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Abstract: Among the physical attributes of agricultural materials, mass, volume, and sizes have
always been important quality parameters. Previous research focused mostly on volume estimation
using stereo-based approaches, which rely on manual intervention or require a multiple-cameras set
up or multiple-frames captures from different viewing angles to reconstruct the three-dimensional
point-cloud information. These approaches are tedious and not suitable for practical machine
vision systems. In this work, we only use a single camera mounted on the ceiling of the imaging
chamber, which is directly above the fruit/vegetable to capture its top-view, two-dimensional image.
We developed a method to estimate the mass/volume of agricultural products with axi-symmetrical
shapes such as a carrot or a cucumber. The mass/volume is estimated as the sum of smaller standard
blocks, such as chopped pyramids, an elliptical cone, or a conical cone. The computed mass/volume
showed good agreement with analytical and experimental results. The weight estimation error is 95%
for the case of the carrot and 96.7% for the cucumber. The method proved to be sufficiently accurate,
easy to use, and rotationally invariant.

Keywords: volume estimation; mass estimation; image processing; machine vision; vegetable;
water displacement method

1. Introduction

With the increase of the population and the improvement of life from day to day, people’s demands
on quality, quantity, and type are getting higher. Therefore, factories must expand and change to follow
up the amount of production. Currently, people are researching how to speed up the production line
but maintain the same quality of food.

Size, weight, and shape are the major indices in determining standards in the industry such as
packaging, grading, processing, and conveying. This makes researchers have to investigate the physical
characteristics of fruit and vegetables to find the solution boosting up the production line [1–10].
There are some works that classified the fruit/vegetables based on its shape and features. They applied
various classifiers (Artificial Neural Network (ANN), Fourier-descriptor (FD), . . . ) for some types of
fruit/vegetable listed in Table A1 of Appendix A. In addition, there is a superior survey that delivers not
only a summary of many different methods, tasks, and concepts but also the key challenges and future
directions for food computing [11]. Typically, the mass of the product will be measured using a load cell
incorporated with a conveyor belt such as C35 AdvancedLine WD Checkweigher by Mettler Toledo,
which can measure weight from 25 g to 7000 g with throughput up to 250 packets per minute or 2000 g
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Checkweigher from A&D Inspection has throughput up to 320 packets per minute or digital scale for
individuals or businesses [12,13]. The load cell converts gravitational force into a measurable electrical
signal. Usual load cell requires filters and Analog-to-digital Converter (ADC) to work. This leads to a
high mechanical structural cost and is also time-consuming when we have to recalibrate the systems
after a certain amount of usages time depending on the hardware quality.

Due to the limitation of the load cell, many researchers try to find other methods to estimate
weight/volume without using a load cell [14–38]. One of the most accurate ways is to estimate the
volume of the product and using a pre-determined “density” to calculate the actual weight of the object
because mass and volume are correlated to a certain degree. For instance, the correlation coefficient
(R2) between mass and volume of mango is 0.9978 [15], tangerine, lime, lemon, and orange are 0.9045,
0.9592, 0.9641, and 0.9232, respectively [28].

The previous method to estimate the volume of an object is the water displacement method
(WDM), which is presented in References [16,17]. The water displacement method is known to give an
accurate result by ensuring the water fully submerges the objects. However, this method is hard to
do by always keeping the buoyancy force of water acting on the objects. In addition, it is difficult to
maintain the force so that the object remains afloat in the water as well as get a good reading.

Another method is a 3D reconstruction using 3D scanning from multiple 3D views [22–27,39].
The 3D construction returns highly accurate results, but it requires many cameras. Moreover,
the calibration between cameras and the perfect timing when capturing the images at the same
time is very complex. It also requires the complicated algorithm to preprocess and reconstruct a 3D
representation of the object. On the other hand, the 3D scanning is only applicable in the laboratory
because we have to work many times at many different angles. Therefore, the 3D point clouds
reconstruction is very time-consuming.

Some researchers also used geometrical features of an object to estimate volume using Multiple
Linear Regression (MLR) [14]. The MLR is the supervised learning with a procedure called Ordinary
Least Square [40,41]. It is used to predict which one has two or more independent inputs (the widths
and volume of an object) and return the function as below.

y = b0 +
n∑

i=1

bixi, (1)

We have, in the total of n inputs, bi is the coefficient of a set of chosen features xi, and y is the
predicted volume.

In addition, the Artificial Neural Network (ANN) has also been used for volume
estimation [14,26,37]. One of the most popular ways to estimate the volume is to use a single
image and measure the widths and/or lengths to feed into their model [14,37]. There are many
types of ANNs in the literature [26,37,42]. However, the Levenberg-Marquardt algorithm (LM)
still provides sufficiently accurate results in volume estimation [26,37]. The Levenberg-Marquardt
neural networks were used to form non-linear combinations of various features to estimate fruits’
volumes [37,42]. It takes the sum of squared of nonlinear functions to get the minimum of a function.
With its simple and robust platform, we decided to apply it to predict the volume of fruits/vegetables.

(JT
k Jk + λkI)pk = −JT

k fk, (2)

In Equation (3), J is defined as the Jacobian matrix, λk is a non-negative scalar, and I is the identity
matrix. For some scalar ∆ related to λk, the vector pk is the solution of:

minimize
p∈Rn

1
2

∥∥∥Jkp + fk
∥∥∥2

2, (3)

subject to
∥∥∥p

∥∥∥
2 < ∆, (4)
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Even though the accuracy of ANNs is not high and each approach works for one type of product
only, those are very promising approaches. If we can find the appropriate feature, the accuracy will
increase so it will be more suitable for real-time implementation.

On the other hand, there are some proposed that used only one two-dimensional image of an
object to estimate its volume by using the disk method [29–33]. They slice the fruit into many disks
with the properties shown in Figure 1 [15,28–33].
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Figure 1. An example object is sliced into many disks.

Figure 1 shows that, once we have the dimension (d) and height (x) of each slice, we can calculate
its volume (see Equation (6)) via its area (see Equation (5)). Lastly, the volume of an object is calculated
by summing all the volume of n disks (see Equation (7)). In detail, the height (x) will equal 1 pixel to
have the most precise estimated volume.

Ai = π

(
di
2

)2

, (5)

Vi = Aix, (6)

V =
n∑

i=1

Vi, (7)

Ibrahim et al. [15] also modified the disk method to fit with unpredictably shaped objects.
Once they have two view images (top and side) of a mango, the area of each disk is defined in
Equation (8).

Ai = π
dizi
4

, (8)

With zi and di is the width of the ith disk from the top view and side view, respectively. Figure 2
illustrates one slice with the mentioned parameters in Equation (8).

The disk method, however, is one of the most suitable ones for objects that has a round or elliptical
shape. With a fruit/vegetable shape like a carrot, it cannot return the highest results. Moreover,
Venkatesh et al. researched that the tilt angle of the fruit or vegetable must be below 10 degrees for
the reasonable volume estimation [19]. Therefore, the alignment step must be integrated into the
production line. This also increases the cost of the alignment module or workforce.

Some fruits/vegetables also have an elliptical cone or cap sphere shape on its top or bottom such
as a cucumber, melon, pumpkin, carrot, grape, tomato, kiwi fruit, passionfruit, etc. Among these



Sensors 2020, 20, 5406 4 of 24

fruits/vegetables, a carrot, a cucumber, a daikon, etc. are considered to be the slender axi-symmetric
fruits or vegetables due to their height being much longer than their width. With this property,
Vankatesh et al. cannot assume those fruits as an ellipsoid or a sphere [19]. In addition, this approach
requires multiple manual captures with different angles. Thus, it is not practical to implement in a
read machine vision system.
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Figure 2. An example of a slice’s volume with two widths z and d, with z being the width observed
from the top view and d being the width from the side view.

Our approach focuses on improving the accuracy and computational time of the disk method [29–33],
so that the model will be accurate enough and fast for real-time measurement [36]. With only one top
view image of the fruit or vegetable, we slice the object into a number of equal slices. Then, the volumes
of the top and bottom parts are assumed to be the volumes of the elliptical cone. We considered each
slice of the middle part as a chopped pyramid. Based on the results of those previously mentioned
steps, we can estimate the fruit/vegetable volume. In addition, since we know there is a high correlation
between fruit/vegetable weight and its volume [15,19,28], we can infer the mass based on volume
information. Once we get the volume of the top, the middle, and the bottom parts, we estimate the
volume and the density, from which we can calculate the object’s weight. In this paper, we focus on the
carrot and cucumber, which are ranked as the most common vegetables in the world [43].

We divided the content of this paper into three main sections. In the introduction, we briefly
mention the current concerns regarding volume measurement of the fruit/vegetable in the assembly
lines as well as in the laboratory settings. In addition, the literature review that we are going to
apply and compare is also discussed in this section. The Materials and Methods section presents our
proposed approach and how we collect data. The result shows the outcome of our method and other
research studies and compare each.

2. Materials and Methods

2.1. Materials

In this research, both 191 carrot and 160 cucumber samples were chosen randomly from the
supermarket after they were harvested for two to three days.

For the reference length and width of the fruit/vegetable, we used the digital caliper with an error
of ±0.1 mm, as shown in Figure 3a. Figure 3b reveals the digital scale model VNS CL 2001 (division of
0.1 g and capacity of 2000 g) that we used to get the reference mass. To get the volume of the fruit



Sensors 2020, 20, 5406 5 of 24

or vegetable, we applied the water displacement method, which consists of a digital scale, a tank of
water, and a stick to hold the fruit/vegetable while being fully submerged. This is similar to the work
of Chalidabhongse et al., which is shown in Figure 3c.
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Figure 3. Measurement tools: (a) digital caliper, (b) digital scale, and (c) water displacement method [39].

Various instruments were used to measure fruits’ physical properties. Length, width, and thickness
are measured using a Vernier caliper. The fruits’ actual volume is measured by the water displacement
method. In this method, fruits were submerged in distilled water. We can obtain the volume of the
fruit as a function of three kinds of mass: (1) The mass of the measurement apparatus with water filled
to the marking level, (2) mass of the fruit, and (3) the mass of the apparatus with the fruit submerged
with the same water level as in (1).

Fruit volume, V, is then given by the equation below with M1, M2, M3 being the three mentioned
masses. These are actually the weight of the water displaced by the fruit and ρwater is the density of
the water.

V =
M1 + M2 −M3

ρwater
(9)

Forbes et al. [14] improved the original WDM by integrating a funnel-like tube on top of a wide
water container. The funnel-like tube helps to prevent the fruit from floating to the surface, which will
reduce the measurement’s accuracy. The narrow tube on top reduces the measurement error of the
setup since only a small change in water volume results in a larger change in the water level within the
narrow tube.

2.2. Our Proposal

With the slender axi-symmetric property of fruits/vegetables, we slice the fruits/vegetables into
many parallel parts. For each part, Figure 4 and Equation (10) demonstrates an example and formula
to calculate its volume, respectively.

Once we have the area of two area B and B′ ( B
B′ = constant) of a chopped pyramid, its volume is

defined as below.
Vchopped−pyramid =

h
3

(
B + B′ +

√

BB′
)
, (10)
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2.2.1. Volume of the Cross-Section of the Circular Vegetable or Fruit

For the fruit that has a round shape, its cross-section is also a circle such as lemons, tangerines,
clementine, orange, etc. Therefore, the area B and B′ in Equation (10) are now defined as Equations (11)
and (12) with r and r′ being the radius of the top and the radius of the bottom of the cross-section.

B = πr2, (11)

B′ = πr′2, (12)

2.2.2. Volume of the Cross-Section of an Elliptical Vegetable or Fruit

Figure 5 illustrates one cross-section (frustum) of an elliptical vegetable or fruit and Equations (13)
and (14) show the formulas of calculating the areas B and B′.

B = π

(
d1

2

)(
d2

2

)
, (13)

B′ = π

(
b1

2

)(
b2

2

)
, (14)
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2.2.3. Volume of the Cross-Section of an Arbitrary Polygon Vegetable or Fruit

For the fruit with a star shape such as a starfruit or bell peppers or having a complicated
shape, the area B and B′ can be derived when analyzing its physical properties or approximate its
shapes/cross-section as one of the common geometry forms.

2.2.4. Volume of the Top and Bottom of a Circular or Elliptical Vegetable or Fruit

The top and bottom of these vines and underground fruits/vegetables are special with an elliptical
cone shape (see Figure 6 and Figure 9a). Therefore, the volume top and bottom part can be estimated
by using the elliptical cone formula as detailed in Equation (15).

Vtop/base =
π× d1 × d2 × h

6
, (15)
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With all the chopped-pyramid volumes of the body and two elliptical cone volumes of the top
and bottom of the fruit/vegetable, we can estimate the total volume by using Equation (16).

Vtotal =
∑

Vchopped−pyramid + Vtop + Vbase, (16)

2.3. System Flow

All the steps of our system are shown in Figure 7. The details of each step are described from
Sections 2.3.1–2.3.6 below.
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2.3.1. Hardware Setup

Figure 8 displays that our system consists of an aluminum frame and one camera model CANON
60D (lens Tamron 17–50 mm, f2.8) mounted on top where it is perpendicular to the bottom of the frame.
In addition, we placed a light source inside the frame to get rid of the shadow of an object. After the fruit
or vegetable is captured, the system is then calibrated to have the pixel per centimeter square of the image.
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2.3.2. Background Subtraction

There are many types of thresholds. Red-Green-Blue (RGB), Hue-Saturation-Value (HSV), or Hue-
Saturation-Lightness (HSL) thresholding and Otsu’s method are one of the most famous in digital signal
processing. This depends on the situation where researchers will apply the suitable one for their works.
For instance, we extracted the red color and green color out of the white background, as illustrated in
Figure 9. In addition, all the input images we used in this paper have a JPG format.Sensors 2020, 20, x FOR PEER REVIEW 10 of 26 
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the object is inside a bounding rectangle (blue outlines) with a perfect fit. This step will be the premise 
to help reduce the time and increase the accuracy of the system. 

Figure 9. Background subtraction using image thresholding of the carrot and cucumber. (a) Original
images and (b) images after thresholding.

2.3.3. Finding a Bounding Box

The minimal bounding box technique supported by OpenCV will place a minimum rectangular
box that fits the object in the image. The system will return four coordinates of the corners of the box
by combining with the pixel per centimeter we have already calibrated and measured in Section 2.3.1.
We can calculate the length as well as the maximum width of some fruits. Figure 10 illustrates that the
object is inside a bounding rectangle (blue outlines) with a perfect fit. This step will be the premise to
help reduce the time and increase the accuracy of the system.
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Figure 10. Bounding box (blue rectangle) in: (a) a carrot and (b) a cucumber.

By using the bounding box supported by the OpenCV library, the width w and height h of the
box are constants on different angles. We can estimate the volume of the fruit or vegetable no matter
how the object is rotated. Figure 11 shows that this technique can also align with the fruit/vegetable.
This helps us reduce the alignment step in the production line.
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Figure 11. Bounding box on a carrot rotated in different angles. (a) 45◦ and (b) 135◦.

2.3.4. Approximating the Cross-Section as Known Geometrical Shapes

By using Equation (16), the major part of the volume calculation is the volume of the fruit/vegetable
comprised of multiple chopped pyramids. Each chopped pyramid is assumed to have the same kind
of cross-section even though their sizes can be different. In order to get this information, we take many
cross-section samples and find the curve that deviates the least from a set of common curves, such as a
circle, ellipse, etc.
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The carrot and cucumber have very good elliptical curve fitting results, as shown in Figure 12.
The ellipse uses the following equation.

ax2 + bxy + cy2 + dx + ey + f = 0, (17)Sensors 2020, 20, x FOR PEER REVIEW 12 of 26 
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Figure 12. Elliptical representation of the cross-section of: (a) a carrot and (b) a cucumber.

We found that the average width/height ratios of the carrot and cucumber are 0.9531 and
0.9677, respectively.

2.3.5. Volume Estimation

After all preprocessing and setup steps meet our criteria, the volume estimation step is specifically
described in this section.

Since we can see that the fruits or vegetables related to a banana or an axi-symmetric one like
a carrot, cucumber, white turnip, etc. has virtually round or ellipse cross-sections, we can split it
into many single slices to easily estimate the volume of the fruit/vegetable. We then divided the
fruit/vegetable into equal parallel slices, as illustrated in green lines in Figure 13. Each line has the
same slope as the slope of the width of the bounding box.
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By computing each chopped pyramid volume in the mid-regions and elliptical cone volume for
the top and bottom part of the fruit/vegetable, as introduced in Section 2.2, the total volume of each
experimental object can be estimated using Equation (16).

2.3.6. Mass Estimation

Figure 14 shows the weight against volume when using the water displacement method. We split
our dataset into 70 samples for calculating the average density and the others for testing. Once the
average density of each type of fruit/vegetable is calculated and combined with the estimated volume,
we can get the estimated mass based on Equation (18) below.

Mestimated = Vestimated × daverage, (18)
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Figure 14. R2 and correlation between the mass measured by the digital scale and volume measured by
the water displacement method for (a) a carrot and (b) a cucumber.

3. Results

3.1. Proposed Method

We have to divide each type of fruit/vegetable into different equal slices to get the most accurate
value. After slicing the fruit/vegetable from three slices, we noticed that the errors are unvarying from
the 13th slices. Because of this result, Figures 15 and 16 shows the outcome of up to 15 slices with the
error bar being the standard deviation of a different volume. In detail, those figures show that the
carrot needs eight slices and the cucumber needs eight slices for the lowest error, which is 3.421% and
3.2025%, respectively.Sensors 2020, 20, x FOR PEER REVIEW 14 of 26 
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Figure 15. Percentage errors when slicing the carrot into 3 to 15 parts.
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Figure 16. Percentage error when slicing the cucumber into 3 to 15 parts.

Over the dataset of 191 carrots and 160 cucumbers, the deviation plot of each fruit/vegetable when
applying the proposed method is listed in Figure 17. We can see that almost all the estimated data
are in the range of a 95% limit of agreement (outer lines) and the average difference between the two
methods is the centerline.
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Figure 17. 1.96-σ plot for the volume difference between the water displacement and our method: (a) a
carrot and (b) a cucumber.

Figure 18 also illustrates the R2 value and the correlation of each tested fruit with our proposed
method and water displacement and we can clearly see that our approach returns highly accurate results.
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Figure 18. R2 and the correlation between the proposed method and the water displacement method
for (a) a carrot and (b) a cucumber.
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Table 1 shows the results of the paired t-test between our proposal and the water displacement
method. The paired mean difference of the carrot is m = 0.6901 mL and the standard deviation is
σ = 7.4791 mL. The paired mean difference and the standard deviation of the cucumber is m = 0.4436 mL
and σ = 6.729 mL, respectively. The 95% confidence interval includes zero: a zero mean difference
is well within the range of likely population outcomes. The mean difference between our proposed
method and the water displacement method is not statistically significant at α = 0.05. This is because
p > 0.05.

Table 1. The paired t-test between our proposal and water displacement.

Sig. (2-Tailed) 95% Confidence Level of the Mean Difference

Lower Upper

Carrot p = 0.204 −0.3773 1.7576
Cucumber p = 0.406 −0.607 1.4943

We also compare our research with other methods such as the disk method, the ANN method,
and MLR and have some significant results.

3.2. Disk Method

As describe by Ibrahim et al. [15], we capture two sides of the fruits/vegetables. We placed one
camera on the top and one on the side of the fruit/vegetable. Those cameras have the same specification
and have been calibrated. Figure 19 shows the top view of the fruit/vegetable while Figure 20 shows
the side view.

Next, their background was filtered out to get only the inner object as Section 2.3.2. After estimating
all the dimensions of the top view and side view, we then applied Equation (8) to get the area of each
slice. Once we had the areas, Equations (6) and (7) had been used to estimate the volume of the object.
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Figure 21. 1.96-σ plot for the volume difference between the water displacement and Ibrahim’s method:
(a) carrot and (b) cucumber.
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Figure 22. R2 and correlation between two side views using the disk method and the water displacement
method for (a) a carrot and (b) a cucumber.
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3.3. ANN Method

Örnek’s work is using a 1-layer ANN and the training algorithms that he used are Back Propagation
(BP), Levenberg-Marquardt (LM), and Product Unit Neural Network (PUNN) with the number of
neurons being 15, 14, and 2, respectively [37]. The outcomes are also potential, which is listed in
Table 2.

Table 2. R2 of the BP, LM, and PUNN algorithm [37].

Training Algorithm BP LM PUNN

R2 0.94281 0.95616 0.95733

In this section, we reproduced Örnek’s works with the same setting but using our dataset.
Each carrot and cucumber dataset is divided into two parts, which are the training set (153 carrot
samples and 128 cucumber samples) and the testing set (38 carrot samples and 32 cucumber samples).
The LM method and PUNN has the same result. Therefore, we just pick only the LM algorithm to test.
In addition, we use the MATLAB R2019a software to perform this task. Furthermore, a 10-fold cross
validation deviation of volume difference has been recorded in Figure 23. Moreover, Figure 24 shows
the correlation of this method when compared with the water displacement method.
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Figure 23. 1.96-σ plot for the volume difference between water displacement and the ANN method:
(a) carrot and (b) cucumber.
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Figure 24. R2 and correlation between ANN and the water displacement method for: (a) a carrot and
(b) a cucumber.
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3.4. Using MLR

The result in Section 3.3 shows that there is a high correlation among length, widths, and volume of
the carrot and cucumber. Due to that fact, in this section, we also apply the Multiple Linear Regression
method to estimate the volume. The input is the same as the Örnek’s work with the input parameters
being length, five parallel widths, and volume of each fruit or vegetable [37].

After using the MLR, the ±1.96 standard deviation of each type of the experimental fruit is
illustrated in Figure 25. Moreover, the correlation as well as R2 are also shown in Figure 26.
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Figure 25. 1.96-σ plot for the volume difference between the water displacement and MLR method:
(a) carrot and (b) cucumber.
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Figure 26. R2 and correlation between MLR and water displacement method for: (a) a carrot and (b)
a cucumber.

3.5. Mass Estimation

For the result of the mass estimation and classification, Section 3.5.1. and Section 3.5.2 below shows
the standard illustrated in Tables 3 and 4 as well as the confusion matrix described in Tables 5 and 6 of
the validation of carrots and cucumbers. The accuracy gained for this mass estimation is 95% for the
carrot and 96.7% for the cucumber.

Table 3. Carrot classification.

Type Code Weight (g)

Small S 80–125
Medium M 125–200

Large L 200–250
Extra Large 2L 250–320
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Table 4. Confusion matrix of mass prediction through an estimated volume.

Class S M L 2L

S 24 0 0 0
M 2 37 0 1
L 0 2 33 0

2L 0 0 1 21

Table 5. Cucumber classification.

Type Code Weight (g)

Small S <100
Medium M 100–150

Large L 150–200
Extra Large XL >200

Table 6. Confusion matrix of mass prediction through an estimated volume.

Class S M L XL

S 19 1 0 0
M 0 21 1 0
L 0 0 25 1

XL 0 0 0 23

3.5.1. Carrot Classification

Table 4 describes the confusion matrix when we apply Equation (18) with daverage = 1.0987 g/mL.
Our classification system achieved 95% accuracy in classification. The error may happen due to the
error of the estimated volume, which is 3.421% and the average density.

3.5.2. Cucumber Classification

Table 6 shows that there is only one wrongly predicted sample and the prediction error is 3.3%
in the test dataset of the cucumber. The average density of the cucumber among 70 samples is
daverage = 1.019 g/mL. In addition, this result indicates that mass estimation via density is applicable
for a cucumber.

3.6. Computational Expense

The computational device that we used for this research was Dell 5558 with Intel Core i7-5500U
(2.4 Ghz). In addition, the OpenCV Library using Python programming language is also used in this
project. After measuring the computational time with 100 repetitions, the processing time for each
fruit or vegetable is in the range of 0.032 to 0.05 s. This means that we can estimate and classify the
mass of 30–50 fruits/vegetables per second. Currently, we use a spatial resolution of 1538 × 2175 for
our image datasets. We can safely expect that, when the resolution of images reduces to 1080 × 1440
or 720 × 960 pixels, our calculation speed will greatly increase while the calculation accuracy is still
reasonable with the reduction of 0.2078% and 1%, respectively. Moreover, the time execution also
reduces from 0.017 to 0.035 s for the resolution of 1080 × 1440 pixels and from 0.009 to 0.016 s for
the resolution of 720 × 960 pixels. In addition, we have not fully optimized our code or made use of
graphical processing units (GPU). Implementing those would also lead to faster calculation speed as
well. These improvements will be implemented in the near future.



Sensors 2020, 20, 5406 19 of 24

4. Discussion

From Tables 7 and 8, we can see that other methods’ accuracy rates are slightly lower and have a
higher deviation than our research except for that of the ANN method on estimating the volume of
the carrot.

Table 7. Comparison between our proposed method and other methods on a carrot dataset.

Product Method Mean Error (%) R2 Standard Deviation (mL)

Carrot

Proposed method 3.421 0.9805 7.4595
Disk method 6.7021 0.9289 14.868
ANN method 3.9924 0.9286 6.2846

Using MLR 8.3444 0.8024 12.5503

Table 8. Comparison between our proposed method and other methods on the cucumber dataset.

Product Method Mean Error (%) R2 Standard Deviation (mL)

Cucumber

Proposed method 3.2025 0.982 6.7081
Disk method 6.6577 0.9199 15.1942
ANN method 5.5339 0.9482 9.1796

Using MLR 5.4615 0.9551 8.4656

In detail, the errors for the volume estimation of the proposed method were 3.4% and 3.2% for
the case of the carrot and cucumber, respectively. With the same datasets, the disk method’s error
rates were 6.7% and 6.6%, while those of the ANN method were 3.9% and 5.5%, and MLR’s error rates
were 8.3% and 5.4%, respectively. The standard deviation of our method on estimating the volume of
the carrot ranked second, which was 7.4 mL, surpassed by ANN’s one, which was 6.2 mL, and was
followed by 12.5 mL and 14.8 mL when using MLR and the disk method. However, for the standard
deviation of the cucumber dataset, the highest value was 15.1 mL for the disk method, while our
proposed method ranked first with 6.7 mL. This was followed by 8.4 mL of MLR and 9.1 mL of the
ANN method.

In addition, most of the works that we have done are completely automatic by using Computer
Vision while Örnek et al. had to measure each carrot manually [37]. Moreover, the accuracy of the disk
method with two side images will decrease due to some loss at the contact surface between the object
and the base. Additionally, the time execution for the disk method is also higher when each slice’s
thickness is 1 pixel.

With a high correlation between mass and volume, we can estimate the weight via the density.
All the results illustrated that the image processing technique can be applied in the estimation size and
mass of slender axi-symmetric fruits/vegetables and gained high accuracy and was fast enough to be
embedded into the production lines.

The errors of our system come from many phases during the process such as the preprocessing
step, camera, and computational rounded. The error will be higher when the fruits/vegetables in
which its special shape is not axi-symmetric such as a banana [36]. However, the proposed method is
able to work with a banana, which is the type of bending agricultural products shown in Figure 27.
In addition, our system can even process the fruits/vegetables from different angles, which is the
concern of Venkatesh et al. [19].

Figure 27 illustrated the slicing of a banana using our method. We found that the result is still reasonable
with a mean error of 5.7% and the deviation of estimated volume is only 4.5875 mL. With bananas having
smaller bending radii, our method provided better results. The error is only 1.2%. This demonstrates
that our method is still applicable to fruits/vegetables having small bending radii. Additionally, a further
improvement needs to be implemented in the near future.
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5. Conclusions

In this paper, we proposed a method to estimate mass/volume and sizes of slender axi-symmetrical
agricultural products using image processing. Experimental results show good results for products
such as carrots and cucumbers. The mean of volume estimation error is 3.42% (σ = 2.60%) and 3.20%
(σ = 2.82%) for the carrot and the cucumber, respectively. Furthermore, our method has a very low
computational requirement. The average computing time for images having 1538 × 2175-pixels is
only in the range of 30 to 50 ms, which is very favorable for real-time grading/sorting applications.
Furthermore, this approach only requires one camera mounted on the top of the imaging chamber to
capture one single top-view two-dimensional image. The samples do not need to be especially aligned.
Therefore, they do not require any special mechanical alignment devices from the conveyor belts.

The present work may be extended in some ways.

- We can improve the main axis extraction algorithm from the top-view image for products with
bending shapes. Preliminary testing on fruits with bending shapes show that the accuracy of our
method reduces as the bending of the fruits becomes larger.

- The background segmentation can readily be modified for other fruits. The estimated mass/volume
and size may be used together with the online defects/blemishes and color sorting. We may use
another color space, such as HSI or YCbCr, for cases with difficult lighting.

- The shape classification can be implemented after the background subtraction step of our system.
Referring to Table A1, we will test our datasets with the ANN, FD, and MLR classifier due to high
precision in shape detection. After that, we may consider the processing time of each classifier to
choose the optimal one that is suitable for our system.
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Abbreviations

The following abbreviations are used in Appendix A.

ANN Artificial neural network
BP Back projection
BPNN Back propagation neural network
DA Discriminant Analysis
FD Fourier-descriptor
FDR Fisher discrimination ratio
FNN Feed forward neural network
FSCABC Fitness-scaled chaotic artificial bee colony algorithm
LBP Local binary pattern
MLR Multiple linear regression
PCA Principal component analysis
PNN Probabilistic neural network
RBPNN Radial basis probabilistic neural networks
SVM Support vector machine
WLD Weber local descriptor

Appendix A

Table A1 shows the current research related to fruit classification and grading methods. Some of the literature
reviews for some specific features are also summarized in this table.

Table A1. Summary of recent grading methods and fruit classification.

Fruit Features Classifier Accuracy (%) Reference

Date
Color, texture Nearest Neighbor, DA, ANN 83–98 Jana et al. [44]

Size, shape, texture, LBP, WLD, FDR 98 Muhammad et al. [45]
color BP Zhang et al. [46]

Mango

Weight, volume, size, shape FD 98 Ibrahim et al. [15]
Maturity, size Fuzzy, thermal imaging 90 Pandey et al. [47]
Size, volume MLR, ANN 96.7 Schulze et al. [48]

Shape, weight FD,
DA/SVM/Weight 95 Sa’ad et al. [49]

Tomato
Color, texture PCA, SVM 92 Semary et al. [50]

Color, shape, texture PNN 84.4 Arjenaki et al. [51]
Orange Color, texture ANN 88 Capizzi et al. [52]
Apple Color, size Naive Bayes 91 Ronald et al. [53]
Kiwi Shape, weight, volume MLR 98.3 Fu et al. [54]

Strawberry Color, size, shape Cluster Analysis,
Multidimensional scaling, DA >68 Yamamoto et al. [55]

Cucumber Size, shape ANN 97 Kheiralipour et al. [56]
Pear Size, volume ANN, MLR 97 Forbes et al. [14]

Apple Size, volume ANN 99.4 Ziaratban et al. [26]
Carrot Size, volume ANN 99.9 Örnek et al. [37]
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