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Abstract: Bacillus amyloliquefaciens BLB369 is an important plant growth-promoting bacterium, which
produces antifungal compounds. A statistics-based experimental design was used to optimize a liquid
culture medium using inexpensive substrates for increasing its antifungal activity. A Plackett–Burman
design was first applied to elucidate medium components having significant effects on antifungal
production. Then the steepest ascent method was employed to approach the experimental design
space, followed by an application of central composite design. Three factors were retained (candy
waste, peptone, and sodium chloride), and polynomial and original trigonometric models fitted the
antifungal activity. The trigonometric model ensured a better fit. The contour and surface plots
showed concentric increasing levels pointing out an optimized activity. Hence, the polynomial and
trigonometric models showed a maximal antifungal activity of 251.9 (AU/mL) and 255.5 (AU/mL)
for (19.17, 19.88, 3.75) (g/L) and (19.61, 20, 3.7) (g/L) of candy waste, peptone, and NaCl, respectively.
This study provides a potential strategy for improving the fermentation of B. amyloliquefaciens BLB369
in low-cost media for large-scale industrial production.

Keywords: antifungal activity; response surface methodology; Plackett–Burman design; central
composite design; polynomial and trigonometric regression models

1. Introduction

Phytopathogenic fungi cause several plant diseases responsible for various crop
losses and agricultural products deterioration. Fusarium graminearum produces various
pathogenicity and virulence factors allowing it to enter into the plant and advance within
the interior of the infected tissue. It causes Fusarium head blight (FHB), one of the most eco-
nomically disastrous diseases of wheat, barley, rice, and other grain crops worldwide [1,2].
It produces deoxynivalenol (DON) and zearalenone, two harmful toxins to humans and
animals. Consequently, chemical fungicides were used. Triazoles (e.g., tebuconazole, met-
conazole, and prothioconazole [3,4]) and benzimidazole obstruct sterol biosynthesis and are
the most effective to suppress FHB symptoms and decrease mycotoxin concentration [5–7].
Prochloraz, an imidazole derivate acting similarly to triazole fungicides [8], is widely ap-
plied to control fungal growth in cereals in several European countries [9]. The widespread
use of chemical pesticides (more than 97% of control measures) overexposed nature to their
ecotoxicity and led to a loss of efficiency due to adaptation of the targeted phytopathogens
and disadvantages on non-target populations sharing the ecosystem [10]. High doses of tria-
zole fungicides strongly affect the structure of the microbial communities in soil and usually
decrease the soil microbial population and the activities of enzymes found in soil [11]. The
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use of non-pathogenic microorganisms as biopesticides is an emerging technology, is ecolog-
ically compatible, and is considered a promising alternative to synthetic pesticides [12–14].
Numerous Bacillus species offer many advantages for agricultural biotechnology such as
Bacillus amyloliquefaciens, B. subtilis, B. licheniformis, and B. pumilus. They synthesize several
secondary metabolites, essentially, the cyclic lipopeptides surfactin, iturin, and fengycin
with antifungal activities [15–18]. They also produce primary metabolites with antifungal
activities like the hydrolytic enzymes (chitinase, glucanase, and protease enzymes) acting
on fungal cell walls [19–21]. The growth of cells and metabolite concentrations is influenced
strongly by medium composition such as the carbon source, nitrogen source, and inorganic
salts. Efforts must therefore be redirected to improve production efficiency and recovery
bioprocesses to optimize yields [22,23].

The statistical methods using screening and response surface methodology or artificial
neural networks offer several advantages over conventional methods to optimize numerous
multi-factorial processes or formulations [24–28]. They shortlist significant nutrients for cul-
ture media, help understand the interactions among the nutrients at various concentrations,
and reduce the total number of experiments leading to saving time and resources [29–31].
They allow the production increase of antagonist compounds, spores, and enzymes by
Bacillus spp. strains [32–35]. Many researchers have used central composite design (CCD)
to identify optimal reaction conditions [36,37]. Therefore, the present study was undertaken
to optimize a medium for economical production of B. amyloliquefaciens BLB369 antifungal
activity. We applied a Plackett–Burman design (PBD) to screen the significant factors, the
steepest ascent method (SAM) to approach the experimental design space, and the (CCD)
to optimize the concentrations of selected variables using two different regression models.

2. Materials and Methods
2.1. Microorganisms and Cultivation

The B. amyloliquefaciens BLB369 strain was previously characterized by Zalila-
Kolsi et al. [38]. In fact, it was isolated in our laboratory from Tunisian rhizosphere soil
sample and then identified by using API50CH and API20E strips and partially sequencing
16S rDNA and gyrA genes. It could produce the extracellular cyclic lipopeptides iturin
and surfactin harboring antifungal activities. Its antagonist effect against F. graminearum
for protection of durum wheat was demonstrated in vivo [38]. The phytopathogenic fun-
gus Fusarium graminearum was kindly provided by the Agricultural Culture Collection of
Biopesticides laboratory, Centre of Biotechnology of Sfax. It was maintained on potato
dextrose agar (PDA) and used as the target pathogen for testing antifungal activity. For
spore suspension preparation, the fungus was incubated on a PDA plate for 5 days at 28 ◦C;
then, 0.9% NaCl solution was added, and the top of the mold was scraped with a sterile
loop to release spores. The collected fungus suspension was filtered with sterile cotton to
remove mycelial fragments. The obtained spore suspension was enumerated on Malassez
cell, adjusted to a concentration of approximately 105 spores/mL, and stored at 4 ◦C.

The B. amyloliquefaciens BLB369 was grown in a 250 mL flask containing 50 mL of
MOLB medium [39] at 30 ◦C for 14 h, on a rotary shaker set 200 rpm in order to prepare
the culture inoculums. For antifungal production, the inoculums were served to inoculate
50 mL of culture medium in a 250 mL flask with an initial OD600 of 0.15, and the culture
was incubated at 30 ◦C for 48 h, shaking at 200 rpm.

2.2. Determination of the Antifungal Activity

The antagonistic activity of B. amyloliquefaciens BLB369 strain against F. graminearum
was assessed by the well diffusion method. The BLB369 culture broth of 48 h was cen-
trifuged in 2 mL Eppendorf tube at 10,000 rpm for 15 min, and the culture medium was
recovered. Several dilutions of the bacterial culture medium were prepared in the MOLB
medium with various dilution factors (DF) (values: 1, 2, 3, 4, 5, . . . , 30) and used for antifun-
gal activity determination. The dilution factor may be expressed as the ratio of the volume
of the final diluted bacterial culture medium to the initial volume removed from the original
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bacterial culture medium. Then, aliquots (v = 100 µL) were filled in wells of 5 mm diameter
made in PDA + chloramphenicol (30 µg/mL) pH 7.0 previously plated with 100 µL of col-
lected F. graminearum suspension (105 spores/mL). After incubation at 28 ◦C for 3–5 days,
the inhibition zones were observed. Antifungal activity (AU/mL) = (DFh * 1000/v), with
AU: Arbitrary Unit, DFh: higher dilution factor of the bacterial culture medium able to
inhibit fungal growth. v: volume (µL) of the diluted bacterial culture medium used for
well test. Each experience was repeated three times.

2.3. Identification of Significant Factors Using Plackett–Burman Design

The PBD [40] was used to select the most significant factors of medium components
for biofungicides production where the interactions between the factors were considered
negligible. An orthogonal matrix was generated using seven factors, and each factor was
represented by a high level (+1) and a low level (−1). Carbon sources, nitrogen sources,
and salts could influence the production of antifungal activity. The candy waste was an
agro-industrial by-product corresponding to an aqueous solution rich in carbohydrates. Its
reducing sugar content was estimated to be about 56.5 g/L using the colorimetric method
with 3.5-dinitrosalicylic acid reagent (DNS) [41]. The fish extract was obtained from tuna
canning industry waste after being treated with NaOH solution at pH 10-12 for 2 h. Its
nitrogen content (non-protein nitrogen and nitrogen in proteins) was estimated to be about
40 g/L using the Kjeldahl method. Yeast extract is essentially composed of amino acids,
peptides, carbohydrates, and soluble vitamins. Peptone from casein enzymatic digest is a
rich source of peptides and amino acids. Hence, the candy waste expressed as reducing
sugar (g/L) (10, 20), fish extract expressed as nitrogen content (g/L) (0, 16), peptone from
casein enzymatic digest (Fluka) (g/L) (0, 10), yeast extract (Sigma-Aldrich) (g/L) (0, 5), NaCl
(g/L) (0, 4), MgSO4 (g/L) (0, 0.5), and MnSO4 (g/L) (0, 0.006) corresponding to (−1, +1)
levels were screened for biofungicides production. Each of the 8 experiences reported in
the PBD is repeated twice (Table 1). A linear approach presented by the following equation
(Equation (1)) was considered to be sufficient for screening:

Y1 = α0 + α1 A + α2 B + α3 C + α4 D + α5 E + α6 F + α7 G (1)

where Y1 is the predicted target response (the antifungal activity); αi are the regression
coefficients; and A, B, C, D, E, F, and G are dimensionless coded values of the independent
variables candy waste, fish extract, peptone, yeast extract, NaCl, MgSO4, and MnSO4,
respectively. The experimental data were fitted using MATLAB software. The most
significant factors were then investigated more thoroughly in subsequent experiments
(Table 2).

Table 1. The Plackett–Burman experiments design matrix with factors given in coded levels and
biofungicide production values.

Run A:
Candy Waste

B:
Fish Extract

C:
Peptone

D:
Yeast Extract

E:
NaCl

F:
MgSO4

G:
MnSO4

Antifungal
Activity
(AU/mL)

1 +1 −1 −1 +1 −1 +1 +1 75
2 +1 +1 −1 −1 +1 −1 +1 75
3 +1 +1 +1 −1 −1 +1 −1 150
4 −1 +1 +1 +1 −1 −1 +1 125
5 +1 −1 +1 +1 +1 −1 −1 175
6 −1 +1 −1 +1 +1 +1 −1 62.5
7 −1 −1 +1 −1 +1 +1 +1 150
8 −1 −1 −1 −1 −1 −1 −1 0

Variables in real values (g/L): A (10, 20), B (0, 16), C (0, 10), D (0, 5), E (0, 4), F (0, 0.5), and G (0, 0.006).
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Table 2. Statistical analysis of factors using Plackett–Burman design.

Coefficient Value p-Value Significance

α0 101.563 3.49 × 10−12 ***
α1 17.188 4.15 × 10−6 ***
α2 1.563 0.347
α3 48.438 1.27 × 10−9 ***
α4 7.813 1.05 × 10−3 **
α5 14.063 1.85 × 10−5 ***
α6 7.813 1.05 × 10−3 **
α7 4.688 0.017 *

*** Significance level 99.9%; ** significance level 99%; * significance level 95%. R2 = 0.9935; AR2 = 0.9878.

2.4. Optimization by Steepest Ascent Method

The path of the SAM was achieved to set up basal concentrations of media components
selected from the PBD to be used in a CCD. It permitted rapid movement towards the most
favorable of variable concentrations. Increments are direct ratios of regression coefficients
αi (Equation (1)). Experiments were performed along with the SAM until the response did
not increase anymore, and the starting point was the center of PBD, i.e., the medium level
of factors reported in Tables 1 and 3.

2.5. Central Composite Design and Response Surface
CCD Matrix and Antifungal Activity

Once the critical factors were identified via screening and the experimental design
space was approached by SAM, the CCD was used to define the level of the significant
parameters and the interactions between them, which significantly influence the antifungal
activity. Each parameter was analyzed at five levels coded as (−2, −1, 0, +1, +2) (Table 4).

2.6. Regression Models and Statistical Analysis

The experimental data were fitted using MATLAB and Eureqa software. To determine
the antifungal activity relation to input variables according to Table 4, a polynomial regres-
sion and then a trigonometric model were used. The second-order polynomial regression
was first applied:

Y1 = β0 +
3

∑
i=1

βiXi +
3

∑
i<j=2

βijXiXj +
3

∑
i=1

βiiX2
i (2)

where Y1 is the antifungal activity; Xi are input variables (3 variables retained); β0, βi, βij,
and βii are, respectively, the regression coefficients for the intercept, linear, interaction,
and quadratic effects. The model was then adjusted using the stepwise technique [42].
Given that the three retained variables took limited levels denoted by X1, X2, and X3,
an alternative trigonometric model with oscillating behavior was investigated. For a
limited number of regression coefficients, we considered the following trigonometric model
optimized by Eureqa software:

Y1 = a + b cos
(
X2

)
cos

(
X3

)
+ c cos

(
d − eX1

)
(3)

We were motivated by finding the model that guarantees high values of the coefficient
of determination (R2), the adjusted R2 (AR2), and the corrected Akaike information criterion
(AICc). The R2 increases every time we add predictors, even those insignificant. Therefore,
the AR2 was introduced to compare the explanatory power of regression models and was
correlated to R2 [43]. The AR2 increases only if the additional term is a good predictor,
and it decreases with poor quality predictors. The Akaike information criterion rewards
goodness of fit (using the likelihood); however, it penalizes increasing the number of
estimated coefficients, which may differ from the number of predictors [44]. The AICc was



Microorganisms 2022, 10, 830 5 of 12

introduced by Hurvich and Tsai [45] as a correction to the Akaike information criterion for
small samples.

3. Results and Discussion
3.1. Screening of the Significant Medium Components Using PBD

The PBD was used to screen the seven factors candy waste, fish extract, peptone, yeast
extract, NaCl, MgSO4, and MnSO4 with main effects on antifungal activity production by
B. amyloliquefaciens BLB369 expressed in arbitrary unit per milliliter (AU/mL) (Table 1).
The magnitudes and signs of each effect of the variables were shown. Candy waste (A),
peptone (C), and NaCl (E) were the main variables that positively affected antifungal
activity production as their p-values were lower than 1‰ (Table 2). The obtained linear
model is given by

Y1 = 101.563 + 17.188 A + 48.438 C + 14.063 E (4)

The peptone was the most significant factor due to its pronounced coefficient effect.
It was manufactured by controlled enzymatic hydrolysis of casein, which is an excellent
organic nitrogen source necessary for the bacteria to synthesize proteins and nucleic acids.
Additionally, the industrial by-product candy waste constitutes a good carbon source for
the growth of BLB369 strain and could then be valued for antifungal production. NaCl
impacts the antifungal activity. It constitutes a nutriment for bacteria and has an osmotic
effect in the culture medium. It could affect enzymatic activities and bacterial growth as it
influences water and salts transport across bacterial membrane and could affect secretion
and stability of the antifungal compounds. The fish extract did not affect the antifungal
activity, probably due to fish extract instability. Therefore, the fish extract, yeast extract,
MgSO4, and MnSO4 not retained after PBD screening were not added to the media in the
coming runs as their concentrations at lower levels (−1) correspond to zero. The steepest
ascent method further investigated the significant factors to optimize the experimental
design space.

3.2. Optimization by Steepest Ascent Method

The direction of the steepest ascent method was determined by Equation (4). Con-
centrations of candy waste, peptone, and NaCl were increased because they presented
positive effects on antifungal production. Hence, increments were direct ratios to regression
coefficients αi, corresponding to 0.354 and 0.289 units of coded variables X1 and X3 for
each unit of X2, respectively. When the concentrations of candy waste, peptone, and NaCl
were 20.25, 20, and 3.74 (g/L), respectively, the production of antifungal activity reached
its maximal value of 250 (AU/mL) at run number 4 (Table 3). This point was chosen as a
clue to set up basal concentrations for further optimization by CCD (the center point for
optimization by CCD).

Table 3. Experimental design and response of the SAM experiments.

Run

Candy Waste Peptone NaCl
Antifungal

Activity
(AU/mL)

¯
X1

0.354 #
X1 (g/L)
1.77 #

¯
X2 1 #

X2 (g/L)
5 #

¯
X3

0.289 #
X3 (g/L)
1.58 #

1 0 15.00 0 5 0 2.00 100
2 0.354 16.77 1 10 0.289 2.58 100
3 0.710 18.55 2 15 0.578 3.16 175
4 1.065 20.25 3 20 0.867 3.74 250
5 1.420 22.00 4 25 1.156 4.30 250
6 1.775 23.75 5 30 1.445 4.90 225

Xi : variables in coded levels; Xi: variables in real values; #: increment.
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3.3. Optimization of the Selected Medium Components Using the CCD

The CCD was used to define the optimum levels of the significant factors and study
their interactions. The candy waste, peptone, and NaCl (denoted in what follows by X1, X2,
X3, respectively) were studied at five levels (−2, −1, 0, +1, +2). The experimental design
and the experimental responses of antifungal activity (Y1) were reported (Table 4).

Table 4. Response surface of CCD and results for antifungal activity.

Run
Candy Waste Peptone NaCl Antifungal Activity

¯
X1

X1
(g/L)

¯
X2

X2
(g/L)

¯
X3

X3
(g/L)

Y1
(AU/mL)

1 +1 22 −1 15 +1 4.3 175
2 −1 18.4 +1 25 +1 4.3 150
3 −1 18.4 −1 15 −1 3.1 175
4 0 20.2 0 20 0 3.7 250
5 0 20.2 0 20 0 3.7 250
6 +1 22 +1 25 −1 3.1 150
7 −1 18.4 −1 15 +1 4.3 175
8 +1 22 +1 25 +1 4.3 150
9 −1 18.4 +1 25 −1 3.1 175

10 0 20.2 0 20 0 3.7 250
11 +1 22 −1 15 −1 3.1 125
12 0 20.2 0 20 0 3.7 250
13 0 20.2 0 20 −2 2.5 125
14 0 20.2 0 20 0 3.7 250
15 +2 23.8 0 20 0 3.7 250
16 0 20.2 +2 30 0 3.7 125
17 −2 16.6 0 20 0 3.7 200
18 0 20.2 0 20 0 3.7 250
19 0 20.2 0 20 +2 4.9 125
20 0 20.2 −2 10 0 3.7 125

3.3.1. Regression Models for Antifungal Activity and Their Comparison

The regression coefficients were calculated using the least square technique and
reported in Table 5. The standard errors and p-values were also reported. The standard
error of the coefficient indicates the precision of the coefficient estimates. The p-value
indicates the significance of each coefficient (low p-values indicate statistically significant
terms). The significant variables are highlighted by asterisks: those with p-values less than
0.05 (Table 5). Moreover, to compare the resulting models, R2, AR2, AICc, and F-value for
regression model and lack of fit are reported (Tables 5 and 6).

Table 5. Regression models: regression coefficients, their significance, and some statistical parameters.

Model Term Coefficient p-Value Significance

Polynomial
model #

Intercept −2050.5 0.03693 *

X1 64.534 0.2974
X2 57.418 0.0151 *
X3 573 0.0062 **

X1
2 −2.5428 0.0703

X2
2 −1.3295 9.75 × 10−6 ***

X3
2 −92.33 9.75 × 10−6 ***

X1 X2 0.3472 0.6739
X1 X3 8.6806 0.2227
X2 X3 −3.125 0.2227
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Table 5. Cont.

Model Term Coefficient p-Value Significance

Retained
polynomial model
after applying the

stepwise
technique §

Intercept −12312 0.0108 *

X1 1623.8 0.0211 *
X2 52.849 7.74 × 10−7 ***
X3 351.1 7.21 × 10−7 ***

X1
2 −78.306 0.0245 *

X2
2 −1.329 6.38 × 10−7 ***

X1
3 1.2503 0.0285 *

X3
3 −8.3034 6.34 × 10−7 ***

Trigonometric
model £

Intercept 144.52 3.1 × 10−19 ***

cos
(
X2

)
cos

(
X3

)
87.202 6.6 × 10−13 ***

cos
(
5.5358 − 2.2737X1

)
23.775 2.9 × 10−6 ***

*** Significance level 99.9%; ** significance level 99%; * significance level 95%. # R2 = 0.920; AR2 = 0.848; AICc = 208.
§ R2 = 0.928; AR2 = 0.887; AICc = 190. £ R2 = 0.962; AR2 = 0.957; AICc = 161.

Table 6. ANOVA for significance of regression and lack of fit of the retained polynomial model and
the trigonometric model.

Model Mean of Square F-Value p-Value

Retained
polynomial

model

Total 2728.6
Model 6876.2 22.24 5.717 × 10−6

Residual 309.17
Lack of fit 530.01 Inf 0
Pure error 0

Trigonometric
model

Total 2728.6
Model 24926 212.71 9.32 × 10−13

Residual 117.18
Lack of fit 175.77 2.0624 0.1413
Pure error 85.227

Polynomial Regression

The polynomial fit shows only five significant terms (Table 5). However, before postu-
lating such a statement, the model should be adjusted using the stepwise technique [42]:
adding or removing variables one by one based on their p-value (the term with the highest
p-value must be removed first). As additional terms, we tested including cubic (e.g., X1

3)
and second-order interaction terms (e.g., X1

2X2). The retained polynomial model is given
by the following equation (Table 5):

Y1 = −12312 + 1624X1 + 53X2 + 351X3 − 78X2
1 − 1.33X2

2 + 1.25X3
1 − 8.3X3

3 (5)

Comparing results before and after applying the stepwise technique (Table 5), although
a lower number of predictors (8 versus 10), the coefficient of determination is slightly
improved after applying the stepwise technique from 0.92 to 0.928. The AR2 increased from
0.848 to 0.887, indicating more suitable predictors. The AICc criterion gets also improved
(a lower value is observed of 190 versus 208). The F-value of the retained polynomial
model was also computed (Table 6) and evaluated to 22, with a low p-value exhibiting
the significance of the model. However, the hypothesis of lack of fit could not be rejected
because of the high F-value associated with the lack of fit. This result is coherent with the
relatively low AR2, and an alternative regression model should be examined.
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Trigonometric Model

We started by estimating the coefficients through iterative optimization process. Then,
we carried linear regression to check the coefficients of all terms and predict their signifi-
cance (Table 5). The resulting equation is

Y1 = 145 + 87 cos
(
X2

)
cos

(
X3

)
+ 23.8 cos

(
5.5 − 2.3X1

)
(6)

The trigonometric model guarantees satisfactory values of both R2 and AR2 around
0.96 (96% of the variability in the response could be explained by this model), which are
better than those obtained with the polynomial fit. The AICc criterion also shows the
superiority of the trigonometric model with the lowest value of 160, which means a good
compromise between the model fit and slight complexity. Moreover, the trigonometric
model guarantees the lowest mean absolute error and root mean squared error showing
a good agreement between the experimental and predicted values (Table 5). Finally, the
ANOVA results demonstrate that the model is significant with an F-value of 212 and an
associated p-value less than 10−12. The p-value associated with the lack of fit is equal to
0.14, indicating that the lack of fit is not significantly associated with the pure error (Table 6).
All these statistical parameters illustrate the adequacy of the trigonometric model.

Predicted Versus Actual Plot and Residuals Versus Fits Plot

Figure 1 displays the predicted values by the retained polynomial and the trigono-
metric models, calculated from Equations (5) and (6), as a function of the actual values.
Most markers (triangles for the polynomial model and squares for the trigonometric model)
are scattered near the first bisector. This indicates that the predicted values are in good
agreement with the actual ones. Figure 2 presents the internally studentized residuals
versus the predicted values. All values are in theinterval (−3; +3) and almost equally scatter
above and below the x-axis. Hence, both models produce random residuals, which means
they are unbiased models.
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Response Surface and Contour Plots

For a graphical illustration of the regression Equations (Equations (5) and (6)), contour
plots and 3D response surfaces are represented (Figures 3 and 4). In these plots, one
of the three factors is set to its mean level (its value at the central point in the design
space) while the two others are varied. Contour lines are concentric curves with increasing
levels. Consequently, the antifungal activity should reach its maximal value for a specific
combination of factors inside the considered domain.
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ric model.

Optimization of Production Conditions of the Antifungal Activity

For optimization of the antifungal activity, we carry a triple loop search sweeping the
possible values of (X1, X2, X3) in the domain (18.4; 22) × (15; 25) × (3.1; 4.3) (g/L) with a step
of 0.01 (g/L). The polynomial model (Equation (5)) yields a maximum of antifungal activity
of 251.9 (AU/mL) for X1 = 19.17, X2 = 19.88, and X3 = 3.75 (g/L). Using the trigonometric
model (Equation (6)), the maximal value of antifungal activity of 255.5 (AU/mL) is achieved
for X1 = 19.61, X2 = 20, and X3 = 3.7 (g/L). The optimized values with both models are very
close to the center point of CCD, and only a slight alteration of X1 should be applied.

4. Conclusions

PBD, SAM, and CCD were applied to maximize the antifungal production by B. amy-
loliquefaciens BLB369. Candy waste, peptone, and NaCl, the most significant among seven
factors, were used for regression in CCD. Regression analysis showed the supremacy of
a new trigonometric model over the usually used polynomial model, which may encour-
age using the trigonometric model in CDD. The residuals plot showed the adequacy of
both models (unbiased). Moreover, contour plots and numerical optimization revealed
a maximal activity for a point close to the CCD center. This low-cost medium could be
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investigated to further optimize BLB369 and similar strains for industrial and agricultural
applications to control fungal diseases.
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