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Abstract: We report 8-step syntheses of (�)-minovincine and
(�)-aspidofractinine using easily available and inexpensive
reagents and catalyst. A key element of the strategy was the
utilization of a sequence of cascade reactions to rapidly
construct the penta- and hexacyclic frameworks. These cascade
transformations included organocatalytic Michael-aldol con-
densation, a multistep anionic Michael-SN2 cascade reaction,
and Mannich reaction interrupted Fischer indolization. To
streamline the synthetic routes, we also investigated the
deliberate use of steric effect to secure various chemo- and
regioselective transformations.

The aspidosperma family of alkaloids continues to attract
high interest owing to their medical potential and intriguing
chemical structure.[1] Their stereochemical complexity pres-
ents an intrinsic synthetic challenge and their polycyclic, cage-
like structures provide much latitude for advancing different
synthetic strategies. As a result, this class of compounds has
frequently served as a benchmark target for the development
of innovative synthetic methods and strategies.[2] In particular,
aspidospermanes have often provided inspiration for the
synthetic community to devise efficient catalytic approaches
that allow the stereoselective construction of quaternary
carbon stereocenters (C-5 and C-12 in Figure 1). The emerg-
ing power of these asymmetric methods has not only enriched
the aspidosperma chemistry, but also enabled the pursuit of
concise synthetic strategies and collective synthesis of struc-
turally related aspidosperma alkaloids.[3]

There is a distinct aspidosperma alkaloid, (�)-minovin-
cine (1), that possesses a C-20 oxygenation that is not
common within this class of alkaloids. With this subtle but
remarkable structural modification, this alkaloid has evolved
as a biogenetic springboard toward more complex pleiocar-

pine-refractine classes of alkaloids (e.g. 2, 3 in Figure 1).
Additionally, this unique aspidospermane derivative can be
transformed to pauciflorine-[4] and eburnane-type[5] alkaloids
(4, 5 in Figure 1) in few chemical steps. Owing to the apparent
synthetic significance of minovincine (1), it has been an
attractive research target since its isolation[6] in 1962.[7]

Interestingly, and despite the advances of catalytic asymmet-
ric methods, only two enantioselective approaches have been
reported by MacMillan[8] and Nishida.[9] One rationale for this
relative paucity in synthetic routes is the shortcomings in the
existing repository of asymmetric methods that can concisely
deliver the aspidosperma skeleton with oxidized exocyclic
functionality in position C-5.

Stimulated by the synthetic challenges of (�)-minovincine
(1), with its added (bio)synthetic potential, we aimed to
develop a concise and scalable route of (�)-minovincine (1).
Our hope was also to expand our synthetic strategy toward
topologically different minovincine-derived natural products.
Therefore, a refractine-type alkaloid was also targeted, the
hexacyclic (�)-aspidofractinine (6). As an overarching goal,
we aimed to devise streamlined synthetic routes that would
achieve high levels of “ideality”[10] and synthetic practical-
ity.[11] Three interwoven principles directed our synthetic
design: 1) to implement a sequence of cascade reactions[12] for
the rapid construction of the penta- and hexacyclic frame-
works, 2) to minimize protecting-group manipulations and
steer the selectivity of reactions through the steric effect,[13]

and 3) to avoid exotic, toxic, or expensive reagents or
catalysts.

Recently, our group developed a strategy for the concise
and diastereoselective synthesis of cis- and trans-decaline
subunits of terpenoids.[14] Key to this strategy was an organo-
catalyzed Robinson annulation reaction that afforded a chiral

Figure 1. Structure of (�)-minovincine (1), (�)-aspidofractinine (6)
and related alkaloids.
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enone building block with a quaternary stereogenic center. As
an outgrowth of these studies, we were intrigued to develop
an analogous chiral building block 7, which might confer
synthetic practicality in aspidospermane chemistry. Our
retrosynthetic plan adopted in this investigation is illustrated
in Scheme 1. We envisioned tricyclic 8, a modified Stork�s
tricyclic ketone,[15] to serve as an advanced intermediate
en route to 1 and 6. We also expected that the C-5 ester
functionality of 8 can be selectively transformed into the
requisite exocyclic keto group to establish the correct
functionality in minovincine (1). Furthermore, on the grounds
of proposed biosynthetic pathway of aspidofractinine (6),[16]

our hope was that its cage-like skeleton might be secured
through interception of the C-2 carbon atom of the transient
iminium ion of 9 by its acetyl functionality. Finally, we aspired
to construct the desired tricyclic ketone 8 in a concise way to
provide opportunities for a scalable synthesis of this advanced
intermediate. Therefore, we devised a short synthetic route
through the organocatalytic Robinson annulation reaction of

10 and 11 to give multifunctional enone 7 followed by
a multistep nucleophilic cascade reaction of aziridine (12). We
aimed at early introduction of the C-5 quaternary center and
used that center to direct the relative configuration of further
functionalization around the C ring.

As a first foray, we sought to develop an efficient synthesis
of the desired enone 7 with the requisite quaternary
stereogenic center. Specifically, we attempted to connect the
easily available Nazarov reagent 10 and w-chloro-formylpen-
tenoate (11) using the previously reported quinine-squara-
mide organocatalyst 13[14] (Scheme 2). Gratifyingly, this
Michael addition/aldol condensation organocascade reaction
afforded the envisioned enone 7 as the sole product. By using
optimized reaction conditions (dioxane, room temperature,
2 mol% catalyst), the chiral building block 7 was constructed
in 71 % yield and 90 % ee (Scheme 2). Notably, the catalyst
tolerated the presence of a primary alkyl chloride functional
group; alkylative inhibition of the catalyst was not detected.
This method proved also to be amenable for scale up,
ultimately providing access to 80 g of enone 7.

With a robust approach to 7 in hand, we were poised to
examine the feasibility of the nucleophilic cascade strategy
toward the tricyclic ketone 8. Pleasingly, the envisioned
multistep reaction occurred smoothly and delivered the
tricyclic ketone 8 with the correct configuration in high
efficiency and diastereoselectivity (Scheme 2. 8, X-ray).[17]

Although the diastereoselectivity of the cascade was excel-
lent, the exact mechanism by which this is achieved is not
clear. To begin with, the product of the first aziridine adduct
could not be detected by NMR, suggesting that the rate of the
subsequent cyclization is relatively fast. Thus, the reaction
started either by the aza-Michael addition of aziridine (12) on
the double activated enone 7 or by the nucleophilic substi-
tution of aziridine (12) on the alkyl halide part of the enone 7.
Regardless of the reaction sequence, the stereochemical
outcome is determined by the p-facial diastereoselectivity of
the aza-Michael addition. This type of Michael addition/SN2

Scheme 1. Retrosynthetic analysis of (�)-minovincine (1) and (�)-
aspidofractinine (6).

Scheme 2. Rapid construction of key intermediate 8 through relay cascade reactions. Reaction conditions: aa) 10+ 11 (1.13:1.0) (2 mol% 13)
dioxane, r.t. ; ab) 10 + 11 (1.1:1.0) (3 mol% 13), dioxane, r.t. ; ba) KI, CH2Cl2, rt. ; bb) DIPEA, KI, CH2Cl2, r.t. . DIPEA = diisopropylethylamine.
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reaction or SN2reaction/Michael addition sequence thus
establishes a preference for trans addition with the C-5
carboxylic substituents of 14.[18] Since a 5-endo-tet cyclization
is less probable,[19] the presumed zwitterionic aziridinium
intermediate 14 was expected to undergo a ring opening with
halogenides. This mechanistic manifold was corroborated by
the isolation of 15 from the reaction mixture.[20] Once
generated, the arising ethyl halogenide moiety was then
quenched by the enolate, closing the cascade process and
generating a quaternary stereogenic center and the E ring in
parallel. As a less harmful and hazardous synthetic precursor
of aziridine (12), 2-chloroethylamine (16) was also tried. To
our delight, the intriguing nucleophilic cascade also pro-
ceeded well with 2-chloroethylamine (16) in the presence of
DIPEA, which allowed us to conduct the process in a batch of
80 g with a 72% yield.

Given the ready availability of tricyclic ketone 8, the
scalable synthesis of (�)-minovincine (1) was addressed by
using the classical Fischer indole synthesis[21] (Scheme 3). The
synthesis of indolenine 17 was straightforward, proceeded
without incident. Thus, following selective deprotection of
tBu-ester, the resulting b-oxo carboxylic acid spontaneously

decarboxylated, affording ketone 18 in 95% yield in 7 gram
scale. Subsequent treatment of product 18 with phenylhydra-
zine generated aspidospermane-type indolenine 17 and its
structural isomer 19 in 50% and 31% yields, respectively.
Having achieved the construction of pentacyclic 17, what
remained for completing the synthesis of minovincine was the
installation of C-3 methoxycarbonyl and C-5 acetyl groups.
During these endeavors, our priority was to minimize the
functional group manipulations to shorten the synthetic route
and enhance its practicality. First, methyl cyanoformate, also
known as Mander�s reagent, was used to append the
methoxycarbonyl group into C-3 position of the indolenine
20. Importantly, some N-carboxylated isomer 21 also formed
that cannot be separated by chromatography (20/21 ratio was
6:1). Then, we turned our attention to the regioselective
transformation of the C-5 methoxycarbonyl group to the
requisite acetyl moiety. While conversion of the methyl ester
20 to a methyl ketone was not successful with standard
reagents (MeLi·LiBr and TMSCH2MgCl), TMSCH2Li proved
to be a competent reagent to effect the desired transforma-
tion[22] Although our initial attempts with TMSCH2Li resulted
in poor yields, we anticipated that the addition of TRIBAL to

Scheme 3. Syntheses of (�)-minovincine (1) and (�)-aspidofractinine (6). Reaction conditions: aa) aq. H2SO4 (50 V/V%), dioxane, r.t. ;
ab) PhNHNH2 then BF3·OEt2, MeOH, 70 8C; ac) iPr2NH, LDA, CNCOOMe, THF, �78 8C; ad) AliBu3, THF, �78 8C to r.t. then TMSCH2Li;
ba) TMSCH2Li, THF, r.t. ; bb) aq. H2SO4 (50 V V�1%), dioxane, r.t. ; bc) PhNHNH2 then BF3·OEt2, EtOH, 85 8C; bd) N2H4·H2O, KOH, DEG, 130 to
210 8C, LDA = lithium diisopropylamide, TMS= trimethylsilyl, THF = tetrahydrofuran, DEG = diethyleneglycol.
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20 would improve the selectivity of the reaction as a transient
protecting group with dual roles. This strong base would not
only exert a charge control over C-3 methoxycarbonyl via N-
H deprotonation, but the diisobutyl aluminium adduct 22
would secure an enhanced steric shielding around the C-3
methoxycarbonyl moiety.[20] Gratifyingly, by employing
TRIBAL additive, a 52 % yield (for two steps) of (�)-
minovincine (1) could be obtained on a 1.10 gram scale.
Overall, the gram-scale synthesis of (�)-minovincine (1) was
accomplished in an overall yield of 11 % by an eight-step
sequence. By virtue of (bio)synthetic potential of minovin-
cine, this scalable route seems to provide rapid access toward
structurally related, more complex indole alkaloids.

Aspidofractinine is thought to originate from 9 that is
derived from minovincine through ester hydrolysis followed
by decarboxylation (Scheme 1).[1, 16] While several routes have
been developed to construct racemic aspidofractinine,[23,24] its
only asymmetric synthesis was reported by Gagnon and
Spino[25] in 2009. The relative ease of our minovincine
synthesis served as an impetus for developing a biosyntheti-
cally inspired synthesis of (�)-aspidofractinine (6). Specifi-
cally, we envisioned a Fischer indolization[26] interrupted by
the pendant acetyl nucleophile. Therefore, we set out to
prepare a C-5 acetyl substituted tricyclic ketone 23 from the
previously synthesized advanced intermediate 8. We reasoned
that the steric hindrance embedded in this key intermediate 8
can be exploited for chemo- and regioselective transforma-
tion, thus, obviating the need of protecting group manipu-
lation. This scenario proved to be viable, affording a simple
route to 24. Thus, treatment of 8 with TMSCH2Li (rt, 1 h)
followed by ester hydrolysis and decarboxylation resulted in
the selective generation of 23 with 80% overall yield.
Corroborating the importance of steric effect, the decarboxy-
lated and thus sterically less crowded analogue 18 was also
reacted with TMSCH2Li under the same conditions. Impor-
tantly, that reaction resulted in a complex mixture.[20]

Next, the feasibility of the interrupted Fischer indolization
was investigated to construct the cage-like aspidofractinine
framework. To our delight, the Fischer indole/Mannich
cascade reaction occurred smoothly to afford the correspond-
ing oxo-aspidofractinine 25 in a 55% yield (alongside with its
isomer 26) via presumed indolenine intermediate 9. Several
significant features of the reactions shown in Scheme 3 should
be noted. Although there are scattered examples of inter-
rupted Fischer indolization in the literature, a Mannich
reaction coupled strategy has not been utilized, to best of
our knowledge. Furthermore, the successful implementation
of the trans annular Mannich reaction/Fischer indolization
process led to the formation of three new bonds and two
additional quaternary stereogenic centers. Moreover, based
on the notion that C-20-derived indole formation was not
detected, we surmised that the steric effect secured again the
regioselectivity. As the final step of the synthetic route, the
substrate 25 was exposed to hydrazine to furnish (�)-
aspidofractinine (6) in 89 % yield.

In conclusion, we have developed eight-step synthetic
routes toward (�)-minovincine (1) and (�)-aspidofractinine
(6) with 11 % and 19% overall yields, respectively. Key to the
success was the strategic implementation of a chain of cascade

reactions, including organocatalytic Michael addition/aldol
condensation, multistep anionic Michael/SN2 cascade reac-
tion, and Mannich reaction interrupted Fischer indolization.
Importantly, four contiguous stereogenic centers were created
in those steps with excellent absolute and relative stereo-
chemical control. Both the employed sequence of cascade
reactions and the steric-effect-steered chemo- and regiose-
lective reactions contributed substantially to achieving syn-
thetic brevity but also excellent practicality. Thus, the
advanced building block 8, which has a quaternary stereo-
genic center, could be synthesized on a 60 g scale. (�)-
minovincine (1) was delivered on a gram scale and the cage-
like (�)-aspidofractinine (6) was accessible via an impres-
sively short sequence. Furthermore, the use of easily avail-
able, inexpensive reagents adds further synthetic conven-
ience. We are currently pursuing this synthetic strategy in the
total synthesis of structurally related members of aspidosper-
manes.
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