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EDITORIAL COMMENT
The Importance of External Validation
for Neural Network Models*

Shinichi Goto, MD, PHD,a,b Hideki Ozawa, MD, PHDa
M achine learning with neural networks has
evolved as a powerful tool to build clini-
cally useful tools from complex medical

data.1 Recent studies have shown that the technology
is capable of detecting diseases and predicting prog-
nosis beyond the ability of fully trained experts.2-4

However, the neural network model usually comes
with the cost of the black box nature: not being able
to explain why they predict what they predict. The
characteristic not only prevented the application of
neural networks for educating the experts with novel
features extracted by the models but sometimes
resulted in the development of useless models using
unwanted features. For example, a model trained to
detect pneumonia from chest X-ray images showed
apparently high discrimination but was eventually
found to have significantly lower performance on
external datasets.5 The study showed that the model
could accurately identify the institution and setting
where the X-ray was obtained. Since those who had
the X-ray taken in an inpatient setting with a portable
scanner had a significantly higher prevalence of
pneumonia, the model presumably used the differ-
ence in the settings as a feature to detect pneumonia.
This could have been easily avoided with a model that
uses human-picked features.
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Given the broad utility and the potential to develop
powerful models, ensuring the generalizability of
neural networks is an area of active research.6-8 To
reduce the black box problem, multiple techniques
have been developed to identify the features utilized
by neural network models, including gradient-
weighted class activation mapping and local inter-
pretable model agnostic explanations. While these
techniques are able to partially explain the features
utilized by the model, it only provide information on
“where” (eg, within the QRS complex of the electro-
cardiogram [ECG]) the feature is thus far. It does not
provide information on “what” (eg, is it the ampli-
tude or duration?) it is. Thus, in our opinion, these
techniques alone cannot guarantee that unwanted
features are not used.

Another way of showing the robustness of the
model is to test it directly on datasets with various
backgrounds. In this issue of JACC: Advances, Har-
mon et al9 have beautifully shown that their model
previously developed to detect cardiac amyloidosis
from ECG generalized well to a prospective dataset
obtained after the model’s development at the same
institution. The same institution could share the
artifact used as an “unwanted feature” if it existed.
Thus, to purely evaluate the robustness of the model
to unseen data, an external dataset would have been
a better choice. However, the prospective nature of
the current study supports that the feature used by
the model to detect amyloidosis was not diminished
by the advancement of treatment over time. The au-
thors further support this finding by formally
analyzing model performances over different time
periods.

The subgroup analysis on age, sex, race, and ECG
abnormalities is another strength of the article by
Harmon et al Even though the model performs well
across the overall population, there could be a sub-
population where it performs poorly. There is also a
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possibility that the model is indirectly utilizing these
obvious factors, in which case a complex neural
network model is usually not needed. For example, it
is reported that neural networks can detect the age
and sex of the patient accurately from ECGs,10 which
could be internally used to detect amyloidosis. By
performing a subgroup analysis in these subgroups,
Harmon et al nicely show that their model performs
robustly across populations and that none of these
factors played a dominant role in the model to detect
cardiac amyloidosis. They have also identified those
with left ventricular hypertrophy and left bundle
branch block patterns as a population in which the
model performs worse. This information is valuable
to make clinical decisions when the model is
deployed.

Selecting the diseases for which to apply the
model is also an essential part of developing clini-
cally valuable models. In our opinion, cardiac
amyloidosis is one of the best use cases for neural
network models in the cardiology field for 3 rea-
sons.11 First, cardiac amyloidosis is a disease that
causes progressive heart failure that leads to death
but can be treated to prevent disease progression if
promptly diagnosed. Cardiac amyloidosis has a
specific treatment and, thus, it is extremely impor-
tant to discriminate between other causes of heart
failure. Second, cardiac amyloidosis is under-
diagnosed in the current system. It has been re-
ported that a patient, on average, requires 6 months
and visits to 3 doctors before they are diagnosed
due to the difficulty of suspecting the disease from
nonspecific symptoms.12 Raising suspicion from an
inexpensive test could improve the situation. And
finally, the diagnosis of cardiac amyloidosis can be
confirmed by subsequent diagnostic tests such as
cardiac magnetic resonance imaging and 1-13C-
pyruvate-scintigraphy. While these modalities are
expensive and cannot be performed on everyone
with heart failure, the neural network model can
serve as a method to improve the pretest probabil-
ity, making these tests cost-effective.

In summary, we commend Harmon et al9 for per-
forming this prospective validation of their neural
network model for detecting cardiac amyloidosis
from ECGs with subgroup analysis showing the
robustness of their model in various populations.
However, some limitations need to be pointed out.
The first and largest limitation of the current analysis
is the lack of validation by external institutions. Data
from the same institution usually shares the same
artifact. If these artifacts exaggerated the model’s
performance, they could not be detected by the cur-
rent validation study. Second, the population was
predominantly White and lacked diversity. This
resulted in a very large confidence interval for the
non-White population. The prevalence and cause of
cardiac amyloidosis are known to have racial differ-
ences, so validation in a population with different
races is extremely important. This study shows a
good starting point for performing a validation study
when a neural network model is developed. A future
study with external institutions with a wider variety
of populations concerning race would be an essential
next step in validation.
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