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Abstract

Background: ApoER2 and the neurotrophin receptors Trk and p75™'™" are expressed in the CNS and regulate key
functional aspects of neurons, including development, survival, and neuronal function. It is known that both
ApoER2 and p75N™ are processed by metalloproteinases, followed by regulated intramembrane proteolysis. TrkA
activation by nerve growth factor (NGF) increases the proteolytic processing of p75N™" mediated by ADAM17.
Reelin induces the sheeding of ApoER2 ectodomain depending on metalloproteinase activity. However, it is not
known if there is a common regulation mechanism for processing these receptors.

Results: We found that TrkA activation by NGF in PC12 cells induced ApoER2 processing, which was dependent on
TrkA activation and metalloproteinases. NGF-induced ApoER2 proteolysis was independent of mitogen activated protein
kinase activity and of phosphatidylinositol-3 kinase activity. In contrast, the basal proteolysis of ApoER2 increased when
both kinases were pharmacologically inhibited. The ApoER?2 ligand reelin regulated the proteolytic processing of its own
receptor but not of p75N™ . Finally, in primary cortical neurons, which express both ApoER2 and TrkB, we found that the
proteolysis of ApoER2 was also regulated by brain-derived growth factor (BDNF).

Conclusions: Our results highlight a novel relationship between neurotrophins and the reelin-ApoER2 system, suggesting

conditions.

that these two pathways might be linked to regulate brain development, neuronal survival, and some pathological
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Background

The signaling of membrane surface receptors is regu-
lated on a short-term basis by many different processes.
Among these processes are posttranslational covalent
modifications of the receptor’s intracellular region, in-
ternalization of the receptor and its ligand followed by
lysosomal degradation, and/or proteolytic processing in-
duced by soluble or membrane-integrated proteases. This
latter process has been studied in different membrane-
integrated receptors that have a single-pass transmem-
brane region, such as the amyloid precursor protein
(APP), Notch receptor, p75~"® neurotrophin receptor
(p75™"®) and some members of the low density lipopro-
tein receptor family (LDLRs), including Apolipoprotein E
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receptor 2 (ApoER2), Megalin, and LRP1 [1-4]. The pro-
teolytic processing of the receptors involves two general
steps: 1) cleavage, called shedding, in the juxtamembrane
extracellular domain, which results in the formation of a
carboxy terminal membrane-integrated polypeptide (CTE,
C-terminal fragment) and a soluble extracellular polypep-
tide (NTE, N-terminal soluble fragment), and 2) a second
proteolysis event, carried out by the y-secretase complex,
at the transmembrane region of the membrane-integrated
fragment, which produces two fragments, one of which
corresponds to the intracellular domain (ICD) of the re-
ceptor [5]. In addition to regulating the half-life of the re-
ceptors, shedding and ICD production are processes that
facilitate receptor signaling. For example, in the p75N'%
and Notch signaling pathways, the generation of proteo-
lytic fragments is crucial for the correct signaling pro-
cesses [6].

Many studies have focused on the mechanisms associ-
ated with the regulation of proteolytic processing of signal-
ing receptors to understand the contribution of shedding
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to the intracellular signaling pathways. Neurotrophin re-
ceptors are among the principal study targets. The neuro-
trophins are trophic factors that act in the nervous system
and regulate development and adult neuronal processes,
such as neuronal survival or apoptosis [7], the outgrowth
or withdrawal of neurites [8,9], maturation and differenti-
ation of sensory neurons [10], long-term depression (LTD)
[11], and long-term potentiation (LTP) [12], among others
[13]. Neurotrophin receptors include the Trk receptors
(tyrosine kinase receptors). Binding of neurotrophins to a
Trk receptor activates different signaling pathways, includ-
ing the phosphatidylinositol 3-phosphate kinase (PI3K)/
AKT pathway, the mitogen-activated protein kinase path-
way (MAPK/ERK), and the phospholipase C-y pathway
[13]. Nerve growth factor (NGF) binds to TrkA [14],
brain-derived neurotrophic factor (BDNF) binds to TrkB
[15], and neurotrophin 3 (NT3) binds to TrkC [16].

The neurotrophin receptor p75™'%, a member of the
tumor necrosis factor (TNF) receptor superfamily, binds
to all the neurotrophins with the same affinity, unlike
the Trk receptors [17]. p757 "%, along with its ligands,
induces the regulation of intracellular pathways, includ-
ing the activation of the c-Jun N-terminal kinase (JNK)
pathway [18], the regulation of the NF-«B transcription
factor [19,20], and the modulation of RhoA GTPase ac-
tivity [21,22]. In the nervous system, p75™ '~ has a role
in neuronal apoptosis during nervous system develop-
ment [23] and axon growth inhibition mediated by mye-
lin and its interaction with the Nogo receptor, NgR1,
and LINGO-1, which results in the activation of RhoA
[24,25]. Furthermore, when p75™'® is co-expressed in
neurons along with the Trk receptors, the apoptosis in-
duced by p75™'® signaling is abolished, and Trk recep-
tor signaling is potentiated [26-29]. Many of the
functions of p75™'® in neurons are dependent on recep-
tor proteolysis [30-39]. In PC12 cells, activation of TrkA
by NGF induces the proteolytic processing of p75™ %,
resulting in the accumulation of the p75™'% CTF and
also its ICD [40]. Furthermore, shedding of p75NTR in-
duced by NGF is mediated by the metalloprotease
ADAM17 (a member of the disintegrin and metallopro-
teinase family), a process that facilitates NGF-TrkA sig-
naling by stimulating the PI3K/AKT and MAPK/ERK
pathways [37,39]. Similarly, in cerebellar granule neu-
rons, the expression of p75™ ' facilitates AKT activation
in response to the activation of TrkB by BDNF [37]. An-
other signaling process of p75™'" that is mediated by
proteolytic processing of the receptor is the apoptosis of
sensory neurons. In these neurons, activation of the
apoptotic pathway requires the production of the
p75N ™ ICD and the activation of the JNK pathway [38].

Another family of receptors expressed in the nervous sys-
tem and related to brain development and adult neuronal
functions is the LDLR family. Two receptors belonging to
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this family, ApoER2 and very low density lipoprotein recep-
tor (VLDLR), together with their ligand reelin, are key com-
ponents of the brain machinery involved in neuronal
migration and positioning during brain development [41].
In this stage, reelin expressed by Cajal-Retzius cells [42,43]
facilitates the correct development of different regions of
the CNS, including the hippocampus, cerebellum, and cere-
bral cortex [44-47]. In the adult stage, the functions of
ApoER?2 and its ligand reelin include the regulation of syn-
aptic plasticity [47,48], dendritic branching [49], actin re-
modeling [50], growth cone motility, filopodia formation
[51], and neuronal survival [52,53].

Reelin is an extracellular matrix protein that binds to
ApoER2 and VLDLR, triggering the activation of several
intracellular signaling pathways [54] including the inter-
action between the Dabl adaptor with the cytoplasmic
region of the receptors [55,56]. Additionally, Dabl is
phosphorylated by the SRC family of kinases (SFK)
[57-59], facilitating the activation of PI3K/AKT pathway
[60]. PI3K regulates downstream effectors that are associ-
ated with cytoskeleton dynamics, such as cofilin [50,61]
and tau [62]. Like many surface receptors, ApoER?2 signal-
ing is regulated through lysosomal degradation after lig-
and binding and internalization [63]. Furthermore, as a
result of the interaction between ApoER2 and its ligand,
the receptor levels are downregulated by shedding [64],
resulting in the production of the extracellular domain of
the receptor and the carboxy-terminal fragment (ApoER2-
CTEF), which is the substrate of the y-secretase complex.
Other ligands of ApoER2, such as Apolipoprotein E,
alpha-2 macroglobulin (a2M) and F-spondin, also induce
the proteolysis of the receptor [64,65]. However, there are
few studies of the cellular mechanisms involved in the
proteolysis of ApoER2 and the functional consequences
that this process brings to the cells.

Both the reelin-ApoER2 and the neurotrophin signal-
ing systems are expressed in neurons of the hippocam-
pus, cerebellum, and cerebral cortex [13,44-47] and
share functions associated with brain development and
adult neuronal functions, including participation in some
pathological conditions such as schizophrenia [66].
Moreover, the signaling machineries associated with
both types of receptors share intracellular signaling mol-
ecules with the PI3K/AKT pathway. Interestingly, there
is little direct evidence of crosstalk between these two
signaling receptor families. However, ligand binding to
LRP1, a member of LDLR family, transactivates the Trk
receptors through an SFK-dependent pathway in PC12
cells and neurons [67], demonstrating that apolipopro-
tein E-receptors have neurotrophic activity that is
dependent on Trk receptor transactivation.

The aim of this study was to determine whether the
activation of the Trk receptors by neurotrophins regu-
lates shedding of ApoER2. We demonstrated that NGF
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regulates the proteolysis of ApoER2 in PC12 cells and that
this process is dependent on TrkA signaling. In this
model, we also demonstrated the participation of two sig-
naling pathways in the constitutive shedding of ApoER2:
the MAPK/ERK and PI3K/AKT pathways. In contrast,
reelin was not able to induce shedding of p75™'¥. Finally,
modulation of ApoER2 proteolysis was also identified in
primary cultures of cortical neurons, in which BDNF also
induced the shedding of ApoER2.

Results

PC12 cells stably expressing ApoER2 respond to NGF and
reelin

PC12 cells have been widely used to study the neurotro-
phin signaling pathways and their cellular functions.
PC12 cells endogenously express TrkA and p75™'® and,
in response to the exogenous NGF, differentiate into a
“neuronal cell phenotype” similar to sympathetic neu-
rons found in the PNS [68,69]. However, PC12 cells do
not express high quantities of ApoER2. Therefore, to
study the proteolysis of ApoER2, we generated stably
transfected PC12 cells expressing the human full-length
ApoER2 carrying an HA-tag at its N-terminus (HA-
ApoER2) (Figure 1A). Western blot analysis using an
antibody that recognizes the intracellular region of
ApoER2 confirmed the expression of both the glycosyl-
ated (mature) and unglycosylated (immature) forms in
cells transfected with the full-length receptor; addition-
ally, some fragments of lower molecular weight, which
represent proteolysis products, were also identified
(Figure 1B). The receptor was localized throughout
the cell, including the tips of the neurites in NGEF-
differentiated cells, as determined via detection of the
HA epitope by immunofluorescence (Figure 1C).
ApoER?2 transfected cells also responded to NGF by acti-
vation of AKT (Figure 1D).

PC12 cells that express HA-ApoER2 were activated by
NGF in a similar way as the control cells (transfected
with pcDNA3 plasmid) (Figure 2A). It is known that the
ApoER?2 ligand reelin induces neurite outgrowth in hip-
pocampal and cortical neurons [70]. By PCR and by
western blot, we confirmed the expression of the
adaptor protein Dabl, which is required for the reelin
canonical signaling pathway in PC12 cells (Figure 2B,C).
In addition, we found that PC12 cells expressing ApoER2
respond to reelin; first, when they were treated with
reelin-conditioned medium for 30 min it was possible to
evidence the phosphorylation of Dabl (Figure 2C) and
second, the cells showed evident neurite extension after
48 h of incubation time with the ligand, (Figure 2D).
Wild-type PC12 cells did not respond significantly to
reelin (not shown), as expected from cells with low ex-
pression of endogenous ApoER2.
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NGF induces the proteolytic processing of ApoER2 in
PC12 cells via TrkA

Wild type PC12 cells have been previously used to study
the mechanisms involved in the regulation of p75N'™®
proteolytic processing induced by NGF [40]. Therefore,
we investigated whether this process operates in a simi-
lar way in the PC12 cells stably expressing HA-ApoER2.
Cells were incubated with different pharmacological in-
hibitors, and the effects of the drugs on the proteolysis
of p75NTF were analyzed. Inhibiting the y-secretase
complex DAPT, which has been used to study the prote-
olysis of APP, Notch, and ApoER2, among others sub-
strates, induced the accumulation of the CTF of p75™ ¥,
thus corroborating the participation of the y-secretase
complex in the proteolysis of p75™ "™ (Figure 3A). Fur-
thermore, incubating the cells with NGF for 2 hours in-
duced an increase in the CTF levels, as shown
previously, indicating that NGF regulates the proteolysis
of p758™® in our cell system. The proteolysis of p75™ '~
was prevented by pre-incubating the cells for 1 h with
K252a, an inhibitor of Trk tyrosine kinase activity, thus
supporting the role of TrkA in this process [40]. It is
known that the shedding of p75™ "} induced by NGF is
mediated by ADAM17 [39]. Accordingly, when cells
were pre-treated with GM6001, a broad spectrum inhibi-
tor of the proteases belonging to the metalloproteinases
family, the effect of NGF on p75™ "X proteolysis was al-
most completely suppressed. These results show that
PC12 cells stably expressing HA-ApoER2 respond to
TrkA-NGF signaling and regulate p75™'® proteolysis,
just as the wild type PC12 cells [40].

PC12-ApoER2 cells that were incubated with DAPT
accumulated the ApoER2 17 kDa CTE, as has been pre-
viously described in other cell types, which supports the
constitutive proteolytic processing of ApoER2 [4,64,71]
(Figure 3B). PC12-ApoER2 cells that were incubated
with NGF for 2 h showed a significant increase in the
CTF level (Figure 3B,C). Similarly, PC12-ApoER2 cells
displayed a gradual increase in the CTF level when they
were incubated for different times with the neurotro-
phin, which evident already from 10 minutes of treat-
ment (Figure 3D). This observation indicates that the
proteolytic processing of ApoER2 is regulated by NGF.
As a positive control for NGF activity, we determined
the proteolysis of p75™"'® and the phosphorylation of
AKT.

The fact that NGF binds to the TrkA receptor as well
as p75" "% led us to investigate which of the receptors is
involved in the regulated proteolysis of ApoER2 induced
by NGF. Pre-treatment of PC12-ApoER2 cells with
K252a abolished the AKT phosphorylation induced by
NGF and also abrogated the increase in ApoER2-CTF
levels induced by the neurotrophin (Figure 4A,B). This
result demonstrates that the regulated proteolysis of
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Figure 1 Characterization of PC12 cells stably expressing HA-ApoER2. (A) Schematic representation of the human HA-ApoER2 receptor
transfected into PC12 cells. (B) Western blot showing the expression of HA-ApoER2 in stably transfected PC12 cells but not in wild type cells. ApoER2
was detected using an antibody that recognizes a region near the C-terminus of ApoER2. Both the mature (glycosylated) and immature forms (~
130 kDa) of the receptor were detected. There are also recognized fragments close to 26-34 kDa and 17 kDa (corresponding to the receptor C-terminal
fragment, CTF). a-tubulin is shown as a loading control. (C) Immunofluorescence of PC12 cells transfected with HA-ApoER2 (red) under basal conditions
and after 72 h of NGF treatment (100 ng/mL) to induce differentiation. The cells expressed the receptor in different regions, including the plasma
membrane and growth cones. Nuclear staining is shown in blue. Scale bar: 20 um. (D) Western blots of cell lysates from PC12 cells stably expressing
ApoER2. AKT phosphorylation was still detected after 2 h of incubation with NGF (100 ng/mL).
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ApoER2 depends on TrkA activity and not on p75~'%
signaling.

Metalloproteinases of the ADAM family regulate the
shedding of ApoER2 induced by NGF

Regulated proteolysis of many receptors, including
p75" ™ and ApoER2, is achieved by metalloproteinases
[64,72,73]. When PC12 cells were incubated with a gen-
eral inhibitor of metalloproteinases of the ADAM family
(GM6001) 1 h prior to the addition of NGF, receptor
proteolysis was significantly decreased (Figure 4C,D).

Therefore, this family of proteases is not only involved
in p75N™® shedding (Figure 3A) but also regulates the
NGF-induced proteolytic processing of ApoER?2.

MAPK/ERK signaling pathway mediates p75""™® but not
ApoER2 proteolysis induced by NGF

Among the signaling pathways activated by NGF is the
MAPK/ERK signaling pathway, which has been shown to
regulate the proteolysis of p75™ "% [39]. Therefore, to fur-
ther analyze the mechanisms involved in the NGF-induced
proteolysis of ApoER2, PC12 cells were incubated with
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Figure 2 ApoER2 expression does not affect PC12 differentiation or responses to neurotrophin. (A) Differentiation of the PC12 control
(pcDNA3) compared to cells stably expressing HA-ApoER2 with NGF (100 ng/mL) for 48 h. In both conditions, the cells were able to differentiate and
extend neurites. (B) PCR showing the expression of Dab1 in total brain, embryonic cortical neurons, and both differentiated and undifferentiated PC12
cells stably expressing ApoER2. (C) PC12 expressing HA-ApoER2 cell were incubated with reelin-conditioned media or mock-conditioned media
(control) for 30 min. Cells were lysed and the presence of total and phosphorylated Dab1 was detected by inmunoblot; a-tubulin is shown as a loading
control. (D) The presence of ApoER2 in PC12 cells makes them responsive to reelin-conditioned media (48 h of treatment), as assessed by
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PD98059, an inhibitor of the ERK1/2 signaling pathway
that controls MEK1/2 activity. Surprisingly, cells under this
treatment displayed an increase in ApoER2 CTF levels,
demonstrating that, under basal (no NGF) conditions, this
MAPK/ERK signaling pathway downregulates the shed-
ding of ApoER2 (Figure 5A,B). However, PC12 cells that
were incubated with NGF in addition to the MEK1/2 in-
hibitor still showed an increase in the levels of ApoER2

CTF in response to the neurotrophin (Figure 5A,B) that
was significantly higher than the CTF levels observed
under basal MEK1/2 inhibition conditions. These results
indicate that the MAPK/ERK signaling pathway is not in-
volved in the proteolysis of ApoER2 induced by NGF. In
contrast, the proteolysis of p75™ '® was dependent on the
MAPK/ERK signaling pathway (Figure 5A,C). Therefore,
although NGF stimulates the shedding of p75™'% and
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Figure 3 NGF induces the proteolytic processing of ApoER2. (A) Serum-starved PC12-ApoER2 cells were pre-treated with 10 uM DAPT
(y-secretase complex inhibitor), 50 pM GM6001 (metalloproteases inhibitor) and/or 100 nM K252a (Trk tyrosine kinase activity inhibitor) for 1 h and then
incubated with 100 ng/mL NGF for 2 h. The blot shows full-length p75™™, p75N™ CTF, and a-tubulin as a loading control. As described [40], NGF induced
the proteolysis of p75N™ and, thus, the accumulation of the CTF. This process depends on TrkA tyrosine kinase activity and the metalloproteinases.

(B) Cells were pre-treated with 10 uM DAPT for 1 h and then incubated with 100 ng/mL NGF for 2 h. ApoER2 and the proteolytic fragment ApoER2-CTF
were recognized using antibodies against the intracellular region of the receptor. a-tubulin is shown as a loading control. (C) Quantification of blot levels
of ApoER2-CTF normalized to the loading control a-tubulin and plotted as the average + SD of four independent experiments. Student’s t-test, «P < 0.01.
(D) PC12-ApoER2 was treated as previously described and then incubated with 100 ng/mL NGF for different times (0240 min). Cell lysates were used for
protein detection by western blot analysis. AKT phosphorylation is observed immediately after the addition of NGF. as well as the apparition of p75NTR
CTF. a-tubulin is shown as a loading control. (E) Quantification of blot levels of ApoER2-CTF normalized to the loading control a-tubulin and plotted as
the average + SD of three independent experiments.

ApoER?2, the signaling pathways involved in the proteolytic
processing of the two receptors are different.

PI3K activity reduces ApoER2 basal proteolysis but is not
required for the NGF-induced processing

Another signaling pathway that is activated in response
to NGF is the PI3K signaling pathway. This pathway is
also activated by ApoER2 in response to its ligand reelin.
Furthermore, this signaling pathway is known to medi-
ate, among several effects, neuronal survival through the
regulation of the apoptotic machinery [74]. To address
the role of PI3K in the NGF-induced processing of
ApoER2, PC12 cells were incubated with different PI3K

inhibitors. Two pan-class I/II/III PI3K inhibitors , LY
294002 (reversal) and Wortmannin (covalent; not shown)
as well as the class I/II PI3K inhibitor (ZSTK474), that
does not affects class III PI3K (Vps34, involved in mem-
brane trafficking in the endosomal route) [75,76] were
used and the ApoER2 and p75™"™® CTF levels were ana-
lysed by western blot (Figure 6A). Under basal conditions
(no NGF) the CTF levels of both receptors were signifi-
cantly increased following inhibitors treatment, indicating
PI3K activity decreases the levels of the proteolytic frag-
ments of the receptors (Figure 6B-E). Because all the in-
hibitors tested had the same effects, this suggests the
possible involvement of class I/II and not class III PI3K.
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cells were serum-starved and pre-treated with 10 uM DAPT and (A) 100 nM K252a or (C) with 50 pM GM6001 for 1 h. Then, the cells were incubated
with 100 ng/mL NGF for 2 h. ApoER2, ApoER2-CTF and the proteolytic fragment of p75™™ (control) were determined by western blot analysis using
antibodies directed against their intracellular regions. a-tubulin is shown as a loading control, and the phosphorylated form of AKT is a control for TrkA
activation by NGF. (B and D) The levels of ApoER2 CTF were normalized to the loading control a-tubulin and plotted as the average + SD of three
independent experiments. One way ANOVA, Holm-Sidak post-hoc test, «P < 0.01; +P < 0.05.
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On the other hand, the NGF-induced processing of
ApoER2 was not decreased when PI3K was inhibited;
moreover the CTFs production was significantly increased
under this condition, indicating that the machinery in-
volved in the NGF-induced processing is not dependent
on the activation of PI3K. In the same direction, the prote-
olysis of p75™"® induced by NGF was not abolished, when
PI3K activity was inhibited.

ApoER2 proteolytic processing in cortical neurons

To further study the connection between ApoER2 and the
neurotrophin system, we searched for potential cross-talk
between the pathways in cultured rat embryonic cortical
neurons that are known to express both ApoER2 and the
TrkB receptor. Upon activation with BDNE, a TrkB ligand,
cortical neurons responded with an increase in AKT
phosphorylation (Figure 7A). ApoER2 was detected in
these neurons by immunofluorescence (Figure 7B) and by

western blot analysis as a full-length protein as well as its
17-kDa CTF (Figure 7C). Furthermore, this low molecular
weight fragment accumulated after treatment with DAPT
(Figure 7B,C), which indicates that the y-secretase com-
plex, as expected, participates in the basal processing of
ApoER2-CTF in cortical neurons. When DAPT-pre-
treated neurons were subsequently incubated with BDNF
for 5 h, the levels of the ApoER2 CTF significantly in-
creased (Figure 7C,D), thus strengthening the data ob-
tained in PC12 cells expressing HA-ApoER2 regarding the
role of neurotrophins in receptor shedding.

Reelin regulates ApoER2 degradation and proteolysis but
not of p75

Reelin downregulates the protein levels of ApoER2, in-
ducing both proteolytic processing [64] and lysosomal
degradation [63]. When PC12 HA-ApoER2 cells were
treated with reelin, the levels of the mature form of the



Larios et al. BMC Neuroscience 2014, 15:108
http://www.biomedcentral.com/1471-2202/15/108

Page 8 of 17

DAPT

PDY8059
NGF (2h)

== DAPT
— DAPT + PD98059
mmm DAPT + NGF

500, = DAPT + PD98059 + N?E
g

400 Sk

300 *x

200

ApoER2 CTF/Tubulin

100

0!

NGF for 2 h. ApoER2 and the proteolytic control p75™™
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receptor decreased (Figure 8A,B). Moreover, reelin in-
duced the accumulation of the CTF of ApoER2, thus
corroborating the role of this ligand in the proteolysis of
ApoER?2 (Figure 8A,C). To investigate crosstalk between
the neurotrophin family and the reelin-ApoER2 system,
we analyzed the levels of full-length p75™™® and the
CTF of p75N™® after treatment with reelin for 2 h. The
results indicated that, under this experimental condition,
reelin does not affect the normal degradation of p75™"®
(Figure 8D,E,F ).

Discussion

The nervous system works as a complex network in
which the neurons are the primary components. Many
studies have shown the involvement of diverse signaling
pathways both in the development of the nervous system
and during adult stages. For example, the expression of
neurotrophins and their receptors in neurons are crucial
for the correct functioning of the CNS and PNS [9].

Similarly, reelin and its receptor ApoER2 participate in
neuronal processes during development and in adult-
hood [41,48,70,77,78]. However, despite the large num-
ber of studies that have been conducted in neurons and
the discovery of an enormous number of proteins in-
volved in signaling, less is known about the connections
between the different signaling systems functioning in
the brain.

Based on reports showing that the neurotrophin and
reelin signaling pathways share common intracellular ef-
fectors and that the receptors of both families are regu-
lated by proteolytic processing, we studied whether
crosstalk may exist between these two systems at the
level of the regulation of proteolysis. As it was reported
previously, p75™'® proteolysis is regulated by the activa-
tion of TrkA receptor. Until now, there was no evidence
of the regulation of other proteolytic processes involving
Trk activation. In this work, we found that the activation
of TrkA by NGF induced the proteolysis of ApoER2,
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Figure 6 PI3K activity regulates the constitutive levels of ApoER2 CTF but is not involved in ApoER2 shedding induced by NGF. (A)
PC12-ApoER2 cells were serum-starved and pre-treated with 10 uM DAPT and 50 uM LY294002 or 5 uM ZSTK474 for 1 h. Then, the cells were incubated
with 100 ng/mL NGF for 2 h. ApoER2 and p75™™ were recognized using antibodies directed against their intracellular regions. The activation of PI3K,
induced by NGF, was determined by detection of phospho-AKT. a-tubulin is shown as a loading control. The blot levels of ApoER2 CTF (B and C) and of
p75"™ CTF (D and E) were normalized to the loading control a-tubulin and plotted as the average + SD of three independent experiments. One way

specifically affecting the shedding of the receptor and
resulting in the accumulation of its CTE. These results
demonstrate a connection between the neurotrophin
system and the reelin pathway. Similar to the shedding
of p75N™® the TrkA-regulated proteolysis of ApoER2
was dependent on the metalloproteinases of the ADAM
family. Although we did not identify the metalloproteinase
involved in the shedding of ApoER2, the participation of
the membrane integrated metalloproteinase ADAM17 has

NT
5 R

been described in the proteolysis of p7 induced by
NGF [39].

The shedding of p75™"® induced by NGF in PC12 cells
is dependent on MEK1/2 activity [39] and our data sup-
ported this finding. The activation of the MAPK/ERK
pathway promotes the phosphorylation of ADAM17 [79].
The phosphorylation of ADAM17 in the intracellular re-
gion (threonine 735) is known to affect its intracellular
localization, increase its concentration at the cell surface,
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(B) Immunofluorescence detection of ApoER2 in permeabilized cortical neurons from rat embryos using an antibody directed against the
cytoplasmic domain of the receptor. (C) Serum-starved neurons were pre-treated with 10 uM DAPT for 1 h and then incubated with 100 ng/mL BDNF
for 5 h. ApoER2 was recognized from cell lysates using an antibody directed against its intracellular pro-rich region. a-tubulin is shown as a loading
control. (D) The blot levels of ApoER2 CTF were normalized to the loading control a-tubulin and plotted as the average + SD of three independent

== DAPT
mmm DAPT + BDNF

250

*

200

150

100

50

0

and facilitate its maturation [79]. Moreover, the proteolysis
of p75™™® induced by NGF is dependent on the phosphor-
ylation of threonine 735 of ADAM17 [39]. However, while
Kommaddi et al. showed that NGF stimulates ADAM17
phosphorylation, they did not observe a change in the sur-
face levels of the metalloproteinase. Furthermore, activa-
tion of this signaling pathway is known not only to
modulate the surface levels of the metalloproteinase but
also to shift the balance from ADAM17 dimers to mono-
mers. This process stimulates the dissociation of tissue in-
hibitor of metalloproteinase-3 (TIMP3) from ADAM17,
thus activating the metalloproteinase [80]. Previous stud-
ies have shown that TIMP3 decreases the level of
ApoER2-soluble extracellular fragments and CTFs, sug-
gesting an active role for a-secretase in the first step of
ApoER2 processing at the plasma membrane [73]. In con-
trast, ApoER2 proteolysis induced by NGF was not
dependent on MEK/ERK activation, which is the first dif-
ference between the regulated proteolysis of ApoER2 and
p75N™R, This result suggests that the proteolysis of
ApoER2 induced by NGF may be mediated by metallopro-
teinases other than ADAM17. Surprisingly, under basal
conditions, our results show that MEK activity decreases
the levels of the ApoER2 CTFE, contrary to what is known

about the regulation of ADAM17 activity on different sub-
strates [72,81]. This result therefore strengthens the idea
that other metalloproteinases participate in the shedding
of ApoER2 under these conditions.

The PISK/AKT pathway in neurons is another signal-
ing pathway that is activated in response to NGF, and its
activation is dependent on TrkA activity. The PI3-
kinases catalyze the phosphorylation of the phosphatidy-
linositols (PtdIns), a family of minority lipids present in
the cytosolic side of cell membranes. Many of the prod-
ucts of PI3K (PtdIns3P, PtdIns(3,4)P2, PtdIns(3,5)P2, and
PtdIns(3,4,5)P3) function in specific regions of the cell
to recruit various proteins involved in protein trafficking
and signaling [82,83]. Our results demonstrate that inhi-
biting the basal activity of PI3K via the pan-class I/II/III
PI3K inhibitor LY 294002 as well as the class I/II PI3K
inhibitor ZSTK474 [75,76] under a condition in which
the activity of the y-secretase complex is inhibited with
DAPT, results in a significant accumulation of the pro-
teolytic fragments of ApoER2. Many studies have shown
the importance of PI3K in the trafficking of cell surface
receptors through the endocytic pathway. For example,
the transferrin receptor and receptors belonging to the
LDLR family (LDLR, LRP1 and VLDLR) display impaired
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Figure 8 Reelin induces ApoER2 proteolysis in PC12 cells without affecting p75 CTF levels. Western blot of cell lysates from PC12 cells
stably expressing HA-ApoER2. Serum-starved cells were pre-treated with 10 uM DAPT and then incubated with recombinant reelin or the control
medium (mock) for 2 h. ApoER2 (A) and p75 (D) were recognized using an antibody directed against its intracellular region. a-tubulin is shown
as a loading control. (B and C) Quantification of blot levels of ApoER2 and its CTF; both quantifications were normalized to the loading control
a-tubulin and plotted as the average + SD of three independent experiments. Student’s t-test, «P < 0.005, «+P < 0.001. (E and F) Quantification of
the blot levels of p75 and its CTF; both quantifications were normalized to the loading control a-tubulin and plotted as the average + SD of three
independent experiments. Student’s t-test, not significant (N.S).

trafficking via the endocytic compartments after treatment
with wortmannin [84,85] a covalent pan-class I/II/III PI3K
inhibitor. Specifically, the receptors accumulate in early
endosomes and are prevented from progressing to late
endosomes, which affects their lysosomal degradation,
and also display impaired recycling to the cell surface.
Therefore, the observed increase in the levels the CTF of
ApoER2 (and also of p75™ ') when PI3K activity is inhib-
ited could be due to an increase in receptor shedding and/
or reduced CTF degradation, by a y-secretase independent
pathway. Similarly to what we found for MEK/ERK activa-
tion, ApoER2 proteolysis induced by NGF was not
dependent on PI3K activation. Thus, we suggest that the
NGF-regulated proteolysis of ApoER2 does not depend on
PI3K activity, in the same way of what was observed for
p75NTR

Our results using cultures of primary cortical neurons
demonstrate a connection between neurotrophin signaling

and the proteolysis of endogenous ApoER2. The levels of
ApoER2-CTF were regulated by BDNE, thus reinforcing
the results obtained in PC12 cells. Our data, together with
previous studies in neurons that show common functions
and intracellular pathways between the neurotrophin and
reelin-ApoER2 systems, suggest that these two families
may be coordinated to regulate neuronal functions both
during development and under different physiological
conditions in the adult brain. A recent report indicated
a genetic interaction between reelin and BDNF that is
dependent on the sex hormones [86]. Moreover, the ac-
tions of BDNF in Cajal-Retzius cells during development
decrease the expression of reelin [87], while the mRNA
expression of VLDLR, the other reelin receptor, increases
through TrkB [88]. Furthermore the Reeler mouse, which
lacks reelin, has significantly decreased BDNF levels along
with lower TrkB activity [89]. In addition, mice devoid
of BDNF during development have significantly increased
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reelin levels [87]. Interestingly, the intracellular fragment
of ApoER2 generated by the activity of the y-secretase
complex, the ApoER2-ICD, can inhibit the expression of
reelin at the transcriptional level [90]. Therefore, the doc-
umented reduction of reelin induced by BDNF [87] could
be dependent, at least in part, on the neurotrophin- in-
duced proteolysis of ApoER2, as reported in our work.
Overall, these data suggest a functional relationship be-
tween these two systems that may be relevant for patho-
logical conditions such as schizophrenia [91-95] and
autism [96-98].

ApoER?2 is an endocytic receptor that follows the de-
gradative pathway to the lysosomes in response to reelin
binding [63]. Reelin also induces the proteolytic process-
ing of the receptor by a still unknown mechanism [4,64].
When PC12 cells were treated with reelin and DAPT,
the levels of mature ApoER2 decreased, and the CTF of
the receptor accumulated. Therefore, in our cell model,
receptor degradation is stimulated by its ligand. Reelin
was also able to induce neurite outgrowth in PC12 cells
expressing ApoER2, but it did not affect the levels of
p75NT™® or its CTE. These results indicate that, in con-
trast to the effect of NGF on ApoER2 processing, reelin
signaling does not regulate the functionality of p75™ '~
or the formation of its fragments. However, we could
not discount that the processing of p75™ '~ could be af-
fected by reelin in a different cellular context because
the levels of p75™'® in our cortical neurons were too
low to be detected as proteolytic fragments.

To date, little is known about the function of the pro-
teolytic fragments of ApoER2. There are studies showing
that the extracellular fragment of ApoER2 produced
after shedding have the ability to interact with ligands
found in the extracellular medium [99]. Additionally, the
ApoER2-ICD can translocate to the nucleus [100] where,
as mentioned before, it may be able to inhibit reelin
transcription [90].

Conclusions

Even though the signaling pathway regulating ApoER2
shedding, induced by neurotrophins, was different than
the one described for p75™ " in terms of the participa-
tion of MEK1/2 activity, our study clearly gives new in-
sights into the crosstalk between neurotrophins and the
reelin receptors, specifically through the activation of
ApoER2 shedding by the Trk receptors. In contrast, the
ApoER2/reelin pathway would not regulate p75™'" in
terms in its proteolytic processing.

Further studies are required to understand the cellular
role of the neurotrophin-induced ApoER2 processing in
neurons. Plausible functions of ApoER2 processing, in-
duced by its own ligand and/or by neurotrophin signaling,
could be involved in fine-tuning the regulation of the reelin
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signaling cascade that should occur at the synapse and/or
during neuronal migration.

Methods

Antibodies

We used a rabbit polyclonal antibody directed against a
region near the C-terminal of ApoER2 (A3481, Sigma).
The rabbit polyclonal antiserum against the recombinant
human ApoER2 cytoplasmic domain and the mouse
monoclonal anti-HA have been described before [101].
We also used a p75"'" rabbit polyclonal antibody
(07-476, Millipore), a mouse monoclonal anti-p-tubulin
antibody (05-661, Millipore), a mouse monoclonal anti-
actin antibody (MAB1501R, Chemicon), a rabbit poly-
clonal anti-AKT antibody (#9272, Cell Signaling), a rabbit
monoclonal anti-phosphorylated AKT antibody (#4060,
Cell Signaling), a mouse monoclonal anti-phosphorylated
ERK antibody (sc-7383, Santa Cruz Biotechnology), a
rabbit polyclonal anti-Dab1 antibody (AB5840, Chemicon
International), and a mouse monoclonal anti-MAP2 anti-
body (MAB378, Chemicon). We used horseradish perox-
idase (HRP)-conjugated secondary antibodies (Chemicon)
and Alexa 555- and 488-conjugated goat anti-mouse and
anti-rabbit secondary antibodies (Molecular Probes).

Plasmids

The N-terminally HA-tagged full-length ApoER2 in the
pCDNA3 vector [GenBank: NM_004631] was described
previously [101,102].

Cell lines and culture conditions

PC12 cells were maintained in DMEM-high glucose
(Invitrogen) with 6% fetal bovine serum [FBS, (Hyclone)],
6% horse serum [HS, (Hyclone)], 100 U/mL penicillin and
100 pg/mL streptomycin in a 5% CO, incubator at 37°C.
PC12 cells were stably transfected with Lipofectamine
2000 reagent (Invitrogen) according to the manufacturer’s
protocol. The cells were selected with 0.8 mg/mL Genet-
icin [G418, (Hyclone)] and maintained with 0.4 mg/
mL G418. HEK-293 cell lines stably expressing reelin or
the control vector pcDNA3 were grown in DMEM-high
glucose supplemented with 10% FBS, 100 U/mL penicillin,
and 100 pg/mL streptomycin and maintained with
0.4 mg/mL G418 in a 5% CO, incubator at 37°C.

Primary culture of rat embryonic cortical neurons

The protocols to obtain neurons from rat (Sprague—
Dawley) embryos were performed with approval from
the Bioethical Board for animal studies at the Facultad
de Ciencias Bioldgicas and according to the Guide for
the Care and Use of Laboratory Animals of CONICYT.
Cortical neurons were prepared and cultured essentially
as described [71]. Cerebral cortexes from 18-day-old em-
bryos were washed two times with cold Hank’s medium
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and digested with Hank’s 0.5% trypsin-EDTA (Invitro-
gen) for 18 min at 37°C. The tissue was resuspended in
DMEM-high glucose supplemented with 10% FBS, 100
U/mL penicillin and 100 pg/mL streptomycin. Cells
were counted and plated (200,000 cells/cm?) in poly-L-
lysine (mol wt 30,000-70,000, Sigma) pre-treated Petri
dishes and incubated in a 5% CO, incubator at 37°C.
After four hours, cell medium was replaced with a neur-
onal maintenance medium comprised of Neurobasal
medium (Invitrogen), 1X B27 supplement (Invitrogen),
2 mM L-Glutamine (Invitrogen), 100 U/mL penicillin
and 100 pg/mL streptomycin. After 24 h, the neurons
were treated with 1 pM arabinofuranosyl cytidine (Ara-C,
from Sigma).

Reelin conditioned medium

HEK-293 cells stably expressing reelin or the control
vector pcDNA3 were the kind gift of Dr. Tom Curran
(University of Pennsylvania, USA). The cells were grown
in 10-cm plates until they reached 80% confluence in a
5% CO, incubator at 37°C. They were washed once with
PBS and incubated for 24 h with serum-free medium
(DMEM-high glucose, 100 U/mL penicillin and 100 pg/
mL streptomycin) in a 5% CO, incubator at 37°C. Later,
the cell medium was collected and centrifuged at
1,000 rpm for 5 min, and the supernatant was stored at
4°C. The remaining plates with cells were filled again
with serum-free medium and incubated for 24 h in a 5%
CO, incubator at 37°C. The collecting procedure was
repeated a total of three times (72 h), and then the super-
natant was concentrated 10 times using Amicon Ultra-15
centrifugal filter units with a 100 kDa membrane cut-off,
according to the manufacturer’s protocol (Millipore).

Cell treatments and Western blot analysis

PC12 cells stably expressing HA-ApoER2 were grown in
6-well plates coated with poly-L-lysine. When the cells
were 80% confluent, they were washed once with warm
PBS and incubated with serum-free medium (DMEM
high glucose) for 2 h in at 37°C. After serum deprivation,
the cell medium was replaced with fresh serum-free
medium, and the corresponding inhibitory drugs were
added for 1 h at 37°C. For inhibitory agents, we used
100 nM K252a (Alomone Labs), 10 uM DAPT, 25 uM
PD98058, 50 uM GM6001 100 nM wortmannin and
50 uM of LY294002 (all from Calbiochem) and 5 uM of
ZSTK474 (Selleck Chemicals LLC) Later, the cells were
treated with 100 ng/mL NGF (Alomone Lab) for differ-
ent times in a 5% CQO, incubator at 37°C. To treat the
PC12 cells with reelin, the cells were incubated with ei-
ther the ligand-enriched or the control medium (mock)
for 2 h in a 5% CO, incubator at 37°C. The cells were
lysed with lysis buffer (20 mM Tris, 150 mM NaCl, 1%
NP-40, 10% glycerol, 2 mM EDTA, 1 mM PMSE, 4.7 uyM
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leupeptin, 1 pM pepstatin, 1 pM antipain, 1 pM aproti-
nin, 1.5 pM benzamidine, 1 mM sodium orthovanadate,
5 mM NaF, 1 mM glycerol phosphate) and centrifuged
at 14,000 rpm for 5 min at 4°C, and the protein concen-
tration of the supernatant was quantified with the BCA
protein assay kit according to the manufacturer’s proto-
col (Pierce). Samples were denatured in denaturing buf-
fer (0.3 M Tris, 0.35 M SDS, 50% glycerol, 0.05% blue
bromophenol, and 25% B-mercaptoethanol) by boiling
for 5 min. The proteins were subjected to SDS-PAGE
under reducing conditions, transferred to a polyvinyli-
dene difluoride (PVDF) membrane, and incubated with a
blocking solution (0.1% Tween-20, 5% nonfat powdered
milk, and PBS) for 30 min at room temperature. Later,
the corresponding primary antibody was added (anti-
tubulin 1:10,000; anti-ApoER2 A3481 1:10,000; anti-
p75NTR 1:1,000; anti-p-ERK 1:1,000; anti-AKT 1:1,000;
anti-p-AKT 1:1,000; anti-Dabl 1:1,000 and 1:1000 anti-
p-Tyr) in blocking solution for 16 h at 4°C. The PVDF
membranes were washed with the blocking solution
three times and incubated with HRP-conjugated anti-
bodies (1:5,000) for 2 h at room temperature in blocking
solution. Then, the immunoreactive proteins were de-
tected using the ECL system according to the manufac-
turer’s protocol (Pierce).

Rat cortical neurons were grown in 6-well plates for 7
DIV, washed once with warm serum-free medium (Neuro-
basal), and incubated with the same medium for 1 h in a
5% CO, incubator at 37°C. After serum deprivation, the
cell medium was replaced with fresh serum-free medium
and the corresponding inhibitory drug, similar to the PC12
cell treatment described earlier. The neurons were incu-
bated for 1 h in a 5% CO, incubator at 37°C and were later
treated with 100 ng/mL BDNF (Alomone Labs, Jerusalem,
Israel) for different times in a 5% CO, incubator at 37°C.
The cell lysis protocol and SDS-PAGE were performed as
described for the PC12 cells.

Determination of Dab1 mRNA expression

Total RNA was extracted using the RNA-Solv® Reagent
(Omega Biotec). The extracted RNA was quantified by
spectrophotometry at 260-nm optical density in a Nano-
Drop (ND-1000) Spectrophotometer (NanoDrop Tech-
nologies, Rockland, DE). For RT-PCR, first-strand
synthesis was performed with the M-MLV reverse tran-
scriptase (Thermo Scientific Inc.) In brief, 1 pg of total
RNA was incubated with DNase I for 15 min at room
temperature. Then, 1 pL of EDTA was added, and the
reaction was incubated 10 min at 65°C. Finally, 1 pL of
random primers were added, and the reaction was incu-
bated at 70°C for 5 min. After incubation, dNTPs, 10x
PCR Buffer, RNase inhibitor, and reverse transcriptase
were added, and the reaction was incubated at 25°C for
5 min followed by 25°C for 10 min, 42°C for 60 min, and
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70°C for 10 min. The resulting cDNA was used for Dabl
PCR. The primers for Dabl amplification were designed
for optimal performance using the OligoAnalyzer 3.1 of
the IDT Integrated DNA Technologies and Net primer
free software from PREMIER Biosoft International (for-
ward CATTGCGAAGGACATCACAG; reverse CGGC
TTCACACTGCTTA). The cycling conditions for the
amplified products were as follow: 95°C for 0.45 seconds,
50°C for 1 min, 72°C for 0.45 seconds (35 cycles). The
amplified products were run on a 1% gel, and the bands
were visualized under UV light after staining with Red
Gel (Thermo Scientific Inc.).

Immunofluorescence

PC12 cells stably expressing HA-ApoER2 were plated on
glass coverslips coated with poly-L-lysine. The cells were
washed with PBS and fixed with 3% paraformaldehyde
solution (3% PFA, 4% sucrose and PBS) at room
temperature for 15 min. After three washes with PBS for
5 min each, the cells were permeabilized with 0.2% Tri-
ton X-100 in PBS for 10 min and then washed three
times with PBS. Coverslips were incubated at room
temperature with a blocking solution (0.2% gelatin from
bovine skin (Sigma) and PBS) for 1 h. Later, the cells
were incubated with a mouse anti-HA antibody diluted
in blocking buffer at 4°C overnight. The coverslips were
washed three times with PBS and then incubated with
Alexa 555-conjugated anti-mouse antibody for 30 min at
37°C. After three washes with PBS, the coverslips were
mounted with Fluoromount mounting medium (Sigma)
on glass slides.

The immunofluorescence protocol for cortical neurons
was the same as that used for the PC12 cells, but a dif-
ferent blocking buffer [5% gelatin from cold water fish
skin (Sigma) and PBS] was used. Neurons were incu-
bated with the anti-ApoER2 cytoplasmic domain anti-
body (1:1,000) in blocking buffer overnight at 4°C.
Coverslips were washed three times with PBS and then
incubated with Alexa 555-conjugated anti-mouse anti-
body and Alexa 488-conjugated anti-rabbit antibody for
30 min at 37°C. After three washes with PBS, the cover-
slips were mounted with Fluoromount mounting medium
on glass slides.

Statistical analysis

Quantification of the blots was performed with the Image]
1.45 s software. Statistical analysis and graphing were per-
formed with SigmaPlot 11.0 using Student’s t-test or one
way ANOVA with the Holm-Sidak post-hoc test, depend-
ing on the experiment.
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