perturbations in cells of identical types. Experimental

conditions need therefore to be carefully designed to examine such

biologically relevant variability without compromising cell identity

regulation. Moreover, the mechanisms of inferred networks need to

be extensively validated in experiments. The recent accumulation of

reliable data of multiple omics-types provides readily available

information to direct mechanistic studies.

Multi-omics data can also be integrated during CRC inference to

make supervised predictions. Ideally, this type of data is generated

from a single purified population of cells. Transcriptomic data

inform TF-target gene relationships and co-factor expression, which

may indicate phenotypic specificity of the regulatory complex. TF

activity on target genes can be inferred from ChIP-seq peak profiles,

especially when they overlap with active promoters (H3K4me3

peaks) and enhancers (H3K27ac peaks). Chromosome conformation

capture technologies can provide a basis for cell type-specific predic-

tions of enhancer-promoter interactions. Also, TF activity can be

studied by looking at overlapping peaks mapped by DNase-seq or

ATAC-seq. Some of these epigenetic data are available in databases,

such as ENCODE (Dunham et al, 2012), Roadmap Epigenetics

(Roadmap Epigenomics Consortium et al, 2015), Blueprint (Martens

& Stunnenberg, 2013), and GeneHancer (Fishilevich et al, 2017),

especially for stable cell lines. Furthermore, experimental protein–

protein interaction information curated in databases, such as

StringDB (Szklarczyk et al, 2018), IntAct (Orchard et al, 2014), and

BioGrid (Oughtred et al, 2018), enable consideration of co-factors

and TF complexes in building a CRC. While acquiring deep multi-

omics data is not yet technologically feasible, computational algo-

rithms have been designed to integrate data from various databases

with minimum user input for CRC inference. SCENIC infers TF

GRNs using GENIE3 and applies RcisTarget to further reduce false-

positive TF-target gene relationships in the network by performing

cis-regulatory motif analysis (Aibar et al, 2017). While intended for

single-cell data, it is applicable to any transcriptomic datasets with

sufficient size and complexity. The recently developed computa-

tional method Multi-omics network inference (Moni) integrates TF

ChIP-seq data, protein–protein interactions, enhancer–promoter

interactions, and reference RNA-seq data from databases, along with

individual user input of cell type-specific datasets to identify TFs

and co-factors, and eventually reconstructs enhancer-promoter

GRNs (Jung & del Sol, 2020). Although this approach is limited by

the multi-omics data available for each cell type, the construction of

precise CRCs will become more feasible as “omics” technologies

mature and become more affordable. Advances in computational

methods will need to be pursued in parallel to address challenges

associated with data integration—to link data from heterogeneous

sources and different measurement types with increased complexity

and perform correction of batch effects.

The availability of single-cell data has inspired novel approaches

to integrate data. Schiebinger et al (2019) applied the mathematical

concept of optimal transport, which efficiently computes a distance

between distributions, to scRNA-seq profiles of mouse embryonic

fibroblasts undergoing reprogramming to pluripotent stem cells. TFs

predictive of various fates were inferred and then experimentally

tested. Among others, the homeobox Obox6 was found to correlate

strongly with the pluripotent cell state and when combined with

OCT4, KLF4, SOX2, and MYC factors, it enhanced reprogramming

efficiency (Schiebinger et al, 2019). However, as previously

mentioned, while single-cell transcriptomics allow identification of

new cell types and states, an immediate challenge is to establish

and validate consensus assignment of cell types and states, and to

standardize experimental procedures to generate comparable

results. Future techniques that enable collection of multiple data

types from single cells or a highly homogenous population will (1)

enhance the granularity and precision of CRC inference methods,

(2) help to gain deeper insights into the complexity of CRCs, such as

the hierarchy and molecular mechanisms of regulation, and (3)

enable characterization of variability of CRCs across time, cell states

and types.

In developmental systems, the concept of cell state refers to cell

fate transition along a particular developmental trajectory (Kester &

van Oudenaarden, 2018). With time included as a variable, more

advanced computational methods are needed that can integrate data

across a time scale. An example is dynGENIE3, which infers dynam-

ical GRN models from time series expression data (Huynh-Thu &

Geurts, 2018). These methods are particularly useful for studying

changing GRN along the developmental trajectory. Furthermore,

cross-sectional single-cell data that captures continuous develop-

mental stages can be reconstructed into pseudo time-series. More

than 50 bioinformatics tools have been developed for pseudotime

analyses in scRNA-seq data (Saelens et al, 2019; Tritschler et al,

2019). Beyond embryonic development, single-cell pseudotime

approaches provide powerful means for identification of differentia-

tion trajectories in adult stem cell compartments as well as in

disease (Tritschler et al, 2019). Since pseudotime analysis orders

cells according to their overall transcriptomic similarity (Trapnell

et al, 2014), it should be interpreted as a relative measure of cellular

differentiation state, or maturity, rather than one on an absolute

time-scale. Once such a trajectory is inferred, the transcriptional cell

states at which fate decisions are made and the TFs driving these

decisions can potentially be identified. For example, pseudotime

series can be used to calibrate models such as non-linear ordinary

differential equation models (Ocone et al, 2015) that capture CRC

dynamics. It should be noted that pseudotime approaches cannot

replace traditional cellular lineage tracing techniques (Kester & van

Oudenaarden, 2018) but the two are complementary and should be

used to validate each other.

Assigning functional relevance to CRCs

Transcriptomics, epigenetics, and computational approaches can be

used to predict CRC components and architecture. However, func-

tional experiments, such as genetic perturbation and reprogramming

studies, provide validation of these predictions. An important chal-

lenge is to match transcriptional and functional profiles of a cell
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population. In some cases, cells with apparently identical CRCs

exhibit disparate functions. A compelling example of this is the exis-

tence of dynamic, interchangeable states between pancreatic b-cells,
which are likely to be controlled at multiple levels and influenced

by the pancreatic islet microenvironment (Dominguez-Gutierrez

et al, 2019); here, the existence of multiple combinations of states

may correlate with varying levels of insulin secretion. Diverse

calcium responses to glucose stimulation are also found among b-
cells, and this has recently been shown to further fluctuate when

the cells are detached from their host islets (Scarl et al, 2019). Func-

tional differences of this kind have been reconciled in the context of

neuronal subtypes possessing the same CRC, where the activity of

terminal selectors was demonstrated to vary in the presence of

repressor proteins confined to a specific cell subtype, thereby

curbing the expression of the terminal gene battery (Hobert, 2016).

Consequently, there exist limitations when considering cell identity

exclusively from a molecular or functional perspective and the CRC

should not be considered in isolation.

The concept of CRC not only provides a more comprehensive

way of defining cell identities but might also have direct implica-

tions in regenerative medicine. For example, the knowledge of core

TFs and CRCs underlying a desired cell identity may have a direct

impact in lineage reprogramming and advance its clinical transla-

tion. Indeed, direct lineage reprogramming represents a strategy for

generating desired functional cells that can be used in cell therapies

(Heinrich et al, 2015), as the idea underlying successful lineage

reprogramming is based on the knowledge of transcriptional

networks governing cellular identity (Graf & Enver, 2009; Heinrich

et al, 2015). A lot of progress has been made in this field, since it is

now possible to obtain an array of different cellular types from

distinct mature populations (Zhou et al, 2008; Vierbuchen et al,

2010; Heinrich et al, 2015; Xu et al, 2015). Direct lineage reprogram-

ming unfolds developmental programs and argues for the engage-

ment of hierarchical developmental CRCs, providing another

strategy for discovering CRC factors.

Concluding remarks

We propose that the CRCs provide a comprehensive and uniform

framework for defining the identity of a cell. The significant increase

in our understanding of gene expression, particularly from single-

cell datasets, underscores the need to unify and integrate new infor-

mation with prior knowledge. At the same time, these new insights

have reopened the definitions of a cell’s identity. While resources

such as the HCA has given us access to information about each cell

of the human body, additional functional studies are required to

build a complete map of CRCs. In particular, the knowledge inferred

from all the available datasets has to be tested in human models

using high-throughput approaches, such as CRISPR-based screening

platforms in human pluripotent stem cells. Large-scale observational

studies offer another way to assess the relevance of suspected CRC

components in a human setting. For example, the Human Knockout

Project (https://www.broadinstitute.org/cardiovascular/human-

knockout-project) studies loss-of-function phenotypic consequences

in naturally occurring human genetic variants. Besides assessing the

functional relevance of TFs, a fundamental challenge is to combine

the transcriptome and epigenomic characterization of individual cell

types with concurrent CRISPR-based genome and enhancer-target-

ing editing approaches. Only such a systems approach will elucidate

if a CRC is self-sustaining and drives the expression of genes, which

maintain unique cellular traits. Finally, future efforts will be directed

to integrate core TFs with cell behavior and function into a more

comprehensive concept of cell regulatory networks.
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