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1. Introduction

Ligands of the bile acid activated transcription factor farne-

soid X receptor (FXR) possess therapeutic potential for the
treatment of hepatic and metabolic disorders. The first-in-class

FXR agonist obeticholic acid (OCA, 1; Scheme 1)[1] is approved

for second-line treatment of the rare liver disorder primary bili-
ary cholangitis[2] and is expected to gain further relevance in

the treatment of nonalcoholic fatty liver (NAFL) and nonalco-
holic steatohepatitis (NASH).[3] Clinical trials with 1 have shown

promising efficacy and validated FXR as a drug target for
NAFL/NASH as the hepatic manifestation of the metabolic syn-
drome.[4, 5] Steroidal FXR agonist 1 is succeeded by several ana-

logues of FXR agonist GW4064 (2)[6] in early stages of clinical
trials, whereas other FXR modulators, such as 3[7] and 4,[8]

failed in (pre)clinical development. Our analysis of the
ChEMBL23[9] compound database revealed a limited scaffold

diversity of known modulators, and merely four frameworks
accounted for more than 50 % of all annotated FXR modulators

(median effective concentration/median inhibitory concentra-
tion, EC50/IC50<50 mm, 1134 compounds], with framework I

(GW4064 derivatives and structural analogues) contained in ap-

proximately one third of the ligands (Figure 1). Here, we pres-
ent a machine learning approach for virtual screening of large

compound collections, which in a prospective application led
to the identification of four new FXR ligand scaffolds with a

success rate of 60 %.

The bile acid activated transcription factor farnesoid X receptor
(FXR) has revealed therapeutic potential as a molecular drug

target for the treatment of hepatic and metabolic disorders.
Despite strong efforts in FXR ligand development, the structur-
al diversity among the known FXR modulators is limited. Only
four molecular frameworks account for more than 50 % of the
FXR modulators annotated in ChEMBL. Here, we leverage ma-
chine learning methods to expand the chemical space of FXR-

targeting small molecules by employing an ensemble of three
complementary machine learning approaches. A counter-prop-
agation artificial neural network, a k-nearest neighbor learner,

and a three-dimensional pharmacophore descriptor were com-

bined to retrieve novel FXR ligands from a collection of more

than 3 million compounds. The ensemble machine learning
model identified six new FXR modulators among ten top-

ranked candidates. These active hits comprise both FXR activa-
tors and antagonists with micromolar potencies. With four

novel FXR ligand scaffolds, these computationally identified
bioactive compounds appreciably expand the chemical space
of known FXR modulators and may serve as starting points for

hit-to-lead expansion.
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Scheme 1. FXR agonists 1–4 : Obeticholic acid[1] (OCA, 1; EC50 = 0.1 mm),
GW4064[6] (2, EC50 = 0.065 mm), Fexaramine[7] (3, EC50 = 0.025 mm), WAY-
362450[8] (XL335, 4 ; EC50 = 0.004 mm).

ChemistryOpen 2019, 8, 7 – 14 T 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim7

DOI: 10.1002/open.201800156

http://orcid.org/0000-0002-5359-8128
http://orcid.org/0000-0002-5359-8128
http://orcid.org/0000-0002-5359-8128
http://orcid.org/0000-0001-8552-6615
http://orcid.org/0000-0001-8552-6615
http://orcid.org/0000-0001-8552-6615
https://doi.org/10.1002/open.201800156
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. Results and Discussion

We implemented an ensemble machine learning approach as a

computational strategy for virtual FXR ligand screening (Fig-

ure 2 a). Ensemble approaches merge complementary compu-
tational concepts, each grasping partial information of the

training data, to potentially reach better predictions than the
individual models.[10] We implemented and combined three

distinct computational strategies:

1) Counter-propagation artificial neural network[11] (CP-ANN)

set up for Chemically Advanced Template Search[12] (CATS2)

descriptors and trained on a collection of 896 compounds

tested on FXR, which were retrieved and curated from
ChEMBL23.[9] CP-ANN is a modeling technique that com-

bines aspects of supervised and unsupervised learning, for

which the classifier self-organizes on the basis of the struc-
tural features and experimental responses of the chemicals.

This algorithm allows the obtainment of a map (Figure 2 b),
on which the training compounds are clustered according

to the similarity of both their experimental properties (i.e.
FXR modulation) and their structural features (i.e. CATS2 de-

scriptors). CATS2 descriptors[12] are based on the occurrence

of pharmacophore feature pairs (lipophilic, aromatic, hydro-

Figure 1. Most prevalent molecular graph frameworks of FXR modulators from ChEMBL23 (EC50/IC50<50 mm, 1134 compounds) accounting for approximative-
ly 60 % of all annotated FXR agonists and antagonists. The four most relevant ligand frameworks (Roman numerals), accounting for more than 50 % of the
known FXR ligands, are exemplified by representative scaffolds (frequency+2 %).

Figure 2. Ensemble machine learning for the discovery of novel FXR modulators. a) Overview of the ensemble approach. The approach is based on three dif-
ferent models of the chemical space, namely, a counter-propagation artificial neural network (CP-ANN), trained on topological pharmacophores (CATS2); a
similarity-based ranking, utilizing 3D pharmacophore distributions of 17 actives as templates; and a k-nearest neighbor (kNN) learner trained on atom-pair
counts (AtomPair binary fingerprints). b) Depiction of the self-organizing map generated by CP-ANN training. Each square represents one neuron of the CP-
ANN map. Coloring indicates the FXR-activity likeliness of the neuron. Compounds assigned to “high-excitation” neurons (depicted in black) are classified as
FXR modulators. The training procedure successfully clustered active compounds in the same or in neighboring regions of the map.
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gen-bond acceptor, and hydrogen-bond donor atoms) at
topological distances up to ten bonds and are specifically

developed for scaffold hopping.[13] In previous studies,
CATS2 enabled the identification of novel modulators of an-

other nuclear receptor (retinoid X receptor).[14, 15]

2) Similarity of 3D pharmacophore feature distributions
(LIQUID)[16] based on 17 selected FXR agonists as templates.
LIQUID is a similarity method that captures the spatial dis-
tribution of potential pharmacophore points (lipophilic, aro-

matic, positively and negatively charged, hydrogen-bond
acceptor, and hydrogen-bond donor atoms) as Gaussians,

which allows the generation of a probabilistic 3D pharma-
cophore model of the bioactive template compound(s). For
similarity searching, the LIQUID model is represented as a
descriptor vector. LIQUID performs alignment-free similarity

searching of compound libraries by utilizing the pairwise
Euclidean distance between the descriptor vectors of the
model and the screening compounds The LIQUID descrip-

tor vector was computed separately for each of the 17 se-
lected FXR agonists.

3) k-nearest neighbor learner (kNN) trained on atom-pair dis-
tributions[17] at given topological distances by using the

training data assembled from ChEMBL23.[9] kNN is a similari-

ty-based machine learning algorithm that utilizes the infor-
mation of portions of the chemical space (i.e. the k most

similar molecules, “neighbors”) to predict the activity of the
query as the most frequently observed activity of its neigh-

bors. For each molecule, a binary vector of 1024 bit was
generated to capture the presence of all pairs of atoms at

increasing topological distance (AtomPair molecular finger-

print). The kNN classifier was then trained on the binary
representations to capture patterns present in the training

data.

Each modeling method was selected as the result of a retro-
spective optimization procedure, in which we analyzed the

performance of seven distinct molecular descriptions capturing

2D and 3D pharmacophore distributions (CATS2 and LIQUID,
respectively), radial fragments (Morgan and FeatMorgan binary

fingerprints),[18] atom pairs (AtomPair fingerprints), topological
and physicochemical properties (MOE2D descriptors),[19] and
molecular shape and partial charge distribution (WHALES).[20]

The aggregation of predictors allows diverse molecular fea-

tures responsible for the bioactivity to be taken into consider-
ation, which thereby increases the overall predictive confi-
dence. The ensemble of the three methods was utilized to

screen a library of 3 million commercially available compounds
that were compiled from four vendor catalogues. Each com-

pound was scored individually by each method. The 500 top-
scoring compounds on each ranked list were pooled and

sorted according to the sum of their reciprocal ranks.

The ten top-ranking compounds, namely, 5–14, from the
consensus list were ordered and characterized in a specific

Gal4 hybrid reporter gene assay for FXR activation.[21] This test
system was based on a chimeric receptor composed of the

human FXR ligand binding domain fused to the DNA binding
domain of the Gal4 receptor from yeast. A Gal4-responsive fire-

fly luciferase and a constitutively expressed Renilla luciferase
served as the reporter gene and as the internal control, respec-

tively. The effects of 5–14 were obtained at a concentration of
10 mm on FXR-Gal4 alone and in competition with 2 (1 mm) to
detect antagonistic effects. In addition, the assay was repeated
in the absence of the hybrid receptor construct as a control ex-
periment to exclude unspecific effects. Full dose–response
curves were recorded for the active compounds (Table 1).

Compounds 5, 6, 8, and 11 were confirmed as FXR activators
with low-micromolar EC50 values (ranging between 6 mm and
14 mm) and modest (6–11-fold) activation efficacy. Compounds
7 and 9 revealed antagonistic potency (IC50 ranging between
32 mm and >50 mm) in competition with reference agonist 2
(1 mm). All FXR activating hits have a fatty-acid mimetic molec-
ular architecture[22] and comprise a benzoic acid moiety. Com-

pounds 5, 6, and 11 are structurally related and share a 5H-

thiazolo[3,2-a]pyrimidin-3(2H)-one system as their central scaf-
fold but differ in the substitution pattern of this residue. Com-

pound 10, despite sharing the same ring system as 5, 6, and
11, lacked activity on FXR. This observation seemed to be due

to the spacious naphthyl moiety of 10, which is forced into a
dihedral conformation by the neighboring substituents and

may clash with the target protein. The molecular architecture

of 8 is distinct from that of 5, 6, and 11, and it thus constitutes
another novel FXR activator scaffold. Compound 7 was identi-

fied as an FXR antagonist, albeit with modest potency (IC50 =

32:5 mm) in competition with reference FXR agonist 2 (1 mm).

This antagonist also repressed intrinsic baseline FXR activity in
the reporter gene assay. Compound 8 shares structural similari-

ty with several recently reported partial FXR agonists[23] but

comprises more bulky substituents and has a geometry that is
slightly different to that of these known ligands. The antago-

nistic potency of 8 was very weak (IC50>50 mm) and could not
be exactly quantified.

With low-micromolar potency and innovative scaffolds, new
FXR ligands 5–9 and 11 may be considered for optimization

towards more potent FXR modulators. Importantly, none of

these active hits possesses a molecular framework that is an-
notated as FXR modulator in ChEMBL24 (EC50/IC50<50 mm,

1134 compounds) or that is present in the patented data of
SureChEMBL (v. 2018).[24] The lipophilicity and solubility of these
novel FXR modulators are predicted to be higher than those of
the active molecules utilized for model development and simi-

larity searching (Figure 3).
To evaluate potential ligand binding poses and interactions

with the nuclear receptor, all active hits were subjected to mo-
lecular docking by using the GOLD[25] algorithm with flexible fit
of the receptor. FXR activators 5, 6, 8, and 11 (Figure 4) were

docked into an activated FXR-LBD complex (PDB-ID: 3FXV[26]

with the agonist GW4064 N-oxide bound), whereas a model of

the inactivated FXR complex (PDB-ID: 4OIV[27] with the antago-

nist NDB bound) was used for antagonists 7 and 9.
Due to the lipophilic binding site of FXR, few polar interac-

tions were observable for the new FXR ligands. The computed
binding poses suggest that FXR agonists 5, 6, and 11 form a

canonical neutralizing interaction with Arg335 and entirely fill
the spacious FXR ligand-binding site (Figure 5 a, b). The dock-
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ing solutions also suggest an interaction between the
chlorine atom of 5 with Tyr373, similar to the co-crystal-

lized ligand that interacts with Tyr373 through its pyridine

N-oxide moiety.
FXR agonist 8 also interacts with Arg335 but its sug-

gested binding mode notably differs from that of the co-
crystallized agonist and modulators 5, 6, and 11 (Fig-

ure 5 c). Due to the Y-shaped structure of agonist 8, the
dichlorophenylpyrrol moiety is bound close to helix 12,

Table 1. In vitro activity of computationally selected compounds 5–14 in a spe-
cific FXR-Gal4 hybrid reporter gene assay.[a]

Compd Structure In vitro activity[b]

(FXR)

5
EC50 = 6.3:0.2 mm
(7.7:0.2-fold act.)

6
EC50 = 7.4:0.5 mm
(5.8:0.2-fold act.)

7 IC50 = 32:5 mm

8
EC50 = 7.1:0.6 mm
(6.3:0.1-fold act.)

9 IC50 >50 mm

10 inactive

11
EC50 = 14:2 mm
(11:2-fold act.)

12 inactive

13 inactive

Figure 3. Comparison of the molecular properties of the novel modu-
lators compared to the ChEMBL training and query molecules. Distri-
bution of the a) lipophilicity (atomic log P, A log P) and b) aqueous sol-
ubility (atomic log S, A log S) values of the novel actives compared to
the training molecules (CP-ANN and kNN) and the query compounds
of the LIQUID-based similarity search. The boxes represent the 1st and
3rd quartiles, the median (solid line), the 10th and 90th percentiles
(whiskers), and the minimum/maximum values (dots). The novel mod-
ulators are less lipophilic and potentially more soluble than the train-
ing/template compounds.

Figure 4. Graph scaffolds[28] of the novel FXR modulators identified by
ensemble machine learning. The novel modulators possess six distinct
and novel scaffolds (those of 5, 6, and 11 being closely related), which
belong to four ligand frameworks.
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whereas the phenylimine residue protrudes to a subpocket of

the ligand-binding site that is not explored by the co-crystal-
lized ligand. Compared to GW4064 (2) and derivatives, which

typically interact with His447 and Phe329 through their unique

phenylisoxazole hammerhead structure,[29] FXR ligands 5,
6, 8, and 11 lack these specific contacts.

Similar to the co-crystallized antagonist NDB, no polar
interactions with FXR were observed for antagonists 7
and 9 in the docking poses (Figure 5 d). The dialkylaniline
moieties of both antagonists aligned with the respective

group of the crystallized ligand. The binding geometry of
antagonist 7 was similar to that of NDB and occupied the

entire ligand-binding site of FXR in the antagonistic con-

formation. The extended structure of 9, in contrast, pre-
vented a similar binding mode and failed to occupy the

region in which the tert-butylphenol group of NDB is
bound.

3. Conclusions

With the goal to expand the chemical space of FXR ligands,
we implemented an ensemble of machine learning techniques

to identify novel FXR modulators. From their consensus, ten

Table 1. (Continued)

Compd Structure In vitro activity[b]

(FXR)

14 inactive

[a] Results are the mean:SEM (n = 2 for inactives, n+3 for actives) ; antagonis-
tic compounds 7 and 9 were characterized in competition with reference ago-
nist 2 at a fixed concentration of 1 mm. [b] Inactive: no statistically significant re-
porter transactivation or repression at 10 mm.

Figure 5. Molecular docking of the novel FXR ligands into the FXR ligand-binding domain (PDB-ID 3FXV[26] for agonistic compounds 5, 6, 8, and 11; PDB-ID
4OIV[27] for antagonists 7 and 9). Ligand docking was performed in MOE[19] by using the GOLD[25] algorithm with flexible receptor. Pocket surfaces are colored
according to their lipophilicity (green = lipophilic, red = hydrophilic). The co-crystallized ligands GW4064 pyridine N-oxide (PDB-ID 3FXV[26]) and NDB (PDB-ID
4OIV[27]) are shown in orange for comparison and amino-acid residues are shown in gray. a, b) FXR modulators 5 (a, light blue), 6 (a, purple), and 11 (b,
purple) form the characteristic binding mode of FXR agonists and interact with Arg335 through a canonical neutralizing contact. Both compounds entirely
occupy the large lipophilic binding site defined by the co-crystallized ligand. c) FXR modulator 8 (purple) forms a binding mode that differs from that of 5, 6,
11, and the co-crystallized ligand. It also interacts with Arg335, but due to its Y-shaped geometry, it protrudes into an additional subpocket. d) FXR antago-
nists 7 (light blue) and 9 (purple) appear to form no polar contacts with the FXR ligand-binding site, which is also the case for the co-crystallized antagonist
NDB. In this model, it is revealed that the binding mode of 7 is similar to that of NDB, whereas 9 fails to occupy one of the three arms of the binding site.

ChemistryOpen 2019, 8, 7 – 14 www.chemistryopen.org T 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim11

http://www.chemistryopen.org


top-ranked compounds were characterized in vitro, which con-
firmed six candidates as new FXR ligands. Despite limited po-

tency, the two novel FXR activator frameworks (5/6/11 and 8)
and the two new antagonist frameworks (7 and 9) expand the

chemical space of known FXR modulators and contribute to
our knowledge of their structure–activity relationship. The re-

sults of this study validate ensemble machine learning for pro-
spective hit finding in medicinal chemistry and chemical biol-

ogy. The data-driven machine learning models implicitly cap-

tured pharmacologically relevant features of the known bioac-
tives without the necessity to code chemical knowledge about

the underlying structure–activity relationship into the pro-
grams.

Experimental Section

Computational Methods

Training Molecules and Pretreatment

A training library of 896 molecules with annotated FXR activity was
compiled from the ChEMBL database v. 23.[9] Compounds with
EC50<10 mm were considered active. Records with conflicting ex-
perimental values were discarded. The final library consisted of 896
molecules used for model training and is provided in the Support-
ing Information. Additionally, 17 FXR ligands (Table 2) were select-
ed as queries for ligand-based similarity searching with LIQUID.
The training compounds and the search queries were standardized
within MOE v. 2016.08[19] to remove ion pairs, deprotonate strong
acids, and protonate strong bases (pH 7). Molecular geometries
were optimized by using the MMFF94[30] force field (RDKit
v. 2015.09.2), with 1000 iterations and 10 starting conformers for
each compound; the lowest-energy conformer of each molecule
was retained.

Descriptor Calculation

CATS2 descriptors were calculated with in-house software and de-
fault settings (max. topological distance = 10; scaling = ”types”).
Morgan and FeatMorgan[18] binary fingerprints were calculated
with RDKit (bit = 1024, radius = 2). AtomPair binary fingerprints
were calculated with RDKit with 1024 bit and path lengths be-

tween 1 and 30 bonds (default settings). MOE 2D descriptors were
computed with MOE v. 2016.08 and default options. WHALES[20]

were calculated with open-access Python software[31] by using Gas-
teiger-Marsili[32] partial charges as a weighting scheme. LIQUID de-
scriptors were computed with in-house software with default set-
tings. A log P and A log S were calculated with AlogPS2.1.[33]

Similarity Searching

The suitability of the descriptors was assessed by retrospective vir-
tual screening. MOE and WHALES descriptors were tested with two
types of normalization (Gaussian and MinMax) to rule out the in-
troduction of any bias related to descriptor scaling. Either Jaccard–
Tanimoto (Morgan, FeatMorgan, AtomPair fingerprints) or the Eucli-
dean distance (LIQUID, CATS, WHALES, MOE2D) was employed to
quantify molecular (dis)similarity. The 17 FXR ligands (Table 2) were
selected as queries and used in turn to perform a virtual screening
on the training library. For each run, the Enrichment Factor[34] of
the top 1 % ranked list (EF1 %) was computed. LIQUID was the best
method based on the EF1 % and, thus, was selected for the prospec-
tive similarity searching (LIQUID: EF1 % = 1.26:0.06).

Counter-Propagation Artificial Neural Networks (CP-ANN)

WHALES, AtomPair, LIQUID, and CATS descriptors were used to
train several CP-ANN using a published MATLAB (v. 2017b)[35] tool-
box module.[36] The training compounds were randomly split into
training (70 %, 608 compounds) and test sets (30 %, 261 com-
pounds) by stratified sampling. The resulting training set was used
to calibrate several CP-ANN models, with square topology, toroidal,
and nontoroidal boundaries and varying numbers of training
epochs (75, 100, 200, 300, 500) and neurons of the self-organizing
map (10 V 10, 15 V 15, 20 V 20). The best models were selected on
the basis of a fivefold crossvalidation (Venetian-blind sampling pro-
tocol) on the training set and were then validated on the test set.
The best CP-ANN model was toroidal and calibrated on CATS by
using 20 V 20 neurons per side and 100 training epochs (classifica-
tion performance metrics[36] on the test set: sensitivity = 91 %, spe-
cificity = 84 %, precision = 93 %).

Table 2. Query FXR ligands used for similarity searching

[O@]C(CC[C@@H](C)[C@@H]1[C@@]2(C)[C@@H](CC1)[C@@H]3[C@@H](O)C[C@H]4C[C@@H](O)CC[C@]4(C)[C@@H]3CC2)=O
O=C(C1=CC(C=CC(N(C)C)=C2)=C2C=C1)N(CC3CCCCC3)C4=CC=CC(/C=C/C(OC)=O)=C4
O=C(C1=CC(C=CC(NC)=C2)=C2C=C1)N(CC3CCCCC3)C4=CC=CC(/C=C/C(OC)=O)=C4
O=C(C1=CC(C=CC(NC)=C2)=C2C=C1)N(CC3=CC=C(C4=CC=C(N(C)C)C=C4)C=C3)C5=CC=CC(/C=C/C(OC)=O)=C5
O=C(C1=CC(C=CC(N(C)C)=C2)=C2C=C1)N(CC3=CC=C(C4=CC=C(N(C)C)C=C4)C=C3)C5=CC=CC(/C=C/C(OC)=O)=C5
O=C(N(C1=CC(/C=C/C(OC)=O)=CC=C1)CC2=CC=C(C3=CC=C(N(C)C)C=C3)C=C2)C4CCCCC4
CC(C)C(ON=[C@]1[C@]2=C(Cl)C=CC=C2Cl)=C1COC3=CC=C(/C=C/C4=CC(C([O@])=O)=CC=C4)C(Cl)=C3
CC(C)C1=C([C@]([C@]2=C(Cl)C=CC=C2Cl)=NO1)COC3=CC=C(C4=CC(C(C([O@])=O)=CN5)=C5C=C4)C=C3
C[C@]12[C@@H]([C@@H](CC)[C@@H](O)[C@H]3[C@H]2CC[C@]4(C)[C@H]3CC[C@H]4[C@H](C)CCC([O@])=O)C[C@H](O)CC1
CC1=CC(OCC2=C(C)ON=[C@]2[C@]3=C(Cl)C=CC=C3Cl)=CC(C)=C1/C=C/C4=CC(C([O@])=O)=CC=C4
ClC(C=C(OCC1=C(CC)ON=[C@]1[C@]2=C(F)C=CC=C2C(F)(F)F)C=C3)=C3/C=C/C4=CC(C([O@])=O)=CC=C4
ClC(C=C(OCC1=C(CC)ON=C1C2=C(OC(F)(F)F)C=CC=C2)C=C3)=C3/C=C/C4=CC(C([O@])=O)=CC=C4
ClC(C=C(OCC1=C(CC)ON=C1CC2=C(Cl)C=CC=C2Cl)C=C3)=C3/C=C\C4=CC(C([O@])=O)=CC=C4
ClC(C=C(OCC1=C(C(C)C)ON=[C@@]1[C@@]2=C(Br)C=CC=C2Cl)C=C3)=C3/C=C/C4=CC(C([O@])=O)=CC=C4
ClC(C=C(OCC1=C(C(C)C)ON=[C@]1[C@]2=C(Cl)C=CC=C2Cl)C=C3)=C3/C=C/C4=CC(C([O@])=O)=CC=C4
CC(C=C(OCC1=C(C(C)C)ON=[C@@]1[C@@]2=C(Cl)C=CC=C2Cl)C=C3)=C3/C=C/C4=CC(C([O@])=O)=CC=C4
CC1=CC(OCC2=C(C(C)C)ON=[C@@]2[C@@]3=C(Cl)C=CC=C3Cl)=CC(C)=C1/C=C/C4=CC=C(C([O@])=O)C=C4
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Nearest-Neighbor Classifier

A nearest-neighbor classifier (kNN) was trained on the same set as
the CP-ANN model by using AtomPairs descriptors, which resulted
in the second-best method in the retrospective virtual screening
(EF1 % = 1.23:0.08). The value of k (k = 2) was optimized in three-
fold crossvalidation on the training set, which led to a Non-Error
Rate[37] (NER) equal to 87 % (sensitivity = 93 %). Compounds predict-
ed as active were ranked according to their Jaccard–Tanimoto dis-
tance to the 17 active templates and were scored according to the
reciprocal sum of their ranks.

Commercial Screening Library

A library of 3 383 942 compounds was assembled from commercial-
ly available synthetic compounds from Asinex (ASINEX Ltd. ,
Moscow, Russia; Elite, Fragments, Gold & Platinum collections,
downloaded May 2015), ChemBridge screening compound collec-
tion (ChemBridge corp. , San Diego, CA, USA; downloaded June
2015), Enamine (Eneamine LLC, Monmouth, NJ, USA; Advanced
and HTS collections, downloaded May 2015), and Specs screening
compounds (Specs, Zoetermeer, The Netherlands; downloaded
June 2015).

Prospective Virtual Screening

The commercial library was screened by combining three compu-
tational methods: 1) similarity search on AtomPair fingerprints,
2) similarity search on LIQUID descriptors, and 3) CP-ANN predic-
tions (CATS descriptors). The top-500-scoring compounds for each
method were combined and sorted according to the reciprocal
sum of ranks. The top-ranking compounds containing an acidic
functional group (carboxylic acid, aromatic amine, aromatic alco-
hol, sulfonamide) were visually screened, and ten compounds were
selected.

Molecular Docking

The crystal structures of the human farnesoid X receptor in agonis-
tic (PDB ID: 3FXV)[26] and antagonistic (PDB ID: 4OIV)[27] conforma-
tions were prepared with QuickPrep in MOE2016.08[19] by protonat-
ing the molecular structure at pH 7, correcting structural issues
(missing residues, incorrect hybridization), removing water mole-
cules farther away than 4.5 a from the receptor or ligand, and re-
straining the positions of receptor atoms (force constant = 10,
buffer = 0.25 a). The positions of all atoms farther away than 8 a
from the ligand were fixed. Protein and ligand structures were
minimized by using the AMBER10:EHT force field (termination
value = 0.1 kcal V mol@1 V a@1). For compound 8, this procedure
yielded no satisfying result, and thus, 8 was prepared by a confor-
mational search by using default parameters in MOE. Ligands were
docked within the MOE2016.08 environment by using the integrat-
ed GOLD docking program as placement method.[25] The active site
was defined by the ligand atoms of the co-crystalized ligands. The
efficiency of the docking calculation was set to “Very Flexible”
(200 %) with otherwise default GOLD docking options. The GOLD-
score fitness function was used as a scoring method. Thirty poses
of each ligand were generated. The “Induced Fit” method was se-
lected for subsequent refinement of the poses by using the stan-
dard parameters. The GBVI/WSA dG scoring was chosen as final
scoring function. The five best-scoring final poses of each ligand
were retained. As a control, redocking of the co-crystallized ligands
resulted in poses aligning with the crystal bound structures with

low root-mean-square deviation (RMSD) values (agonist GW4064
pyridine N-oxide: RMSD = 0.3343; antagonist NDB: RMSD = 0.2196).

In Vitro Biological Characterization

Hybrid Reporter Gene Assay for FXR

Plasmids : The Gal4-fusion receptor plasmid pFA-CMV-hFXR-LBD[38]

coding for the hinge region and ligand-binding domain (LBD) of
the canonical FXR isoform was reported previously. pFR-Luc (Strata-
gene) was used as reporter plasmid, and pRL-SV40 (Promega) was
used for normalization of transfection efficiency and cell growth.

Assay procedure : HEK293T cells were grown in Dulbecco’s modi-
fied Eagle’s medium (DMEM) high glucose supplemented with
10 % fetal calf serum (FCS), sodium pyruvate (1 mm), penicillin
(100 U mL@1), and streptomycin (100 mg mL@1) at 37 8C and 5 % CO2.
The day before transfection, HEK293T cells were seeded in 96-well
plates (3 V 104 cells per well). Before transfection, medium was
changed to Opti-MEM without supplements. Transient transfection
was performed by using Lipofectamine LTX reagent (Invitrogen) ac-
cording to the manufacturer’s protocol with pFA-CMV-hFXR-LBD,
pFR-Luc (Stratagene), and pRL-SV40 (Promega). After transfection
for 5 h, the medium was changed to Opti-MEM supplemented
with penicillin (100 U mL@1) and streptomycin (100 mg mL@1) and
additionally containing 0.1 % DMSO and the respective test com-
pound or 0.1 % DMSO alone as untreated control. Each concentra-
tion was tested in triplicate, and each experiment was repeated in-
dependently at least three times. Following overnight (12–14 h) in-
cubation with the test compounds, cells were assayed for lucifer-
ase activity by using Dual-Glo Luciferase Assay System (Promega)
according to the manufacturer’s protocol. Luminescence was mea-
sured with an Infinite M200 luminometer (Tecan Deutschland
GmbH). Normalization of transfection efficiency and cell growth
was done by dividing the firefly luciferase data by the Renilla luci-
ferase data and multiplying the value by 1000, which resulted in
relative light units (RLU). Fold activation was obtained by dividing
the mean RLU of a test compound at a respective concentration
by the mean RLU of the untreated control. The assay was validated
with chenodeoxycholic acid (CDCA), 1, and 2 as reference agonists,
which yielded EC50 values in agreement with the literature.
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