
RESEARCH ARTICLE

Mutation Screening of 1,237 Cancer Genes
across Six Model Cell Lines of Basal-Like
Breast Cancer
Eleonor Olsson1,2, Christof Winter1,2, Anthony George1,2, Yilun Chen1,2,
Therese Törngren1,2, Pär-Ola Bendahl1, Åke Borg1,2,3, Sofia K. Gruvberger-Saal1,2, Lao
H. Saal1,2,3*

1 Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden,
2 Lund University Cancer Center, Lund, Sweden, 3 CREATE Health Strategic Centre for Translational
Cancer Research, Lund University, Lund, Sweden

* lao.saal@med.lu.se

Abstract
Basal-like breast cancer is an aggressive subtype generally characterized as poor progno-

sis and lacking the expression of the three most important clinical biomarkers, estrogen

receptor, progesterone receptor, and HER2. Cell lines serve as useful model systems to

study cancer biology in vitro and in vivo. We performed mutational profiling of six basal-

like breast cancer cell lines (HCC38, HCC1143, HCC1187, HCC1395, HCC1954, and

HCC1937) and their matched normal lymphocyte DNA using targeted capture and next-

generation sequencing of 1,237 cancer-associated genes, including all exons, UTRs and

upstream flanking regions. In total, 658 somatic variants were identified, of which 378 were

non-silent (average 63 per cell line, range 37–146) and 315 were novel (not present in the

Catalogue of Somatic Mutations in Cancer database; COSMIC). 125 novel mutations were

confirmed by Sanger sequencing (59 exonic, 48 3’UTR and 10 5’UTR, 1 splicing), with a

validation rate of 94% of high confidence variants. Of 36 mutations previously reported for

these cell lines but not detected in our exome data, 36% could not be detected by Sanger

sequencing. The base replacements C/G>A/T, C/G>G/C, C/G>T/A and A/T>G/C were sig-

nificantly more frequent in the coding regions compared to the non-coding regions (OR 3.2,

95% CI 2.0–5.3, P<0.0001; OR 4.3, 95% CI 2.9–6.6, P<0.0001; OR 2.4, 95% CI 1.8–3.1,

P<0.0001; OR 1.8, 95% CI 1.2–2.7, P = 0.024, respectively). The single nucleotide variants

within the context of T[C]T/A[G]A and T[C]A/T[G]A were more frequent in the coding than in

the non-coding regions (OR 3.7, 95% CI 2.2–6.1, P<0.0001; OR 3.8, 95% CI 2.0–7.2, P =

0.001, respectively). Copy number estimations were derived from the targeted regions and

correlated well to Affymetrix SNP array copy number data (Pearson correlation 0.82 to 0.96

for all compared cell lines; P<0.0001). These mutation calls across 1,237 cancer-associ-

ated genes and identification of novel variants will aid in the design and interpretation of bio-

logical experiments using these six basal-like breast cancer cell lines.
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Introduction
Among women, breast cancer is the most common malignancy and a leading cause of death
with nearly 1.7 million cases diagnosed worldwide and over 500 thousand deaths every year
[1]. A minority of these cases, 5–10%, are caused by mutations in high-penetrance germline
loss-of function genes (BRCA1, BRCA2) or in low-penetrance susceptibility genes/regions,
although not all of the hereditary genetic factors have been identified [2–5]. However, the vast
majority of breast cancers result from mutations acquired by aging and lifestyle and environ-
mental factors acting in combination with genetic predisposition [6, 7].

Molecular characterization has shown that breast cancer is a highly heterogeneous disease
that can be divided into at least four well-defined subtypes: the hormone receptor positive
subtypes, luminal A and luminal B, the HER2 subtype enriched for cases with HER2 amplifi-
cation, and the basal-like subtype which usually lacks expression of the estrogen (ER), proges-
terone (PR), and HER2 receptors (so called “triple-negative”) [8–10]. Basal-like breast
cancers, which comprise 10–20% of all breast cancers, are also typically high grade, highly
proliferative, genomically unstable, and have frequent somatic mutation of TP53 as well as
loss of PTEN expression, and express basal cytokeratins such as CK5 and CK14 [8, 10–12].
Interestingly, hereditary BRCA1-mutations appears to primarily predispose for the develop-
ment of basal-like breast cancers [13], indicating that BRCA1 dysfunction is a potent driver of
basal-like tumorigenesis. Since basal-like tumors rarely express ER/PR/HER2, there is no rec-
ommended specific targeted therapy in current clinical practice, and generally these tumors
exhibit poor prognosis features as described above. Therefore, there is a great demand for an
improved understanding of basal-like breast cancer biology and for the development of drug
targets for this aggressive subtype.

Recently, massively parallel sequencing has opened up possibilities to perform integrated
large-scale screening studies ranging from the detection of somatic structural variants to the
cataloguing of variants at single base resolution. These studies have given us better understand-
ing of which molecular mechanisms and signaling pathways are aberrant in many types of
solid tumors, and also to some extent within different subtypes of breast cancer [14–16]. None-
theless, the number of recurrently mutated genes in the basal-like breast cancer subtype has
been sparse but notable for a high frequency of TP53mutations (84%); the next most com-
monly mutated gene is PIK3CA (7%) [14]. The use of model systems in vitro and in vivo will be
integral to the identification of new drug targets and development of improved therapeutic
options for basal-like breast cancer. To draw reliable conclusions from these models under any
experimental condition, it will be important to be cognizant of the genomic context of each
model.

In this study, our aim was to improve the characterization of the mutational pattern of basal-
like breast cancer model cell lines. A custom panel of 1,237 cancer-associated genes was used to
perform hybrid capture and deep sequencing on six commonly utilized publically-available
basal-like cancer cell lines (HCC38, HCC1143, HCC1187, HCC1395, HCC1954, and HCC1937)
with matched normal DNA to identify both known and novel gene mutations. Moreover, we
evaluated the use of targeted resequencing data to estimate the DNA copy number profile in the
regions of interest.

Results and Discussion

Detection of somatic variants in breast cancer cell lines
To characterize their mutational profiles, the breast cancer cell lines HCC38, HCC1143,
HCC1187, HCC1395, HCC1937, HCC1954 (previously classified as basal-like [17, 18]), as
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well as their matched normal lymphocyte cell lines, were analyzed using targeted DNA cap-
ture and massively-parallel single-read DNA sequencing. To maintain the mutational profile
of the originating cell line population, all cell lines were obtained directly from the American
Type Culture Collection repository and analyzed at very low passage. A custom SureSelect
library (Agilent Technology) targeting all coding exons for 1,237 cancer-associated genes, a
portion of each gene’s 5’UTR and upstream region, and the entire 3’UTR, was designed and
used to capture approximately 6.5 Mbases of the human genome (see Methods) (S1 Table).
For the tumor and normal cell line DNAs, targeted regions were captured and PCR-enriched
and the libraries sequenced on an Illumina Genome Analyzer IIx instrument. For the cancer
cell lines and matched normal samples, on average 6.4 million (range 5.9–7.1) and 5.7 million
(range 3.7–6.9) unique 75–80 bp reads were sequenced, respectively. The mean coverage of
the targeted area was 127-fold (range 96–152) for the cancer samples and 98-fold (range 87–
127) for the normal samples (S2 Table). Across all samples, on average 90% (range 88–92%)
of the targeted regions had a sequence coverage of 15 reads or more (S2 Table).

The Burrows-Wheeler aligner (bwa) [19] was used for the alignment of sequencing reads to
the reference human genome (hg19), and Genome Analysis ToolKit (GATK) UnifiedGenoty-
per was used for the calling of single nucleotide variants (SNVs) and indels [20]. A mean of
5,494 SNVs (range 5,302–5,740) and 643 indels (range 572–685) that passed the variant calling
filter were identified for each tumor-normal pair (Table 1), and in total 36,822 variants were
called of which 95.7% were known single nucleotide polymorphisms present in dbSNP138. To
check the robustness of our method we compared our variant calls to previously reported
mutations for these cell lines that had been curated in the COSMIC database version 68 [21,
22]. Of 479 somatic mutations in COSMIC in genes that we targeted, 412 (86.0%) were identi-
fied in our data as perfect matches (S3 Table). When allowing for loosely matching variants to
COSMIC (i.e., the position was shifted a few bases or alternatively the GATK UnifiedGenoty-
per detected a substitution as two separate events), an additional 12 variants could be matched
increasing the detection rate to 88.5% (424 of 479). Of note, we detected 94.3% of all SNVs
(412 of 437) whereas only 28.6% (12 of 42) of indels were identified. These results are in line
with single read data being suboptimal for detection of longer indels, and the bwa aligner and
UnifiedGenotyper variant caller GATK pipeline being less than ideally suited for indel calling
in tumor genomes [23]. The majority of COSMIC matching variants (83.3%) were qualified as
“high confidence” somatic variants (see Methods).

In total, 658 high confidence somatic variants were identified across the six basal-like cell
lines, and of these, 490 were heterozygous, 168 were homozygous, and 378 were non-silent
(count of non-silent: HCC1143 n = 41, HCC1187 n = 58, HCC1395 n = 146, HCC1937 n = 53,
HCC1954 n = 37, HCC38 n = 43) (Table 1). The non-silent variants were defined as exonic
indels, non-synonymous SNVs, stopgain or stoploss SNVs and splicing mutations. Out of the
658, 315 variants were novel mutations (not present in COSMIC) and of these 110 were exonic
and 63 were non-silent. Novel non-coding mutations were also found in the 3’UTR (n = 59),
5’UTR (n = 17), and within 1000 bp upstream of the gene transcriptional start site (n = 20)
(Table 1 and S3 Table). Conversely, of the 343 high confidence somatic variants present in
COSMIC (S3 Table), 315 were non-silent.

In line with the high mutation rate of TP53 in basal-like breast cancer [14], TP53 was
mutated in all six basal-like cell lines analyzed [17, 24–26], and in total, there were 17 genes
with non-synonymous somatic high confidence mutations in two or more of the tumor cell
lines (Fig 1). For example, three different homozygous mutations were detected in the CNGA2
gene: two had not been previously described for the BRCA1-deficient cell lines HCC1395 and
HCC1937, and the third was a known homozygous mutation (in COSMIC) in HCC1954.
Additionally, two of the cell lines had non-coding CNGA2 variants: in HCC1143 there was also

Mutation Screening of Six Basal-Like Breast Cancer Model Cell Lines

PLOS ONE | DOI:10.1371/journal.pone.0144528 December 15, 2015 3 / 20



a somatic mutation upstream, and HCC1395 was mutated in the 3’UTR.In both of the BRCA1-
deficient cell lines a novel non-synonymous homozygous mutation in GUCY2F (Xq22, exon3:
c.T851C:p.L284P) was found, and additionally the genes ATRX (Xq21.1), and STARD8
(Xq13.1), GOLGB1 (3q13), SHROOM2 (Xp22.3), and ZNF277 (7q31.1) all harbored non-syn-
onymous mutations. In the cell lines HCC38 and HCC1395, classified as basal B in the work by
Neve et al [17], the AKAP6 (14q12),MACF1 (1p32-p31) and TRPM7 (15q21) genes all had
non-silent mutations (Fig 1). For these genes, it was recently reported that among 81 basal-like
breast tumors, 5% had somatic GOLGB1mutations and 4% harbored mutations in AKAP6
orMACF1 [14, 27]. In another study of triple-negative tumors [28], AKAP6,MACF1, and
TRPM7 were mutated in 3% out of 65 analyzed tumors. In the same cohort,MYO3A was
mutated in 9% of the cases and we also found two non-silent mutations in that gene in the
HCC38 cell line.

Table 1. All called SNVs and indels.

Cancer cell line HCC1143 HCC1187 HCC1395 HCC1937 HCC1954 HCC38 Average Total
Matched normal cell line HCC1143BL HCC1187BL HCC1395BL HCC1937BL HCC1954BL HCC38BL

# of SNPs called (passing variant call filter
in GATK)

5302 5426 5740 5517 5557 5421 5494 32963

# of Indels called (passing variant call
filter in GATK)

572 673 685 621 664 644 643 3859

# of SNPs and indels (passing variant call
filter in GATK)

5874 6099 6425 6138 6221 6065 6137 36822

# of somatic heterozygous variants ("high
confidence" variants in GATK)

51 49 198 87 54 51 82 490

# of somatic homozygous variants ("high
confidence" variants in GATK)

10 23 88 31 4 12 28 168

In dbSNP138 (SNPs >1% minor allele
frequency (MAF), non-clinically
associated, passing variant call filter in
GATK)

5670 5845 6061 5912 5904 5830 5870 35222

Total # of somatic variants ("high
confidence" variants in GATK)*

61 (21) 72 (18) 286 (155) 118 (77) 58 (19) 63 (25) 110 658
(315)

Exonic* 46 (6) 62 (8) 170 (49) 69 (31) 41 (3) 49 (13) 73 437
(110)

frameshift deletion* 1 (1) 1 (0) 1 (1) 0 1 (0) 2 (1) 1 6 (3)

frameshift insertion* 0 4 (2) 0 0 1 (0) 0 1 5 (2)

nonframeshift deletion* 0 2 (0) 0 0 0 0 0 2 (0)

nonsynonymous SNV* 37 (2) 46 (3) 133 (26) 46 (16) 33 (0) 38 (9) 56 333
(56)

stopgain SNV* 3 (0) 5 (0) 6 (0) 5 (1) 1 (0) 1 (0) 4 21 (1)

stoploss SNV* 0 0 0 0 0 1 (0) 0 1 (0)

synonymous SNV* 5 (3) 4 (3) 29 (21) 18 (14) 5 (3) 7 (3) 11 68 (47)

Unknown* 0 0 1 (1) 0 0 0 0 1 (1)

Splicing* 0 0 6 (0) 2 (1) 1 (0) 1 (0) 2 10 (1)

UTR3* 5 (5) 4 (4) 26 (26) 18 (18) 3 (3) 3 (3) 10 59 (59)

UTR5* 1 (1) 0 (0) 8 (8) 4 (4) 2 (2) 2 (2) 3 17 (17)

Others (intronic, upstream,
downstream, intergenic, ncRNA)*

9 (9) 6 (5) 76 (72) 25 (23) 11 (11) 8 (7) 23 135
(128)

# of somatic variants, non-silent ("high
confidence" variant calls in GATK)*

41 (3) 58 (5) 146 (27) 53 (18) 37 (0) 43 (10) 63 378
(63)

*Novel variants in parenthesis

doi:10.1371/journal.pone.0144528.t001
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Sanger sequencing validation
Selecting for exonic, 3’UTR, and 5’UTR variants, 187 SNVs and short indels from the exome
sequencing results were validated by Sanger sequencing of the cell line tumor-normal pairs
(S4 and S5 Tables). Out of the 187, 130 were high confidence and 57 were low confidence
somatic variants with quality-by-depth (QD) values>3. The low confidence variants were
Sanger sequenced to examine the utility of sub-optimal variant calls (S4 and S5 Tables). Of
187 mutations examined, 172 were not present in COSMIC (including 85 exonic, 19 5’UTR,
60 3’UTR, 1 splice site, and 7 intronic variants; S4 Table) and 15 were present in COSMIC
(with 6 of these variants found by GATK UnifiedGenotyper at slightly different positions in
our data; S5 Table).

Of the 172 novel candidates (not in COSMIC), 118 were high confidence variants. Of these,
111 (94.1%) were validated as somatic, 5 (4.2%) were wildtype, none were germline, and 2 vali-
dated with a different mutation: one SNV variant was homozygous instead of heterozygous (at
the same position) and one SNV was a 15 bp deletion in PLCD3 with Sanger sequencing (also
present in COSMIC, COSM50189). In total, 98% of the exonic, 93.9% of the 3’UTR, and 81.8%
of the 5’UTR variants could be validated as somatic (Table 2 and S4 Table). However, only
25.9% (14 of 54) of the low confidence novel candidates could be validated as somatic: 29.6%
were germline and 44.4% were determined as wildtype (Table 2 and S4 Table). Thus, we found
that the majority of high confidence variants could be verified, whereas there are few true posi-
tives among the lower confidence somatic variant calls.

Across the six cell lines, 125 novel somatic variants (111 high confidence and 14 low confi-
dence) were confirmed by Sanger sequencing and of these 59 were exonic, 48 were in 3’UTRs,
10 in 5’UTRs, 1 affected splicing, and 7 mutations were located in ncRNA or intronic regions.
Of the novel somatic mutations within exons, 47 were non-synonymous, 6 were synonymous,

Fig 1. Recurrently mutated genes in 6 basal-like cell lines. The 17 genes with identified somatic mutations in two or more cancer cell lines are shown,
colored according to mutation type. Heterozygous non-synonymous single nucleotide variants (SNV) are in yellow; homozygous non-synonymous SNVs are
in red; heterozygous stopgain/short indels mutations are in light blue; homozygous stopgain/short indels mutations are in blue. 1Non-synonymous SNVs,
stopgain SNVs or short indels also identified in a breast cancer study from TCGA (basal-like tumors) [14]. 2Non-synonymous SNVs, stopgain SNVs or short
indels also identified in a breast cancer study of triple-negative tumors [28]. The subtype classification and receptor status have been described earlier [17,
18, 24].

doi:10.1371/journal.pone.0144528.g001
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2 were stopgain, and 4 were frameshift indels (Table 2 and S4 Table). Of the 15 selected vari-
ants identified by our pipeline but also present in COSMIC, 12 were high confidence variants
whereof the Sanger sequencing results verified all 12: 8 exactly and 4 matched loosely to the
COSMIC positions (<5bp) (due to location in a homopolymer region). Two of the three
remaining low confidence variants were determined by Sanger sequencing to be a single 2-bp
deletion (matching the COSMIC variant COSM20994), and the third was confirmed by Sanger
(matched to both COSMIC and our UnifiedGenotyper call) (S5 Table).

We also selected for Sanger sequencing 36 known variants that were present in COSMIC for
these cell lines but not detected by our pipeline (Table 3 and S6 Table). Of these, 10 mutations
were determined by Sanger sequencing to be in fact wildtype in our cell lines, 1 variant was
germline, and 2 COSMIC variants were found to be a different somatic mutation at the same
locus. On the other hand, 23 of these COSMIC variants (63.9%) were confirmed to be present
by Sanger sequencing, thus representing false-negative calls by our pipeline (S6 Table). To
note, out of the COSMIC variants missed by our targeted sequencing data pipeline but con-
firmed by Sanger, 52% (12 out of 23) were deletions and 7 of these were>10bp (S6 Table).

Previous mutation screening studies including these six cell lines have focused on detecting
mutations only in coding regions, which explain the relatively high numbers of novel muta-
tions outside these regions in our data. However, the fact that we could detect novel mutations

Table 2. Sanger sequencing validation of novel SNVs and indels.

Cancer cell line HCC1143 HCC1187 HCC1395 HCC1937 HCC1954 HCC38 Total Validation
rate (%)

Matched normal cell line HCC1143BL HCC1187BL HCC1395BL HCC1937BL HCC1954BL HCC38BL

# of novel somatic variants validated
vs. analyzed by Sanger (good quality,
loose), "high confidence" variant calls
in GATK

7/8 7/7 49/54 40/40 1/2 7/7 111/
118

94.1

exonic 3 4 21 20 0 2 50 98.0

frameshift deletion 1 1 2 100

frameshift insertion 2 2 100

nonsynonymous SNV 2 2 20 13 2 39 97.5

stopgain SNV 1 1 100

synonymous SNV 6 6 100

splicing 1 1 100

UTR3 4 3 19 16 1 3 46 93.9

UTR5 5 3 1 9 81.8

Others (Intronic, ncRNA, unknown) 0 0 4 0 0 1 5 83.3

# of novel somatic variants validated
vs. analyzed by Sanger (good quality,
loose), "low confidence" variant calls in
GATK

3/13 0/6 6/14 2/7 1/4 2/10 14/54 25.9

exonic 1 4 2 1 1 9 27.3

nonsynonymous SNV 1 3 2 1 1 8 25.8

stopgain SNV 1 1 50

UTR3 1 1 2 18.2

UTR5 1 1 12.5

Others (Intronic, ncRNA, unknown) 1 1 2 100

Total # of novel somatic variants
validated by Sanger (good quality,
loose), "low confidence"+ "high
confidence" calls in GATK

10 7 55 42 2 9 125 72.7

doi:10.1371/journal.pone.0144528.t002
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in coding regions in cell lines previously analyzed by others could possibly be explained by dif-
ferences in sequencing technology, on-target efficiency and sequence coverage, as well as analy-
sis methodologies [22, 25, 29, 30].

Integrated mutational and copy number data
Copy number variation (CNV) across the targeted regions was calculated using the software
CONTRA [31]. CONTRA was specifically developed for analysis of copy number variation in
resequenced data and is designed to handle GC-content bias and differences in sequencing
depth in the input samples. The adjusted mean log ratios derived from CONTRA were seg-
mented with the Bioconductor package GLAD [32] and copy number estimations (log2 ratios)
for individual genes were computed for each tumor cell line (S7 Table).

To validate our copy number estimates, publicly available segmented copy number data
generated using the Affymetrix 6.0 SNP array platform was downloaded for these cell lines
[16]. The targeted exome-derived CNV data and Affymetrix CNV data are plotted in Fig 2a
and S1 Fig. Zoomed-in plots of three selected genes, CDKN2A and PTEN (in HCC1395), and
ERBB2 (HCC1954) are shown in Fig 2b–2d. In general, there was a good concordance in
copy number estimation between the two methods (Pearson correlations between 0.82 and
0.96 per cell line; P-values<0.0001; Fig 2e and S2 Fig) despite the sparse coverage (0.22%) of
the genome in the exome sequencing data.

Mutational profiles and copy number data were integrated to get a comprehensive summary
of the genomic context in the targeted regions of the six breast cancer cell lines. All novel high
confidence non-silent somatic mutations, known variants in COSMIC also detected in our
analyses, mutations confirmed as somatic with Sanger sequencing, as well as genes with high
level amplification or with exonic deletions (i.e., |log2 ratios|>2) were included. In Fig 3, all
genes with any of the above somatic genetic aberrations in two or more cancer cell lines are
presented. For example, known large deletions in the PTEN gene were detected in both of the
BRCA1-deficient cell lines HCC1395 and HCC1937. Moreover, known large deletions of
CDKN2A and CDKN2B and heterozygous SNVs in the BRCA2 gene were found in both of the
basal B cell lines HCC38 and HCC1395 (the BRCA2mutation was novel in HCC38). In the
cancer cell lines classified as basal A [17], the gene NOP9 was mutated in HCC1143 and
HCC1954, and ZNHIT2 was mutated in both HCC1937 and HCC1187. Out of the genes
shown in Fig 3, 91% (74 of 81) had genetic alterations in terms of copy number changes or
somatic mutations in a study of 81 triple-negative tumors [14] in the genes BRCA2 (11%),

Table 3. Sanger sequencing validation of SNVs and indels in COSMIC v68, not detected by GATK.

Cancer cell line HCC1143 HCC1187 HCC1395 HCC1937 HCC1954 HCC38 Total Validation
rate (%)

Matched normal cell line HCC1143BL HCC1187BL HCC1395BL HCC1937BL HCC1954BL HCC38BL

# of variants in Cosmic v68 not
detected by GATK validated vs
analyzed by Sanger

2/3 4/5 4/10 6/8 3/5 4/5 23/
36

63.9

exonic 2 4 4 6 3 3 22 62.9

frameshift deletion 0 3 1 2 0 1 7 87.5

nonframeshift deletion 0 0 2 0 1 1 4 100

nonsynonymous SNV 2 1 1 4 2 1 11 55.0

intergenic 0 0 0 0 0 1 1 100

doi:10.1371/journal.pone.0144528.t003
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CDKN2A (11%), CDKN2B (12%), DIP2C (12%), FARP1 (5%), SLC6A3 (5%), PTEN (6%), as
well as TP53 (85%).

The integrated somatic aberrations were annotated according to signaling pathways [33].
The Notch signaling pathway was affected in 4 of 6 cell lines with non-silent mutations present
in NOTCH4 in HCC1395, DTX3L andMAML3 in HCC1937, NOTCH1 in HCC1954, and also
high-level amplifications of JAG2 and NOTCH3 in HCC1143. Notch signaling is a complex
and highly conserved pathway that may be either tumor suppressive or oncogenic depending
on the cellular context, and may be a therapeutic target for basal-like breast cancer [34, 35].
Genes involved in the phosphatidylinositol signaling system that harbored mutations were
PLCG1 in HCC1395, PLCB2 in HCC1937, DGKE and PIK3CA in HCC1954, DGKG in
HCC1395, PLCB1 in HCC38, and also large homozygous deletions of PTEN in HCC1395 and
HCC1937. The phosphatidylinositol signaling system is well known to be of importance in
breast cancer and regulates key components of proliferation and apoptosis [12]. In the KEGG
pathway for regulation of the cytoskeleton, genes that harbored mutations were FGFR2, RAC2,
and VAV3 in HCC1143; ARHGEF4, ITGB2,MYH9, and PPP1R12A in HCC1187; FGFR1,
ITGA9, PDGFRB, and BCAR1 in HCC1395; CFL2 and PIK3CA in HCC1954; and genes with
high level amplifications were FGF3 and FGF4 in HCC1143, and FGFR4 in HCC1954. The
role of these gene mutations requires further study, however it is intriguing as reorganization
of the actin cytoskeleton could affect focal adhesion stability and is also associated with epithe-
lial-to-mesenchymal transition (EMT), a process thought to increase metastatic potential and
enriched in basal-like breast cancer [36, 37].

Fig 2. Copy number estimation using targeted sequencing data. (a) Whole genome plot of HCC1395 copy number variations derived from targeted
sequencing data analyzed with CONTRA in comparison to segmented Affymetrix 6.0 copy number data for the same cell line. For the sequencing data, the
black datapoints are the CONTRA adjusted mean log2 ratios, and red datapoints are the CONTRA/GLAD segmented copy log2 ratios. For the Affymetrix 6.0
data, blue datapoints are the segmented copy number data. Zoomed-in plots of three selected genes, (b) CDKN2A and (c) PTEN in HCC1395, and (d)
ERBB2 in HCC1954 (color codes are as above). (e) Representative correlation plot for one cell line, HCC1395, of segmented CONTRA copy number data
versus Affymetrix 6.0 segmented copy number data (Pearson r = 0.89). Correlation plots for all cell lines are presented in S2 Fig.

doi:10.1371/journal.pone.0144528.g002
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Predicted effects of somatic mutations
We annotated the high confidence somatic SNVs with three different programs and the com-
plete annotation results are presented in S3 Table. We used Mutation Assessor [38] to categorize
the non-synonymous SNVs as “functional” (i.e., deleterious; 35.3%, n = 116) or “non-func-
tional” (64.7% n = 213). To note, Mutation Assessor only scores the non-synonymous SNVs. A
substantial part of the non-functional variants (114 of 213) in Mutation Assessor were anno-
tated as “disease causing” by another software, MutationTaster [39]. Non-synonymous, synony-
mous, and nonsense mutations are scored by this software and 67.4% (250 out of 371) of these
were annotated as disease causing. Moreover, 26 (7.0%) SNVs were assigned as “polymor-
phisms” by MutationTaster even if they were determined as somatic in our data (but actually
present in dbSNP). In total, 101 variants were categorized as both functional in Mutation Asses-
sor and disease causing in MutationTaster. Using Combined Annotation Dependent Depletion
(CADD) [40], the mutations were scored for deleteriousness along a continuous scale, and

Fig 3. Integrated recurrent somatic mutations and copy number variations. The 34 genes affected by mutation and/or copy number gain or deletion (|
log2 ratio|>2) in two or more cell lines are shown. Color codes are as in Fig 1, with the addition that large homozygous deletions are in green and
amplifications are in purple. 1Non-synonymous SNVs, stopgain SNVs, short indels respective deep deletions and amplifications also identified in a breast
cancer study from TCGA (basal-like tumors) [14]. 2Non-synonymous SNVs, stopgain SNVs, short indels respective homozygous deletions and
amplifications also identified in a breast cancer study of triple negative tumors [28]. The subtype classification and receptor status have been described
earlier [17, 18, 24].

doi:10.1371/journal.pone.0144528.g003
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stopgain SNVs were exclusively top ranked. The CADD scores were significantly higher for
MutationTaster disease causing variants compared to the polymorphisms (P<0.0001, Mann-
Whitney U test) and similarly for the Mutation Assessor functional compared to non-functional
variants (P<0.0001, Mann-Whitney U test). Importantly, CADD also scores most variants out-
side exonic regions. Frameshift indels were not classified by any of the three programs (indels
cannot be matched to CADD database in Annovar).

Base replacement patterns in coding versus non-coding regions
The transitions to transversions ratio (Ti/Tv) for known SNPs in the targeted regions (includ-
ing variants not passing variant call filters) was on average 2.66 for all cell lines. Since the tar-
geted regions contain both coding and non-coding regions, this suggests a low false positive
variant call rate in our targeted sequencing data [41]. Considering only the high confidence
somatic variants, the mutational frequency was on average higher in the coding regions (20.6
mutations/Mbp, range 11.6–48.0) than in the non-coding regions (8.7 mutations/Mbp, range
1.7–19.9) and the BRCA1-deficient HCC1395 cell line appeared to exhibit a hypermutated
genotype. Interestingly, the average Ti/Tv ratio for somatic variants in the coding regions was
lower at 0.94 (range 0.62–3.88) and theHER2-positive cell line (HCC1954) had the highest
ratio, primarily owing to a high proportion of C/G!T/A transitions. For the non-coding
somatic variants, the average Ti/Tv ratio was 1.32 (range 0.57–1.81), and HCC1954 showed the
lowest ratio. Possibly, disparity in the selection pressure and in the efficiency of the repair
mechanisms could explain the differences in ratios between coding and noncoding regions.

Of the high confidence somatic SNVs, a G/C base pair was replaced in 76.4% and 61.0% of
instances within the coding and non-coding regions, respectively. Differences in the GC-con-
tent of the targeted regions, 51.1% in the coding and 47.0% in the non-coding regions, do not
explain the bias. For the somatic variants, C/G!T/A transitions were the most common in
both coding (34.9%) and non-coding regions (35.1%) on average for all cell lines. The second
most common base replacement in the coding regions was C/G!G/C transversions (26.2%)
whereas A/T!G/C transitions were the next most common in the non-coding regions
(21.5%). Accounting for differences in GC-content, the base replacements C/G!A/T, C/
G!G/C, C/G!T/A and A/T!G/C were significantly more frequent in the coding regions
compared to the non-coding regions (OR 1.8, 95% CI 1.2–2.7, P = 0.024; OR 3.2, 95% CI 2.0–
5.3, P<0.0001; OR 4.3, 95% CI 2.9–6.6, P<0.0001; OR 2.4, 95% CI 1.8–3.1, P<0.0001, respec-
tively) (Fig 4, S8 Table).

In a recent study, specific signatures for mutational processes were suggested for breast
cancer, and the most common signatures (Signatures 1B, 2 and 3) involved C/G!T/A, C/
G!G/C and C/G!A/T replacements with an overall prominence for C/G!T/A transitions
(no comparison between coding and non-coding regions were available) [42]. Notably, Signa-
ture 3 is characterized by enrichment for C/G substitutions, and one could speculate that this
signature is associated with the mutational pattern we detected in the coding regions. Interest-
ingly, Signature 3 has previously been associated with cases harboring BRCA1 and BRCA2
mutations [42].

The highest fraction of the C/G!T/A substitutions (59.0% of all SNVs) was detected in the
coding regions of theHER2-amplified cell line HCC1954 and this pattern partly resembles that
of APOBEC mutagenic activity, which is commonly aberrant in many types of human cancers.
Of the C/G!G/C substitutions, which have also been suggested to be caused by APOBEC
editing, HCC1954 had the lowest fraction (7.7%) and instead the basal B cell lines showed the
highest fraction (33.3%). Interestingly, in a recent study it was proposed that breast tumors
belonging to the HER2-enriched subtype often show the APOBEC mutational pattern [43].
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However, even if our data set was limited and derived from cancer cell lines, additional studies
on distinct APOBEC patterns in larger patient cohorts should be considered.

The pattern of adjacent bases, including the base before and after each SNV, was also inves-
tigated. Within the coding regions, SNVs occurred most frequently within the context of T[C]
G/C[G]A and second most commonly at A[C]G/C[G]T, and in the non-coding regions these
combinations were also the two most common, although in reverse order. Moreover, enrich-
ment for these combinations were mainly seen in the Signatures 1B and 2 of the normalized
breast cancer signatures [42]. The SNVs within the context of T[C]A/T[G]A and T[C]T/A[G]
A were more frequent in the coding than in the non-coding regions (OR 3.8, 95% CI 2.0–7.2,
P = 0.001; OR 3.7, 95% CI 2.2–6.1, P<0.0001, respectively) (Fig 5, S9 Table), and again, an
enrichment for these combinations was seen particularly in the normalized Signatures 1B
and 2. The number of each trinucleotide combination in the different regions was taken into
account in the calculations. The most common trinucleotide combination, in absolute terms,
was T[C]T/A[G]A in both coding and non-coding regions (n = 62 and n = 26, respectively).

Conclusion
In conclusion, we have successfully used targeted sequencing of six basal-like breast cancer
cell lines to identify 658 high confidence somatic mutations of which 315 are novel. Sanger
sequencing confirmed 125 novel candidates, with a validation rate of 94% of the novel high
confidence variants indicating that the majority of these are true. DNA copy number was esti-
mated across the genome and agreed well to data from an orthologous method performed
elsewhere. Although a limited number of cell lines were analyzed, mutational base replacement
patterns may reflect complex mutational processes present in these model cell lines and

Fig 4. Base replacements in coding regions versus non-coding regions. Forest plot indicating odds ratio
(marker) and 95% confidence intervals (whiskers) for the frequency of indicated base replacements in coding
regions (CDS) versus non-coding (non-CDS) regions. The dimensions of the squares are inversely
proportional to the standard error (SE) of ln(odds ratio). * P = 0.024; *** P<0.0001 (Bonferroni adjusted).

doi:10.1371/journal.pone.0144528.g004
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Fig 5. Genomic context of mutations in coding regions versus non-coding regions. Forest plot
indicating the odds ratio (marker) and 95% confidence intervals (whiskers) for the trinucleotide context for
base replacements (the center base within square brackets, both strands indicated) in coding regions (CDS)
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deserves further study. Sanger sequencing showed good concordance to the exome data and
highlighted the usefulness of reasonable variant call filtering thresholds and thresholds for
calling a variant as somatic, as well as limitations in indel calling. Together, our results across
1,237 cancer-associated genes and the sequencing data will aid in the design and interpretation
of biological experiments using these six commonly utilized basal-like breast cancer cell lines.

Materials and Methods

Cell lines and DNA
Original cell line stocks for HCC38, HCC1143, HCC1187, HCC1954, HCC1937 and HCC1395
were obtained directly from the American Type Culture Collection (ATCC), cultured accord-
ing to Neve et al [17], and passaged minimally prior to harvesting for the present study. For
each respective cell line, normal matched DNA derived from B lymphoblastoid cell lines
(HCC38 BL, HCC1143 BL, HCC1187 BL, HCC1954 BL, HCC1937 BL, HCC1395 BL) were
purchased from ATCC. Breast cancer cells were harvested at approximately 75% confluency
and genomic DNA was isolated using DNeasy Blood and Tissue Kit (Qiagen) according to the
standard manufacturer protocol. The concentration of DNA was measured with the ND-1000
NanoDrop spectrophotometer (NanoDrop Technologies).

Custom DNA SureSelect library
A custom SureSelect DNA library (Agilent Technologies) was constructed by selection of 1,237
genes suggested to be of importance primarily in breast cancer. All genes previously found
mutated in breast cancer in the COSMIC (ftp://ftp.sanger.ac.uk/pub/CGP/cosmic/data_
export/; date of access 2010/01/26) were selected and the list was expanded to include addi-
tional genes of interest as well as genes selected from the literature [22, 44–47]. All coding
exons of selected genes were included in addition to 300 bp upsteam of the RefSeq transcript,
the complete 5’UTR and the first 1200 bp of 3’UTR (human genome build hg18). All selected
regions (20,674 separate target regions totaling 5,352,371 bp) were submitted to Agilent eArray
(https://earray.chem.agilent.com/earray/) for probe design. The probes were 120 bp in length,
designed end-to-end and with 1x coverage (on average 30 bp was targeted into each intron).
Overall, 54,636 SureSelect baits were included, covering 6,556,320 bp, which corresponds to
0.22% of the human genome.

Library preparation for sequencing
Target enrichment was performed on genomic DNA of all breast cancer cell lines and matched
normal DNA. For each cell line, 3.6 μg of genomic DNA was sheared using the S220 Focused-
Ultrasonicator Instrument (Covaris) with the following settings: Duty cycle 10%, Intensity 5,
Cycles per burst 200, Time 3×2 min at 5°C. After purification, the fragment sizes were deter-
mined using the 2100 Bioanalyzer (Agilent Technologies) and on average fragments of 180 bp
were obtained. Subsequently, NEBNext DNA Library Prep Master Mix Set I (New England
Biolabs) was used for end-repair, dA-tailing and ligation of Genomic adaptors (Illumina) or
custom tagged adaptors. Size selection was done using Agencourt AMPure beads (Beckman
Coulter) to keep only fragments between 200–350 bp and this was verified by using the 2100
Bioanalyzer. Pre-capture PCR was performed in a total volume of 100 μl (divided in two tubes)

versus non-coding (non-CDS) regions. The dimensions of the squares are inversely proportional to the
standard error (SE) of ln(odds ratio). ** P = 0.001; *** P<0.0001 (Bonferroni adjusted). Note that the odds
ratio for G[A]C/G[T]C is undefined (2 substitutions in coding regions versus 0 in non-coding regions).

doi:10.1371/journal.pone.0144528.g005
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with Phusion Master Mix 1x (Thermo Scientific), 250 nM of PE 1.0 or PE 2.0 primers together
with half volume of the size selected DNA. PCR cycling conditions were as follows: Initial
denaturation at 98°C for 2 min followed by 8 cycles of 98°C for 20 s, 65°C for 30 s and 72°C for
30 s and a final elongation at 72°C for 5 min. Capturing of selected genomic regions was per-
formed according to SureSelect Hybridization protocol using the Agilent SureSelect Human
All Exons protocol (Agilent Technologies). Briefly, biotinylated RNA library baits were hybrid-
ized in SureSelect hybridization buffer system and DNA regions of interest were captured by
Dynabeads streptavidin-coated magnetic beads (Invitrogen). Post-hybridization enrichment
was performed using 1x Herculase II reaction buffer, 1.25 mM each dNTPs, SureSelect GA
PCR primers and Herculase II Fusion DNA polymerase with the following PCR conditions:
98°C for 2 min followed by 15 cycles of 98°C for 20 s, 57°C for 30 s and 72°C for 30 s and a
final elongation at 72°C for 5 min. The samples were pooled and purified with Agencourt
AMPure beads and the size of each library was validated on the 2100 Bioanalyzer (average
length 275 bp) and the concentration was measured on Qubit (Invitrogen).

Cluster generation and sequencing
Clusters were generated on a cBot instrument (Illumina). Single read sequencing of 75–80 bp
was performed on a Genome Analyzer IIx instrument according to manufacturer's instruc-
tions. Raw TIF images were analyzed by Illumina Off-Line BaseCaller v1.6 and the base calling
analysis was done using Bustard v1.6 (Illumina).

Alignment and variant calling
Single reads were aligned to the human reference genome hg19 using bwa v0.5.9 [19], and
Picard Tools v1.46 (http://picard.sourceforge.net/) were used to merge the tumor and
matched normal BAM-files and to flag duplicates to ignore them in subsequent analysis. In
the variant calling procedure, the analyzed regions were extended by 30 bp up- and down-
stream in the human genome, juxtaposed to the regions targeted by the SureSelect probes.
Realignment (IndelRealigner) of targeted regions and quality score calibration (TableRecali-
bration) was done before variant calling of SNPs and indels using UnifiedGenotyper, all tools
from the GenomeAnalysisTK v1.1–32 [20]. A minimum variant call quality score of 10 was
required to call a variant. Known SNPs (dbSNP134) and indels (from the 1000 Genomes proj-
ect) were used as input in IndelRealigner and known SNPs were used in TableRecalibration.
GATK v3 best practices recommendations were followed with the following hard filters
applied for SNPs: variant call quality < 40 || quality-by-depth (QD)< 5.0 || Homopolymer
Run (HRun)> 5 || Fisher Strand bias (FS)> 200.0, and for indels: variant call quality< 40 ||
QD< 2.0 || Rank Sum Test for relative position in read of wild type vs alternative allele (Read-
PosRankSum)< -20.0 || FS>200 (21). Variants were called as somatic if the most likely geno-
type determined by UnifiedGenotyper included the alternate allele for the tumor while the
normal was determined as homozygous for the reference allele. Somatic variants that passed
the variant call filters (see above), where the normal had an informative read depth � 10
and� 1 read supporting the alternative allele and the tumor had� 3 reads supporting the
alternate allele were considered “high confidence” somatic variants. All other somatic variants
were considered “low confidence”.

Sequencing statistics
The sequencing depth statistics was calculated using GATK DepthofCoverage v2.8–1 [20], in
the targeted regions of interest covered by our custom SureSelect bait library. Picard Tools
v1.46 (http://picard.sourceforge.net/) were used to derive the read metrics per sample.
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Annotation of somatic mutation and copy number variants
All somatic variants were annotated in Annovar [48] with functional-, regional-, and filter-
based annotations from selected databases: RefSeq gene annotations, dbSNP138, allele frequen-
cies in NCI60 [49], presence in the TCGA BRCA study (mutation calling file level2.5.1.0) [14],
MutationTaster and Mutation Assessor scores (LJB2.3, dbNSFP) [38, 39, 50], CADD (Com-
bined Annotation Dependent Depletion) c-scores [40], PhyloP scores (phastConsElements46-
way), and ClinVar (20140211) [51]. All cell lines were annotated by previously known somatic
mutations entered in the COSMIC database v68 [21]. The combined list of genes affected by
mutational and copy number aberrations were annotated with the KEGG pathway categoriza-
tion using the DAVID Bioinformatics Resources 6.7 tool with the whole genome list for Homo
sapiens as background [33, 52].

Sanger sequencing validation of somatic variants
In total, 172 novel mutations were selected for validation by Sanger sequencing. Both high and
low confidence mutations were selected, however, a QD score>3 was required for the low con-
fidence variants to be included. Moreover, 15 variants found both in COSMIC and by our pipe-
line and 36 variants annotated as mutated in COSMIC but not found in our data were also
selected for Sanger sequencing validation. Whenever possible, previously published primers
were used for PCR amplification [53], otherwise, primer pairs were designed. Primer design
was performed in Primer3 v0.4.0 with Santa Lucia 1998 settings GC clamp set to 1 [54]. The
primers were designed not to be within 30 bp of the variant and the primer closest to the vari-
ant was tagged with M13 for sequencing. All primers were synthesized by Integrated DNA
Technologies (IDT). PCR reactions were performed in a total volume of 10 μL with Phusion
Master Mix 1x (Thermo Scientific), 200 nM of each primer, 2% of DMSO and 10 ng of tem-
plate DNA and the PCR was run with the following cycling conditions: initial denaturation at
98°C for 2 minutes followed by 11 cycles of 98°C for 10 s, 70°C (-1°C/cycle) for 30 s and 72°C
for 15 s and then 29 cycles of 98°C for 10 s, 60°C for 30 s and 72°C for 30 s and a final elonga-
tion at 72°C for 5 min. Both tumor and matched normal DNA were used as input for each
primer pair assay in separate reactions. All PCR products were purified and sequenced by
Beckman Coulter Genomics and Sequencher v5.0.1 (Gene Codes Corporation) was used to
evaluate the chromatograms of the tumor and normal sample traces in parallel.

Copy number variation analysis
Copy number variation (CNV) was estimated using the tool CONTRA v2.0.4, a software spe-
cifically designed for CNV detection in targeted resequencing data [31]. Deduplicated and
realigned bam-files for each tumor and the matched normal sample were used as input data.
CONTRA was run with default settings except for the maxRegionSize 150 and targetRegion-
Size 100. The adjusted mean log ratios derived from CONTRA derived from CONTRA were
filtered on coverage (regions with coverage<20 in the matched normal sample were removed)
and segmented using the Bioconductor software GLAD [32]. In the GLAD algorithm the band-
width = 1, qlambda = 0.999999, lambdabreak = 8, lambdacluster = 8, lambdaclusterGen = 40
and alpha = 1e-3 were applied. Copy numbers estimations (log2 ratios) for individual genes
were calculated for genes larger than 400bp. To score homozyogous deletions and high level
gains that were present in our data, log2 thresholds of<-2 and>2, respectively, were applied.
Only genes with all exons passing the threshold were included as high level gains, and pass-
threshold deletions of regions� 400bp were considered as homozygous deletions only if exonic
regions were included. To make a comparison of the results from CONTRA to publicly avail-
able CNV data, segmented Affymetrix 6.0 SNP array data was downloaded from the Cancer
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Cell Line Encyclopedia [16]. The two methods for copy number estimation were compared by
correlating each of the CONTRA copy number values per segmented window to the corre-
sponding copy number values derived from the Affymetrix SNP array data. The mean genomic
position per window in the segmented CONTRA data were used to lookup the corresponding
copy number value in the Affymetrix data. Pearson correlation was used to compare the data
from the two methods.

Base replacements and trinucleotide combinations
The base replacement frequencies were calculated by using the number of G/C or T/A bases as
denominator and the number of respective base replacements as numerator, in coding versus
non-coding regions. The trinucleotide frequencies were calculated by using the number of each
trinucleotide combination as denominator and the number of SNVs within each context as
numerator, in coding versus non-coding regions. Only SNPs passing the variant call filters
were included in the analysis (see above). The statistical calculations were performed by using
logistic regression interaction modeling (between samples) and all p-values were corrected
with Bonferroni adjustment.

Analysis tools
The software BedTools v2.17.0, and Samtools v0.1.19 together with custom scripts in R v3.1.0,
Stata/SE v13.1 (StataCorp LP) and Python v2.7 were used to implement the analysis, for statis-
tical calculations, and for plotting of the data.

Data availability
The sequencing data BAM files and target region BED file are publically available from the
Dryad repository: http://doi.org/10.5061/dryad.cg40g.

Supporting Information
S1 Fig. Copy number plots of targeted sequencing data. (a-f) Whole genome plots of CON-
TRA copy number (log2 ratios) derived from targeted sequencing data for respective cell line
in comparison to segmented Affymetrix 6.0 copy number data. For the sequencing data, the
black datapoints are the CONTRA adjusted mean log2 ratios, and red datapoints are the CON-
TRA/GLAD segmented copy log2 ratios. For the Affymetrix 6.0 data, blue datapoints are the
segmented copy number data.
(TIF)

S2 Fig. Correlation plots for targeted sequencing CNVs versus Affymetrix 6.0 for respective
cancer cell line. Segmented CONTRA copy number data derived from targeted sequencing
data versus segmented CCLE Affymetrix 6.0 copy number data are shown in the plots (Pearson
correlation 0.82 to 0.96 for all compared cell lines; P<0.0001).
(TIF)

S1 Table. Genes included in targeted capture regions.
(XLSX)

S2 Table. Sequencing statistics.
(XLSX)
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S3 Table. All somatic variants detected by GATK UnifiedGenotyper and annotated by
Annovar.
(XLSX)

S4 Table. Sanger sequencing validation of novel mutations, primer details.
(XLSX)

S5 Table. Sanger sequencing validation of mutations both detected in our targeted
sequencing analysis and in COSMIC v68.
(XLSX)

S6 Table. Sanger sequencing validation of mutations in COSMIC v68 but not detected by
in our targeted sequencing analysis.
(XLSX)

S7 Table. Estimated average copy number for individual genes.
(XLSX)

S8 Table. Number of mutations in coding respective non-coding regions for respective base
replacement.
(XLSX)

S9 Table. Number of mutations within respective genomic context in coding and non-cod-
ing regions.
(XLSX)
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