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Abstract

Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides,
provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathol-
ogy. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physi-
ological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways,
neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular
machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, research-
ers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implica-
tions for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a com-
prehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases.
This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit

or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and com-
pounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeon-
ing possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights
of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent
translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides

a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects
in various disease situations.
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Introduction

Programmed cell death (PCD) plays a critical role in
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in NRAS-mutant HT-1080, leading to the identification
of "ferroptosis”, an iron-dependent cell death form [6, 7]
(Fig. 1).

With the progress of research, ferroptosis was identified
as an iron-dependent programmed cell death. Distinct
from apoptosis, necrosis, and autophagy, the morpholog-
ical feature of cells in ferroptosis include mitochondria
shrinkage and membrane density increased [7, 8]. The
unique process of ferroptosis is the dysregulation of iron
metabolism and the accumulation of reactive oxygen spe-
cies (ROS) [9, 10]. The sufficient concentration oxidation
of polyunsaturated fatty acids (PUFAs) and phospholip-
ids, the dysregulation of iron metabolism, and the loss of
antioxidant defense system execute the ferroptosis [11]
and the mechanism of ferroptosis involves a complicated
interplay between multiple cellular pathways, includ-
ing iron metabolism, lipid metabolism, and antioxidant
defense mechanisms [12].

Due to involving various and complicated signaling,
ferroptosis plays an important role in the occurrence
and development of major chronic diseases and different
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roles in different disease contexts. A growing body of evi-
dence suggests that the imbalance of ferroptosis affects,
development and aging [13, 14], and is closely related to
the tumor [8, 15, 16], ischemic diseases [17—-22], neuro-
degenerative disease [23, 24], organ transplantation [25,
26], cardiovascular disease [27-29], autoimmune func-
tions [15, 30], infection [31, 32], iron-overload disease
[33], and so on (Fig. 2). Of note, inducing ferroptosis can
significantly enhance the sensitivity of chemotherapy
drugs to suppress tumor [34, 35], on the other hand, the
occurrence of ferroptosis can aggravate the severity of
the disease [20, 36]. Although many compounds target-
ing the key ferroptosis regulators, like glutathione per-
oxidase 4 (GPX4) and solute carrier family 7 member 11
(SLC7A11, Cystine transporter, also commonly known as
xCT), no compounds targeting ferroptosis can be applied
to any diseases clinically. Recently, the structure of eras-
tin-bound xCT-4F2hc (4F2 cell-surface antigen heavy
chain, SLC3A2, also called CD98) complex had been
solved [37], which provides a molecular basis for drugs
development targeting on SLC3A2.
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Fig. 1 Timeline diagram depicting essential discoveries in the field of ferroptosis research. The exploration of ferroptosis originated
from the identification of system xc-, which was initially reported in 1980. Nevertheless, the specific term "ferroptosis" was officially coined

and introduced in the scientific community in 2012
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Fig. 2 The involvement of ferroptosis in various human diseases. Ferroptosis has played important roles in multiple system diseases, such as lung
diseases, nervous system diseases, heart diseases, breast diseases, gastric diseases, liver diseases, pancreatic diseases, kidney diseases, intestines
diseases, reproductive diseases, skin diseases, musculoskeletal system diseases and so on

In the subsequent sections, our attention converges
on the explication of ferroptosis mechanisms, coupled
with the accentuation of its pertinent disease-associated
targets and bioactive compounds. This assumes piv-
otal importance, given its potential to create innovative
avenues for therapeutic interventions within disorders
wherein ferroptosis assumes a key position. This review
uncovered the hidden insights about ferroptosis, with
the main goal of highlighting its important status as a
newly recognized therapeutic target and its deep rel-
evance to various disease states, and aiding researchers
in achieving a clearer comprehension of the initiation,
progression, and involvement of ferroptosis in various
diseases.

Mechanisms of ferroptosis

Distinct from conventional cell death forms like apop-
tosis and necrosis, ferroptosis uniquely hinges on dys-
regulated iron metabolism and ROS generation [9, 10],
featuring an intricate interplay across multiple cellular
pathways encompassing iron and lipid metabolism,
alongside antioxidant defenses [12]. Dysregulated iron
metabolism, characterized by the accumulation of
labile iron ions in the cytoplasm, plays a central role
in ferroptosis by catalyzing the Fenton reaction, which
leads to the production of highly reactive hydroxyl radi-
cals (¢OH) from hydrogen peroxide (H,0,) [38, 39].
These +OH entities interact with cellular membrane
PUFAs, kindling lipid peroxidation and ensuing oxida-
tive impairment [40]. Central to ferroptosis, lipid per-
oxidation arises from PUFAs accruement in cellular
membranes [41, 42], predominantly in phospholipids
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like phosphatidylethanolamine (PE), phosphatidylcho-
line (PC), and cardiolipin (CL) [43-45]. This accrual
engenders lipid peroxidation process, thus destabiliz-
ing cellular membranes, leading to cellular damage
and ultimately cell death [46]. The cellular antioxidant
defense system [47, 48], including enzymes such as
superoxide dismutase (SOD) [10, 49], GPX4 [42, 50],
catalase [51], alongside non-enzymatic antioxidants
such as glutathione (GSH) [50] and vitamin E [52],
orchestrates ferroptosis regulation. These constituents
synergistically counteract ROS and lipid hydroperox-
ides, forestalling lipid peroxidation and consequent
ferroptosis (Fig. 3). Beyond iron and lipid metabolism,
and antioxidant defense mechanisms, several other
pathways contribute to ferroptosis modulation. These
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encompass cellular metabolism [53], the activity of
lipid metabolism enzymes [54], and the modulation
of cellular redox status [55]. Furthermore, the inter-
play between ferroptosis and other types of cell death
is an active area of research that continues to expand
our understanding of the mechanism of ferroptosis [49,
56, 57]. A deeper understanding of the molecular and
cellular mechanisms underlying ferroptosis increase
the potential to uncover novel therapeutic targets and
strategies for the treatment of various diseases associ-
ated with dysregulated iron metabolism and oxidative
stress.
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Fig. 3 Several intrinsic or cell-autonomous mechanisms profoundly impact cellular susceptibility to ferroptosis. This non-exhaustive compilation
encompasses metabolic pathways that intricately regulate iron levels, polyunsaturated fatty acids (PUFA), glutathione peroxidase 4 (GPX4),

and ferroptosis suppressor protein 1 (FSP1). Abbreviations: TF: transferrin; TFR1: transferrin receptor 1; NRF2: nuclear factor erythroid 2-related factor
2; IREB2: Iron Responsive Element Binding Protein 2; HSPB1: heat shock protein beta 1; PKC: protein kinase C; Actin cytockeleton: a collection of actin
filaments with their accessory and regulatory proteins; Ferritin: a protein that stores iron; SEXN1: siderofexin 1; MUFA: Monounsaturated fatty acids;
Acetyl-CoA: acetyl coenzyme; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme; IPP: isopentenyl pyrophosphate; FPP: Fertilization promoting
peptide; GGPP: geranylgeranyl pyrophosphate; CoQ: coenzyme-Q; CoQH2: reduced coenzyme Q; ROS: Reactive oxygen species; GSH: glutathione;
GSSG: glutathione disulfide; NADPH: nicotinamide adenine dinucleotide phosphate; NADP +: Nicotinamide Adenine Dinucleotide Phosphate;

MESH1: metazoan SpoT homolog-1
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The roles of iron metabolism

Dietary iron, predominantly in oxidized ferric (Fe
form, is assimilated by duodenal and proximal jejunal
enterocytes through the divalent metal transporter 1
(DMT1) [58-60]. To be physiologically absorbed, Fe*"
must be converted to a ferrous (Fe*t) form or bind to co-
factors, such as heme [60]. Upon entry into cells, Fe?t
associates with transferrin (Tf), which facilitates the
translocation of iron into circulation via the iron exporter
ferroportin (FPN). Inside the cells, iron is internal-
ized in endosomes via transferrin receptor 1 (TfR1) and
then translocated to the cytosol by DMT1, constituting
the labile iron pool (LIP)—a crucial source of Fe’>* and
a key regulator of iron metabolism [61-66]. Mitochon-
drial iron comes from endosomes through the DMT1
and mitoferrin interaction, or from the LIP, facilitated
by DMT1, mitoferrin, and siderofexin (SFXN1) [67-69].
Superfluous iron from the LIP is sequestered in ferritin,
of which the lysosomal degradation can replenish the LIP.
Cellular iron efflux is mediated by FPN, with hepatocytes
and spleen macrophages acting as pivotal iron storage
sites [70]. Among the multitude of processes and signal-
ing pathways regulating systemic iron metabolism, the
hepcidin-mediated ferroportin internalization and deg-
radation, or the hepcidin-FPN axis, is the paramount
mechanism, governing dietary iron absorption and
senescent red blood cell recycling [71].

Integral to the basic physiological processes such as
oxygen transport, energy synthesis, immune response,
DNA replication, and the tricarboxylic acid cycle (TCA),
iron’s centrality is indisputable [72, 73]. Intriguingly, this
iron-sulfur cluster (ISC) -dependent electron transport
concurrently augments endogenous ROS generation
within mitochondria [72]. While ROS plays an essential
role in preserving cellular equilibrium and signaling, the
overload of ROS initiates oxidative damage and deleteri-
ous outcomes [74, 75]. Concomitantly, iron can also cata-
lyze reactions to induce excessive ROS production via the
Fenton reaction, underscoring the delicate balancing of
iron metabolism [74, 75]. Therefore, any disturbance in
the dynamics of iron import, sequestration, or export can
destabilize cellular iron homeostasis, impacting the pro-
pensity toward ferroptosis. Substantial evidence suggests
that amplified iron import, ferritin degradation (a key
iron storage protein), and iron derivative accumulation
contribute to ROS production together, thereby igniting
the ferroptosis cascade [76, 77].

The orchestration of ROS production via the iron-cat-
alyzed Fenton reaction serves is critical to ferroptosis.
Notably, iron-bearing proteins such as Cytochrome P450
enzymes, Nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOXs), and subunits of the mito-
chondrial electron transport chain generate superoxide

3+)
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radicals (O,¢7). Following this, SOD facilitates the con-
version of O,«~ to H,0,. As a result, heme and contain-
ing proteins are oxidized by O,+~ and H,0,, leading to
the release of reactive Fe’* and the expansion of LIP. This
catalysis prompts the Fenton reaction, which, in turn,
yields «OH. These +OH then interact with polyunsatu-
rated lipids, causing lipid radicals (L), lipid peroxidation,
and final ferroptosis [78]. Thereafter, L« reacts with addi-
tional polyunsaturated lipids, generating lipid hydroper-
oxide (LOOH) and more Le. Upon interaction with Fe*"
and Fe**, LOOH converts into LO» and lipid peroxy radi-
cal (LOOe») [79, 80]. Arachidonate-15-lipoxygenase and
other iron-containing lipoxygenases (LOXs) catalyze the
reaction between O, and polyunsaturated lipids, form-
ing LOOH, with iron integral to the catalytic subunit of
LOX. Ferroptosis is typically triggered by iron-dependent
LOXs and expanded by the iron-fueled Fenton reaction.
Nonetheless, the concentration of iron to initiate ferrop-
tosis remains unclear, necessitating further investigation.

Iron intricately interweaves with the foundational
metabolism of glucose, lipids, and amino acids, all of
which exhibit pertinent links to ferroptosis [81]. Iron
insufficiency is recognized to influence glucose metabo-
lism by affecting glucose utilization, amplifying glucose
absorption and transportation via glucose transporter
protein type 1(GLUT1). In contrast, iron surplus induces
a decrease in insulin sensitivity and the emergence of
insulin resistance, culminating in diminished glucose
uptake and transport in vitro, but a contrasting impact
in vivo [82-87]. Although the explicit role of iron in glu-
cose metabolism remains elusive, these insights imply
that glucose is the major metabolic regulator during iron
perturbations. Concurrently, iron deficiency impinges
on lipid metabolism, which attenuates the rate-limiting
enzyme in fatty acid oxidation—Carnitine palmitoyl
transferase 1 (CPT-1)—in fetal liver [88]. Moreover, iron
surplus initiates the inhibition of hepatic expression
of peroxisome proliferator-activated receptor o, while
hydroxyl radicals and nitrate anions implicated in the oxi-
dation of PUFAs are also products of the Fenton reaction
[89]. Thus, iron deficiency undermines fatty acid oxida-
tion and desaturation while fostering lipogenesis [88—91].
Iron also engages in amino acid transport and synthesis,
e.g., 4-hydroxyproline is derived from proline through
the iron-dependent dioxygenase prolyl-4-hydroxylase,
and cysteine dioxygenase, a key player in cysteine catabo-
lism, is iron enzyme [92, 93]. Though iron plays a criti-
cal role in amino acid metabolism, the regulatory details
await further exploration [79, 92-95].

Numerous iron-associated metabolic pathways have
been pinpointed to either promote or inhibit ferropto-
sis. Following iron uptake and the subsequent conversion
of Fe*" to Fe’*, facilitated by the Six-Transmembrane
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Fig. 4 Iron metabolism in ferroptosis. Abbreviations: STEAP3: Six-Transmembrane Epithelial Antigen of Prostate 3; TRPML1: transient receptor
potential mucolipin 1; DMT-1: divalent metal transporter 1; NCOA4: Nuclear receptor coactivator 4; FPN: ferroportin

Epithelial Antigen of Prostate 3 (STEAP3), free Fe?"
concentrations escalate, which triggers ferroptosis by
propelling the Fenton reaction and lipid peroxidation
[74]. Ferritinophagy, the process of ferritin degradation,
also yields free Fe** capable of inducing ferroptosis [96].
Additionally, increased cytoplasmic Fe** level, caused
by ferritinophagy, have been discovered to enhance the
expression of SFXN1 on the mitochondrial membrane
[96]. SEXN1, reciprocally, expedites the transfer of Fe**
from the cytoplasm to the mitochondria, precipitat-
ing mitochondrial ROS production and ferroptosis [97].
Apelin-13, a peptide hormone, is reported to increase the
expression of SFXN1 and nuclear receptor coactivator
4 (NCOA4), inducing ferroptosis via ferritinophagy and
the shuttling of Fe?" into mitochondria [98, 99] (Fig. 4).
While progress has been made in exploring the mecha-
nisms of iron homeostasis, the functions of iron are not
fully understood yet. The roles of iron-mediated ROS
production and iron-containing enzymes in this process
are still uncertain. The roles of iron homeostasis and
proteins following lipid peroxidation in ferroptosis are

still elusive, of which, however, the involvement in vari-
ous diseases like cancer, neurodegenerative diseases, and
ischemia—reperfusion injury-related diseases has been
noted. Hence, treatments to suppress ferroptosis signals
could potentially benefit iron overload diseases. Iron
chelating agents are being studied as potential therapies
for ferroptosis diseases, though more in vivo studies are
needed to clarify the mechanisms and the effect. Future
challenges include developing an effective and safe iron
chelator. Further studies into the mechanisms of iron-
dependent lipid peroxidation are required to identify
more treatment targets for diseases associated with fer-
roptosis, as well as whether iron overload alone can cause
ferroptosis in different cells or tissues.

Lipid peroxidation

Lipid peroxidation, a critical mechanism in ferropto-
sis, is a procedure in which oxidizing agents, like free
radicals, target lipids that possess carbon—carbon dou-
ble bonds, particularly in PUFAs [100-103]. Lipid per-
oxidation includes three sequential phases: inception,
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perpetuation, and cessation [104—106]. Initiating with
the inception phase, prooxidants, such as hydroxyl radi-
cals, pluck an electron from allylic hydrogen, yielding a
carbon-centric Le. Transiting to the perpetuation phase,
this lipid radical swiftly amalgamates with oxygen, thus
generating a LOOe.. Subsequently, the LOO+ detaches a
hydrogen atom from a distinct lipid molecule, produc-
ing a nascent lipid radical and LOOH, which perpetuates
the chain reaction. Ending in the cessation phase, anti-
oxidants, like vitamin E, donate a hydrogen atom to the
LOOe., thus producing a corresponding vitamin E radical.
This nascent radical then interacts with another LOOe.,
resulting in the synthesis of non-radical derivatives. It
is noteworthy that, once catalyzed, lipid peroxidation
induces a cascade of chain reactions until cessation deriv-
atives are generated [104, 107, 108].

The link between lipid peroxidation and ferroptosis
arises from the fact that the accumulation of lipid per-
oxides to lethal levels during the ferroptosis process [43,
50]. Specifically, the oxidation of PUFAs is crucial for
the execution of ferroptosis [40, 45, 109]. The process is
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facilitated by lipoxygenases and iron [44]. Importantly,
lipid peroxidation in ferroptosis is delicately regulated by
several systems, including the glutathione/GPX4 system
and the ferroptosis suppressor protein 1 (FSP1)/CoQ10
system, which neutralize peroxidized lipids and thus
inhibit ferroptosis [9]. One of the obvious results of lipid
dysregulation is ferroptosis, therefore, investigating lipid
peroxidation holds significance in regulating ferroptosis.
However, ferroptosis and lipid peroxidation are inter-
twined yet distinct biological processes. Ferroptosis con-
stitutes a specialized form of regulated cell death marked
by the iron-dependent accumulation of lipid peroxides,
eventually results in cell membrane deterioration and cell
death [9]. In contrast, lipid peroxidation encompasses a
broader biochemical phenomenon involving the oxida-
tive breakdown of lipids within cell membranes, often
instigated by various oxidative stresses, such as toxins,
ultraviolet etc. [107]. While ferroptosis is a specific out-
come resulting from disrupted cellular redox balance,
lipid peroxidation is a multifaceted process that can
occur under diverse conditions, not always leading to cell
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Fig. 5 Lipid peroxidation in ferroptosis. Abbreviations: ACSL-4: acyl-CoA synthetase long chain family member 4; LPCAT3: lysophosphatidylcholine

acyltransferase 3; LysoPL: lysophospholipase
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death. Ferroptosis is thus a subset of the broader lipid
peroxidation landscape, characterized by intricate molec-
ular mechanisms and distinctive cellular consequences

(Fig. 5).

Fatty acids

Fatty acids command a cardinal role in ferroptosis. As
indispensable nutrients, they play critical functions
in cellular and physiological processes, encompassing
energy metabolism and signaling pathways [110]. Four
major categories of fatty acids exist: saturated, monoun-
saturated, polyunsaturated, and trans fats, with PUFAs
peroxides reported to exhibit a close association with fer-
roptosis [111]. PUFAs, containing multiple double bonds
(C=CQ), are predominantly derived from the diet and are
pivotal components of cell membranes [112, 113]. They
participate in diverse processes, such as inflammation,
vascular function, platelet aggregation, synaptic plastic-
ity, cellular growth, immune response, and cellular pro-
liferation [114, 115]. The abundance of double bonds in
PUFAs enhances their vulnerability to oxidation, given
the susceptibility of the C-H bond in PUFAs to such an
oxidative attack [116]. Investigations have underscored
that membrane PUFAs are the principal targets of oxi-
dative stress caused by ROS. PUFAs have been found to
produce free radicals during their interaction with these
ROS, subsequently triggering a cascade that amplifies the
extent of damage [78, 104, 117].

Noteworthily, the exogenous introduction of mono-
unsaturated fatty acids (MUFAs), which directly con-
test with PUFAs, has exhibited an impressive capacity
to attenuate erastin-induced ferroptosis [115, 118]. This
implies that PUFAs, in contrast to MUFAs, assume a crit-
ical role in lipid peroxidation processes and ferroptosis.
It has been reported that MUFAs can maintain a state of
ferroptosis resistance by curtailing lipid peroxidation in a
long-chain acyl-coenzyme A synthases (ACSLs)-depend-
ent manner [9]. Further investigations validated that
ACSL3, specifically, is in charge of producing ferroptosis
resistance and attenuating saturated fatty acid lipotoxic-
ity [119]. These findings suggest that exogenous MUFAs
may change the constitution of the cell membrane
by replacing membrane PUFAs and that the replaced
PUFAs may be sequestered in cytoplasmic lipid droplets,
restraining their pro-ferroptosis activity [120]. Addition-
ally, it has been demonstrated that PUFAs can provoke
cancer cell death through escalated ROS production and
formation of lipid peroxides [121, 122]. Consequently, the
scrupulous regulation of PUFAs and the development
of targeted delivery methodologies for PUFAs, as well
as techniques to amplify or inhibit ROS and lipid per-
oxidation production in specific contexts, could provide
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promising trajectories for therapeutic interventions in
various ailments.

Ether phospholipids

Ether phospholipids (ePLs), by their unique properties
and susceptibility to peroxidation, have been implicated
within the matrix of ferroptosis. As a divergent class of
phospholipids from the ester phospholipids, ePLs harbor
an ether bond at the sn-1 position of the glycerol back-
bone which is the major difference with an ester bond
[123]. Investigations provide a deep understanding of the
role of ePLs, particularly plasmalogens, in regulating lipid
peroxidation and ferroptosis [123, 124].

ePLs are notably vulnerable to peroxidation by lipox-
ygenases, potentially catalyzing the accumulation of
lipid peroxides and contributing to ferroptosis. This
susceptibility hinges on the presence of an ether bond
at the sn-1 position of the glycerol backbone of ether
phospholipids, which is more vulnerable to ROS assault
than the ester bond found in other typical phospho-
lipids [125, 126]. The metabolic reduction of oxidized
ether phospholipids, the elimination of lipid peroxides
from the membrane, and the suppression of the ether
lipid peroxidase have been shown to guard against fer-
roptosis [127]. The selective vulnerability of certain
cells or tissues to ferroptosis is also tied to the levels of
ether phospholipids within their membranes.

The proteins related to ePLs are also investigated inten-
sively. Cui et al. reported that sensitization to ferropto-
sis across various cancer cell lines following TMEM189
deletion. This suggests an unanticipated anti-ferroptosis
role for TMEM189, distinguishing it from other ePL bio-
synthesis genes like glyceronephosphate O-acyltrans-
ferase (GNPAT), fatty Acyl-CoA Reductase 1 (FAR1),
alkylglycerone phosphate synthase (AGPS), and 1-acylg-
lycerol-3-phosphate o-acyltransferase 3 (AGPAT3) [123,
128]. Cui et al. postulated a mechanistic link where plas-
malogens produced by TMEM189 downgrade FAR1 via
negative feedback regulation, resulting in the suppression
of ferroptosis [123, 128]. However, Zou et al. claimed that
TMEM189 deficiency showed no significant link to fer-
roptosis [124]. The root of this discrepancy seems to lie
in the cell lines utilized in the two studies. Further lipid-
omic analyses in these TMEM189-depleted cell lines will
offer clarity on its precise role in the modulation of fer-
roptosis [129]. Recently, Liang et al. constructed a com-
prehensive whole-genome CRISPR activation screen and
subsequent mechanistic investigation, identified phos-
pholipid-modifying enzymes MBOAT1 and MBOAT? as
potent suppressors of ferroptosis [130]. These enzymes
inhibit ferroptosis by reshaping the cellular phospho-
lipid composition, independently of GPX4 or FSP1. Their
transcriptional upregulation is governed by sex hormone
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receptors, estrogen receptor (ER) and androgen recep-
tor (AR). Employing ER or AR antagonists in tandem
with ferroptosis induction effectively impedes the growth
of ER+breast cancer and AR+ prostate cancer, even in
cases of resistance to individual hormonal therapies. In
summary, the interplay between ether phospholipids
and ferroptosis is intricate, involving a delicate balance
between susceptibility to lipid peroxidation and protec-
tive mechanisms against it. To fully understand the role
of ether phospholipids in ferroptosis and their potential
as therapeutic targets for diseases characterized by dys-
regulation of this process, further research is necessary.

ACSL4 and LPCAT3

Enzymes catalyzing the incorporation of PUFAs into
phospholipids, such as ACSL4 and lysophosphatidyl-
choline acyltransferase 3 (LPCAT3), are paramount in
the orchestration of ferroptosis [45, 131, 132]. ACSL4
plays an fundamental role in the metabolic process of
membrane PUFAs, notably arachidonic acid (AA) and
adrenic acid (ADA) [133]. This enzyme is critical in the
conversion of these fatty acids into their respective CoA
thioesters, which subsequently integrate into phospho-
lipids under the guidance of LPCATS3. Both in vivo and
in vitro evidence demonstrates that disruption of these
enzymatic functions results in heightened resistance to
ferroptosis stimuli [45]. Importantly, in the context of
hepatocellular carcinoma, ACSL4-dependent mecha-
nisms may have both tumor-promoting and tumor-
inhibitory effects [134]. Additionally, evidence derived
from both in vivo and in vitro studies corroborate that
the ablation of LPCAT3 render a resilience against RSL3-
mediated ferroptosis [43, 45, 132]. Therefore, the roles
of these enzymes in cellular susceptibility to ferroptosis
are pivotal, with implications for cancer progression and
therapeutic interventions [135, 136].

LOXs and PEBP1

In general, two pathways could regulate lipid peroxida-
tion, non-enzymatic autoxidation and enzyme-mediated
reactions [44, 104, 137, 138]. In the presence of free Fe’*
and H,0,, Fe*" is generated and hydroxyl radicals initi-
ate the lipid peroxidation process by abstracting hydro-
gen from the bis-allylic position of PUFAs [107, 139,
140]. LOXs are non-heme iron-containing dioxyge-
nases that catalyze the stereospecific addition of oxygen
onto PUFAs, such as AA and linoleic acids, resulting in
lipid peroxidation [141]. Structurally, LOX possesses a
unique U-shaped fatty acid binding channel that allows
easy access to PUFA substrates [142, 143]. Although sev-
eral studies have shown that LOX inhibitors/knockout
effectively inhibit ferroptosis in various disease models
[137, 144], study have also reported that LOX inhibitors/
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knockout failed to inhibit RSL3-induced ferroptosis in
renal carcinoma cells [44]. Further research is still needed
to elucidate whether LOXs also participate in GPX4 inhi-
bition during ferroptosis.

The well-known tumor suppressor protein p53 has
been implicated in the intricate regulation of ferroptosis.
p53 functions include amplifying ferroptosis by imped-
ing the transcription of SLC7A11-an integral constituent
of system xc~ or by upregulating both spermidine/sper-
mine N1-acetyltransferase 1 (SAT1) and glutaminase 2
[8, 144-146]. Conversely, p53 is also capable of curtailing
ferroptosis via the suppression of dipeptidyl-peptidase
4 (DPP4) activity or through the elicitation of Cyclin-
dependent kinase inhibitor 1A/p21 (CDKN1A/p21) tran-
scription [147, 148], e.g., p53 can upregulate 15-LOX and
thereby increase the sensitivity of cells to induced ferrop-
tosis [144]. p53-mediated ferroptosis in response to TBH
is independent of ACSL4, and the specific phospholipids
accountable for p53-linked ferroptosis remain unidenti-
fied [149].

While LOXs predominantly target free PUFAs for
oxidation, phospholipids embedded within the cellular
membrane housing PUFAs transpire as the main targets
during ferroptosis [44]. Notwithstanding this knowledge,
the precise mechanistic pathway employed by LOXs to
manipulate membrane phospholipids remains elusive.
Preliminary data suggest a robust interaction between
15-LOX and phosphatidylethanolamine-binding pro-
tein 1 (PEBP1), a protein proposed to modulate the Raf-
1-facilitated mitogen-activated protein kinase (MAPK)
signaling cascade [150, 151]. Subsequent investigations
hypothesize a stable complex formed between 15-LOX
and PEBP1 that can modulate PUFAs, thus invoking fer-
roptosis [137]. Locostatin, a compound known to esca-
late oxidized PE concentrations and promote ferroptosis
upon RSL3 treatment, is postulated to bolster the forma-
tion of the 15-LOX/PEBP1 complex [137]. Various dis-
ease models also revealed the accumulation of 15-LOX/
PEBP1 complex resulted in elevated oxidized PEs and
ferroptosis [137]. Further validation of PEBP1’s integral
role in orchestrating ferroptosis arises from the obser-
vation that selective ferroptosis inhibitors-ferrostatin-1
(Fer-1), liproxstatin-1, and «-tocopherol-also engage
with the 15-LOX2/PEBP1 complex [7, 152]. Whereas
corroborating evidence emphasizes PEBP1’s fundamen-
tal role in producing oxidized PEs, no discernible effects
on free ETE (eicosatetraenoic acid) have been reported.
Intriguingly, Fer-1 selectively hinders the formation of
15-hydroperoxy (Hp)-arachidonoyl-phosphatidyleth-
anolamine (15-HpETE-PE) but not 15-HpETE, imply-
ing that Fer-1 specifically targets the 15-LOX2/PEBP1
complex, leaving free 15-LOX2 unimpeded [153]. These
investigations corroborate that the collaboration between
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LOXs and PEBP1 is crucial in governing lipid peroxida-
tion and the progression of ferroptosis.

Other oxygenases

Other oxygenases, such as NOXs and cytochrome p450
oxidoreductase (POR), are also involved in ferropto-
sis. While NOXs induce superoxide radicals, the extent
of their requirement for ferroptosis remains contested
[147, 154-157]. POR, identified as a ferroptosis con-
tributor, facilitates electron transfer from NADPH to
cytochrome p450, possibly promoting lipid peroxidation.
Notably, POR’s ubiquitous presence in various cancer cell
lines suggests its potential significance in lipid peroxida-
tion and ferroptosis [158, 159]. Further, an ER-resident
oxidoreductase, NADH-cytochrome b5 reductase 1
(CYB5R1), and POR have been implicated in lipid per-
oxidation through H,O, production and iron-dependent
Fenton reaction [160]. Despite the common belief that
LOXs primarily induce lipid peroxidation, their expres-
sion is limited in certain cancer cell lines. Intriguingly,
POR is expressed in most cancer cells, suggesting an
underestimation of POR’s role in ferroptosis [159]. A
comprehensive understanding of each enzyme’s contri-
bution to ferroptosis could pave the way for developing
targeted therapeutic agents for related diseases.

Role of GPX4
Glutathione is a small molecule found in most cells. It is
made up of three amino acids: glutamate, cysteine, and
glycine. Glutathione is one of the most important antiox-
idants in cells, as it is responsible for neutralizing a vari-
ety of harmful substances [161, 162]. Glutathione exists
in reduced GSH and oxidized (GSSG) states [163]. In the
reduced state, glutathione can donate a reducing equiva-
lent to unstable molecules like ROS. Once the electron is
donated, glutathione becomes oxidized and is turned into
GSSG. The ratio of GSH to GSSG within cells is usually
used as a measure of cellular oxidative stress [164]. Glu-
tathione serves as a cofactor for the enzyme GPX4, which
helps to reduce lipid peroxides and prevent lipid peroxi-
dation [50]. When glutathione is depleted, GPX4 cannot
function effectively, leading to an accumulation of lipid
peroxides and increased susceptibility to ferroptosis.
System xc”/GSH/GPX4 axis is the main mechanism
responsible for the catalyzation of phospholipid hydrop-
eropxides [7, 165, 166]. The key component of the xc™/
GSH/GPX4 axis is system xc~, which is a highly selec-
tive uptake system for cystine (oxidized cysteine) and
cystathionine [167-169]. System xc~ exchanges cysteine
and glutamate in and out of the cell at a 1:1 ratio [7]. The
xCT light chain, which is the substrate-related subunit
of system xc™, is subject to complicated transcriptional
control. Under oxidative stress and cysteine deprivation
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conditions, xCT is upregulated by apoptosis-inducing
factor-4 (ATF4) [170]. It has also been reported that p53
can inhibit xCT expression and increase sensitivity to
ferroptosis [8, 171].

Once cystine was taken up by the cell, it is converted to
cysteine by GSH and/or thioredoxin reductase 1, which is
then used for GSH synthesis [172]. Besides, other mecha-
nisms, such as the transsulfuration pathway and the neu-
tral amino acid transporter, also contribute to cysteine
production [173, 174]. Cysteine plays a significant role by
contributing the essential redox-active thiol group cen-
tral to its multifaceted functions. Within cells where GSH
is produced, intracellular cysteine concentrations are
relatively modest, thereby typically governing GSH syn-
thesis due to the confined availability of cysteine. Dur-
ing instances of heightened demand for GSH synthesis,
there is an intensified cellular uptake of cysteine from the
more abundant extracellular environment. Interestingly,
the predominant extracellular form of cysteine is cystine,
characterized by its oxidized state. Subsequent to cellular
entry, cystine can undergo reduction to cysteine by cys-
tine reductase, thereafter being channeled towards GSH
or protein synthesis. The distinctive recognition of these
compounds by specific transporters plays a pivotal role,
as the relative concentrations of cysteine and cystine in
the plasma modulate the ability of cells to import either
substance, contingent upon the unique profiles of trans-
porter expression [175, 176].

GPX4 takes part in several physiological processes
and is considered as the main inhibitory gene of ferrop-
tosis [177]. GPX4 catalyzes lipid peroxides and is crucial
for preventing the accumulation of lipid peroxides and
subsequent ferroptosis [178]. The GPX4 pathway regu-
lates ferroptosis in several ways: 1) Reduction of lipid
peroxides: GPX4 converts lipid peroxides into their cor-
responding alcohols, which are less toxic and less likely
to cause ferroptosis. Inhibition of GPX4 activity leads to
the accumulation of lipid peroxides, which triggers fer-
roptosis. 2) Maintenance of membrane integrity: The cell
membrane is particularly susceptible to lipid peroxida-
tion, which can lead to membrane damage and subse-
quent ferroptosis. GPX4 helps to maintain membrane
integrity by reducing lipid peroxides in the cell mem-
brane. 3) Regulation of iron metabolism: Iron is a key
mediator of ferroptosis, as it catalyzes lipid peroxidation
through the Fenton reaction [178]. GPX4 can also regu-
late iron metabolism by binding to iron ions and prevent-
ing their participation in the Fenton reaction. Overall, the
GPX4 pathway plays a crucial role in regulating ferrop-
tosis by reducing lipid peroxides, maintaining membrane
integrity, and regulating iron metabolism (Fig. 6).
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Fig. 6 The role of GPX4 in ferroptosis. Abbreviations: Glu: glutamic acid; GIn: Glutamine; Cys: cysteine; Gly: Glycine; P53: a tumor suppressor protein;
KEAP1: Kelch-like ECH-associated protein; 12-LOX: 12-lipoxygenase; GLS2: glutaminase 2; y-GC: y-glutamylcysteine; GSS: glutathione synthetase;

GSR: glutathione reductase

Role of FSP1
Studies have indicated that the sensitivity of different cell

lines to inhibitors of GPX4 varies significantly, suggesting
the existence of unexplored downregulatory mechanisms

of ferroptosis beyond GPX4 [179]. Using synthetic lethal
CRISPR-Cas9 screening, researchers have identified FSP1
as another key factor in ferroptosis resistance [180, 181].
Initially referred to as AIF-like mitochondrion-associated
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inducer of death (AMID) or Apoptosis-inducing factor
mitochondria-associated 2 (AIFM2, also known as FSP1),
ESP1 was the first gene named for ferroptosis [182].
However, unlike AIF, FSP1 is predominantly found in the
cytosol, with a potential affinity towards the mitochon-
drial outer membrane, although it lacks a long N-ter-
minal mitochondrial targeting sequence as seen in AIF
[183].

Subsequent studies have confirmed that FSP1 expres-
sion confers resistance to ferroptosis but not apoptosis
[184]. Further research has revealed that myristoylation
of FSP1 accelerates its accumulation on the plasma mem-
brane, where it acts as an oxidoreductase and lipophilic
radical-trapping antioxidant, reducing CoQ10 to ubiqui-
nol, thus preventing the peroxidation of PUFAs in the
lipid bilayer, and suppressing ferroptosis [181]. Doll’s
group has demonstrated that the FSP1-CoQ10-NAD(P)
H pathway operates independently with the GPX4 path-
way, functioning to either directly scavenge lipid radi-
cals by reducing ubiquinone to ubiquinol, or indirectly
regenerate oxidized-tocopheryl radical, thereby sup-
pressing ferroptosis [181]. Such observation elucidates
the protective role of extra-mitochondrial ubiquinone
in tissues and cells, which has been a long-standing puz-
zle due to the canonical function of ubiquinone in the
mitochondrial electron transport chain [185]. However,
the regulation of FSP1 oxidoreductase activity or how its
subcellular localization impacts its involvement in vari-
ous physiological and pathological processes, remains
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to be further elucidated [180, 181, 183, 186]. Recently,
FSP1 was reported that it can convert Vitamin K into the
reduced form, hydroquinone (VKH,) [187, 188]. Never-
theless, the versatility of FSP1 in oxidizing and reducing
substrates, including NADH, NADPH, ubiquinone, and
a-tocopherol, implies the sophisticated control of FSP1
activity (Fig. 7).

The prospect of exploiting FSP1 as a therapeutic node
to bolster the effectiveness of ferroptosis-based interven-
tions and radiotherapy, notably in the milieu of Kelch-
like ECH-associated protein 1 (KEAP1) and Kirsten rat
sarcoma virus (KRAS) mutant lung malignancies, has
elicited substantial scientific interest [189, 190]. A semi-
nal exploration subjected 30,000 pharmacologically per-
tinent compounds to rigorous screening, seeking agents
capable of precipitating cellular death in cells singularly
dependent on FSP1, consequently spotlighting iFSP1 as
a robust inhibitor [181]. Another investigation suggested
that ferroptosis sensitizer 1 (FSEN1) proficiently inhib-
its FSP in vitro while also thwarting ferroptosis within
the confines of cultured cancer cells [191]. Nonetheless,
the necessity for additional investigation is underscored
to validate whether FSEN1 can inhibit FSP1 in vivo. It is
noteworthy that the applicability of FSEN1 is constricted
to human FSP1 [191], thereby decreasing the utility in
the scrutiny of mouse FSP1 or neoplastic growth within
Genetically Engineered Mouse Models. Anticipated
investigative endeavors must strive to establish whether
other FSP1 inhibitors unearthed in this study can inhibit
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mFSP1 and their repercussions on preclinical tumor pro-
gression paradigms [191]. Conversely, amplifying FSP1
activity within models of traumatic pathologies, such as
ischemia—reperfusion injury, carries immense therapeu-
tic promise. Yet, this field remains relatively unexplored,
emphasizing the urgency for concentrated research
endeavors to bridge this knowledge gap.

Other pathways regulating ferroptosis

While the central mechanism governing ferroptosis
centers around iron metabolism, lipid peroxidation,
GPX4, and FSP1 pathway, it is increasingly apparent
that a multitude of ancillary pathways also significantly
contribute to the modulation of this distinctive form of
cellular death. Recent investigations have unveiled the
role of the Hippo-Yes-associated protein (YAP) path-
way, AMP-activated protein kinase (AMPK) signaling,
and hypoxia pathway in ferroptosis. Fascinatingly, cells
cultured at heightened densities demonstrate escalated
resistance to ferroptosis triggered by cysteine deprivation
and GPX4 inhibition [192-194]. The Hippo-YAP path-
way, illustrious for its orchestration of cell proliferation,
stress recognition, and organ size moderation, has been
scrutinized for its correlation with ferroptosis [195, 196].
Findings delineate that E-cadherin-mediated cell—cell
contacts kindle the Hippo signaling pathway via the neu-
rofibromatosis 2 (NF2) tumor suppressor protein, thus
curbing nuclear translocation and activity of the tran-
scriptional co-regulator YAP in epithelial cells [193]. YADP,
along with its akin homolog TAZ, targets numerous reg-
ulators of ferroptosis, encompassing ACSL4 and transfer-
rin receptor TfR1, postulating that the dynamism of the
Hippo pathway may modulate cellular responsiveness to
ferroptosis, thereby escalating susceptibility upon Hippo
suppression and YAP activation [156, 193].

Energy and metabolic stress under normal physiologi-
cal conditions are crucial for maintaining homeostasis
[197]. Disturbances in energy production can result in
excessive ROS and cell death [198, 199]. However, inter-
ventions mimicking energy stress have been shown to
prevent ferroptosis and lipid peroxidation, an effect cred-
ited to AMPK, an energy-sensing kinase [112, 200]. The
activation of AMPK during glucose deprivation initiates a
protective mechanism against ferroptosis, mainly inhibit-
ing PUFA biosynthesis [44, 45]. These findings suggest
that such an energy stress program can protect against
renal ischemia-reperfusion damage and potentially
guard against organ damage related to energy failure.

Initial investigations, suggesting minimal alterations
to erastin-induced ferroptosis sensitivity in a 1% oxygen
environment, challenged the presumption that hypoxia
induces ferroptosis [201]. Hypoxia escalates ROS pro-
duction via mitochondrial complex III and augments
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cellular H,O, levels, enabling the Fenton reaction [202].
Concurrently, in renal clear cell carcinoma, activation
of hypoxia-inducible factors (HIFs) amplifies ferroptosis
sensitivity due to GPX4 inhibition, particularly via the
HIF2«a isoform. Hypoxia initiates HIF2-mediated expres-
sion of the hypoxia-inducible lipid droplet-associated
protein (HILPDA), resulting in polyunsaturated lipid
enrichment [179]. This HIF2-HILPDA-driven heightened
sensitivity to ferroptosis suggests an evolutionary mecha-
nism to eradicate hypoxic tumors in the early stages.

Along with the progress, the role of ferroptosis in a
proliferating array of disease processes becomes increas-
ingly evident, thereby illuminating novel therapeutic
approaches. Operating in concert with other strategies,
ferroptosis enriches current treatment paradigms, pro-
viding potential solutions to drug resistance challenges.
Notwithstanding, our understanding of ferroptosis
remains embryonic, with numerous unresolved enigmas
left. While it is acknowledged that ferroptosis is initiated
by the peroxidation of PUFAs in the cellular membrane
and organellar membranes such as the endoplasmic retic-
ulum, the precise mechanisms through which these pro-
cesses lead to cell death remain uncertain. Furthermore, a
thorough investigation into the underlying initiatory and
regulatory mechanisms of ferroptosis, the participants
involved, and most critically, the complicated interplay
between various cell types, persists as an active research
domain. Complicating the traditional understanding
of ferroptosis, the potential regulation of this process
by other metallic ions, such as copper, challenges the
dominant position of iron [203]. Thus, deciphering the
exact molecular mechanisms and elucidating the role of
upstream iron metabolism genes in ferroptosis becomes
essential. Furthermore, the identification of distinctive
ferroptosis markers is of profound significance to future
investigations. In conclusion, the advent of ferroptosis
research has inaugurated a promising landscape in dis-
ease research, offering considerable potential in devising
highly targeted therapies. Nonetheless, much remains to
be discovered about the mechanisms of ferroptosis and
its role in various diseases, which are important future
research directions.

Physiological functions of ferroptosis

To investigate the biological processes in which ferrop-
tosis is involved, several markers have been developed,
including those that detect lipid peroxidation, mitochon-
drial morphologies, specific gene expression, and TfR1
expression and location [204, 205]. Through the combi-
nation of these approaches, ferroptosis has been shown
to be critical in tumor suppression, immune surveillance,
development, and aging.
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Ferroptosis in tumor suppression and immune functions
The first evidence linking ferroptosis and tumors was
the discovery that p53, a well-known tumor suppres-
sor, sensitizes tumor cells to ferroptosis by inhibiting the
expression of SLC7A11, a key component of the cystine/
glutamate antiporter that mediates cystine transport
and represses ROS-induced ferroptosis [8, 206—208]. In
human tumors, high expression of SLC7A11 can dampen
ferroptosis and diminish the inhibition of tumor growth
in xenograft models by acetylation-defective mutant p53
(K117R; K161R; K162R encoding the so-called p53 3KR)
[8]. Further investigations revealed that mammalian
lipoxygenase family member arachidonate 12-Lipoxyge-
nase (ALOX12) is crucial for p53-dependent ferropto-
sis. Inactivation or missense mutations of ALOX12, even
haploinsufficiency, can ablate p53-mediated tumor
growth suppression [149, 209, 210]. Mechanistically,
ALOX12 has been identified as a bona fide binding part-
ner of SLC7A11, and its lipoxygenase activity is inhib-
ited in a dosage-dependent manner by SLC7A11 level,
which is downregulated by p53 [211]. A nonsynonymous
single-nucleotide polymorphism at codon 47 (S47) in
tumor protein p53 (TP53 or p53), which is restricted to
individuals of African descent, has been found to impair
ferroptosis and, therefore, p53-dependent tumor sup-
pression [171]. In cells with S47 mutation, the level of
glutamine synthase 2 (GLS2), a glutaminase that con-
verts glutamine into glutamate to induce ferroptosis, is
markedly decreased, and the negative regulation of p53
to SLC7A11 is compromised compared to wild-type cells
[146, 171]. Moreover, in cells and mice with S47 muta-
tion, the cellular abundance of antioxidants GSH and
CoA is elevated, leading to decreased ferroptosis sensitiv-
ity [212]. Additionally, the S47 variant of TP53, which has
been shown to ablate ferroptosis in cells and mice, also
results in iron accumulation in macrophages, altering
macrophage cytokine profiles and causing increased sus-
ceptibility to bacterial infection and limitation of malarial
infection. A recent study found that ALOX12 activation
induced by a photosensitizer in cancer cells significantly
increases lipid reactive oxygen species and promotes fer-
roptosis, independent of ACSL4 [213].

MLL4 is an epigenetic regulator and one of the most
frequently mutated genes in cancer biology. Depletion of
MLL4 in mice promotes features of human precancerous
neoplasms. On one hand, MLL4 deficiency suppresses
the expression of key lipoxygenases, such as ALOX12,
ALOX12B, and ALOXE3, which are involved in driv-
ing ferroptosis. On the other hand, lower expression of
MLL4 is significantly associated with decreased expres-
sion levels of anti-ferroptosis regulators, such as GPX4,
SCD1, and GCH1 [214].
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The tumor suppressor BRCAl-associated protein 1
(BAP1) is a nuclear de-ubiquitinating enzyme that is
responsible for histone 2A modification and gene tran-
scription regulation. BAP1 can regulate ferroptosis pri-
marily through SLC7A11 [215, 216]. Specifically, BAP1
reduces ubiquitinated H2A occupancy on the promoter
of SLC7A11, resulting in the repression of SLC7A11
expression. This abrogates cystine uptake and induces
ferroptosis [215, 217].

Cysteine desulfurase (NFS1) is an iron-sulfur cluster
biosynthetic enzyme that is essential for cancer cell sur-
vival when exposed to oxygen [218]. Suppression of NFS1
limits iron-sulfur cluster availability, promoting the iron-
starvation response [219] increasing ferroptosis suscepti-
bility [184, 218, 219].

Similar to previous studies that have found excessive
accumulation of oxidized PUFA-containing lipids can
induce ferroptosis, acidic cancer cells exposed to PUFAs
also undergo ferroptosis [220]. PUFAs elevate suscepti-
bility to ferroptosis in the presence of ferroptosis induc-
ers erastin and RSL3, which may be due to diminished
upregulation of GPX4 and SLC7A11, as well as apparent
downregulation of dihydrofolate reductase (DHFR) and
FSP1 [221]. However, unlike acidic cancer cells, uptake
of PUFAs from the tumor microenvironment impairs
the antitumor ability of CD8* T cells in a mouse mela-
noma model B16 [222]. PUFAs promote the expression
of CD36 on CD8™ T cells from human and murine cells,
which then activates lipid peroxidation and ferroptosis,
reducing cytotoxic cytokine production and antitumor
function of CD8" T cells.

Of note, in melanoma and ovarian mouse models,
CD8*" T cells, when activated by anti-PD-L1 antibody,
have been found to drive tumor cell lipid peroxidation
and ferroptosis, and this enhanced ferroptosis can pro-
mote the anti-tumor function of immunotherapy in
turn [223]. In this process, interferon-y (IFNy) derived
from activated CD8" T cells has been shown to defer the
expression of SLC3A2 and SLC7A11, inhibiting tumor
cell cystine import and sensitizing tumor cells to ferrop-
tosis. Furthermore, in a melanoma mouse model, IFNy
and AA, one of the PUFAs, have been identified as an
anti-tumor combination [15]. IFNy released from T cells
is an activator of the ferroptosis regulator ACSL4 and can
accelerate the incorporation of AA into phospholipids,
subsequently inducing immunogenic tumor ferroptosis.
This suggests that AA found in the tumor microenviron-
ment could potentially be used together with IFNy as a
physiological inducer of ferroptosis.

While ferroptosis is known to serve as a guard in
tumor suppression in most research, it appears to play
an opposite role in immune functions. Apart from its
impact on cytokine production in immune cells such as
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macrophages and CD87 T cells, ferroptosis also regulates
the homeostasis of follicular helper T (TFH) cells [224].
Upregulation of GPX4 by selenium addition has been
shown to result in a higher number of TFH cells and ele-
vate humoral immune response in immunized mice and
young adults following influenza vaccination. Although
evidence suggests that ferroptosis is involved in immu-
nity, further investigation is needed to uncover more
links between ferroptosis and immune functions.

Ferroptosis in development and aging

Due to the delayed development of ferroptosis detection
methodologies, the physiological function of ferroptosis
remains to be fully understood. Recently, a mouse mon-
oclonal antibody called HNEJ-1 has been designed to
specifically identify the most sensitive lipid peroxidation
marker, 4-hydroxy-2-nonenal (HNE). This antibody has
been used to monitor ferroptosis in different develop-
mental stages of animal models [225]. In Fisher-344 rats,
ranging from E9.5 to 2.5 years of age, a significant age-
dependent increase in ferroptosis and iron accumulation
has been observed in various organs [225]. This increase
is also enhanced in a naturally accelerated aging ani-
mal model, the Senescence Accelerated Mouse-Prone 8
(SAMP8) mice [225]. Ferroptosis has also been found to
occur during rat embryonic erythropoiesis, with its level
decreasing as erythrocytes enucleate during the process
of maturation. This maturation process is reduced in the
presence of ferroptosis inhibitors, Lipro-1 and Fer-1.
Inhibition of ferroptosis by melatonin, through neutral-
izing lipid peroxidation toxicity, has been shown to delay
age-related cataract formation [226].

In addition to rats, ferroptosis also affects aging and
development in other organisms such as C. elegans and
Magnaporthe oryzae. In C. elegans, a reduction in GSH
and an increase in ferrous iron typically occur in late
life, and suppression of ferroptosis using lipid peroxida-
tion inhibitor liproxstatin or iron chelator salicylalde-
hyde isonicotinoyl hydrazone has been shown to protect
against GSH depletion toxicity, dramatically restrain
age-related cell death, and improve the lifespan and
healthspan of C. elegans [227]. Regarding to M. oryzae,
ferroptosis is crucial for the developmental cell death
of conidia during appressorium maturation in rice blast
[228]. Inhibition of ferroptosis has been found to dampen
the ability of M. oryzae to invade the host.

Ferroptosis in pathologies

Since the discovery of ferroptosis, evidence has impli-
cated it in a broad array of pathological states includ-
ing various types of cancer, ischemia-reperfusion (I/R)
injury, neurodegenerative disorders, etc. As such, the
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elucidation of ferroptosis regulatory mechanisms and
their relation to human disease has drawn substantial sci-
entific attention. Consequently, therapeutic strategies to
modulate ferroptosis, either as inducers to eradicate can-
cer cells or as inhibitors to protect neurons or ischemic
tissues, have unfolded as a promising avenue of transla-
tional research.

Ferroptosis and tumor

Neoplasms encompass an array of genetically divergent
subclones. In recent years, burgeoning evidence has
underscored the cardinal role of ferroptosis in curbing
neoplastic proliferation. A plethora of tumor-suppres-
sive and oncogenic signaling pathways have been iden-
tified, which respectively promote or inhibit ferroptosis,
offering potential perspectives in cancer therapeutics
(Tables 1 & 2).

Tumor progression

Cancer is a disease characterized by the uncontrolled
proliferation of abnormal cells, exhibiting features of
unregulated cell growth, invasive expansion, and met-
astatic potential [290]. Recent years have witnessed
remarkable strides in cancer diagnosis and holistic
therapeutic approaches such as surgery, chemotherapy,
radiation therapy, targeted therapy, and immunotherapy,
consequently mitigating cancer mortality rates [291].
Nevertheless, these therapeutic modalities continue
to grapple with impediments such as drug resistance,
adverse side-effects, and inability to conclusively extir-
pate metastatic lesions, and the recurrence and metasta-
sis rates of certain tumors persist at elevated levels [10].
For example, the yearly recurrence rate of hepatocellu-
lar carcinoma (HCC) post-surgical resection equals or
exceeds 10% and escalates to between 70 and 80% after
five years [292]. The five-year survival rate for pancre-
atic ductal adenocarcinoma (PDAC) stands at 10% [293].
Therefore, the exploration of novel therapeutic strategies
remains a pressing necessity.

In recent years, emerging research has highlighted
the connection between tumor development and fer-
roptosis [294]. Various oncogenic signaling cascades
have been found to conduct the symphony of ferropto-
sis in malignant cells, and ferroptosis intersects with the
functionalities of numerous tumor suppressors, such as
the retinoblastoma protein (RB1) and the breast cancer
1 (BRCAT1)-associated protein 1 (BAP1) [215, 257]. Com-
pared to their non-malignant counterparts, the prolif-
eration of cancer cells (particularly cancer stem cells)
demonstrates a heightened dependency on iron due to its
indispensable role in rapid cell multiplication and meta-
bolic activity [295]. By destabilizing iron metabolism
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Table 1 Updated therapeutic targets of ferroptosis in tumors
Diseases Therapeutic targets  Models Potential mechanisms References
HCC HBXIP In vivo/In vitro  Transcriptionally induced the expression of SCD via coactivating the transcrip-  [229]
tional factor ZNF263, resulting in the accumulation of free fatty acids
cGAS Invivo/In vitro  Associate with DRP1 to facilitate its oligomerization [230]
Creatine kinase B Invivo/In vitro  Phosphorylates GPX4 S104 [231]
HMGCL In vivo/In vitro  Promote the transcription of DPP4 [232]
5-HT/3-HA Invivo/In vitro  Potent radical trapping antioxidants [233]
SLC27A5/FATPS In vivo/In vitro  Enhances the GSR expression in a NRF2-dependent manner [234]
ENO1 Invivo/In vitro  Suppresse IRP1 expression [235]
PSTK In vivo/In vitro  Maintain GPX4 activity/promote GSH metabolism/folate biosynthesis [236]
ZNF498 Invivo/Invitro  Suppressed p53 transcriptional activation by inhibiting p53 Ser46 phospho- [237]
rylation
Liver cancer HSPA8 In vivo/In vitro  Upregulate the expression of SLC7A11/GPX4 [238]
Pancreatic cancer TMEM164 In vivo/Invitro  Selectively mediate ATG5-dependent autophagosome formation [239]
Gastric cancer CST1 Invivo/Invitro  Interact with GPX4 [240]
BCL6 Invivo/Invitro  Regulate FZD7/B-catenin/TP63/GPX4 pathway [241]
DACT3-AS1 Invivo/Invitro  Mediate SIRT1 [242]
CRC CYP1B1 Invivo/Invitro  Derive 20-HETE activated the protein kinase C pathway to increase FBXO10 [243]
expression
TIGAR In vitro Mediate ROS/AMPK/SCD1 signaling pathway [244]
Lung adenocarcinoma  GINS4 Invivo/Invitro  Suppressed p53 stability through activating Snail [245]
IGF2BP3 Invivo/In vitro  Dependent on its m°A reading domain and binding capacity [246]
to mPA-methylated mRNAs encoding anti-ferroptotic factors
Renal cell carcinoma AlM2 Invivo/In vitro  Promote FOXO3a phosphorylation and proteasome degradation, reduce its [247]
transcriptional effect on ACSL4
Glioma SNAI3-AST Invivo/In vitro  Competitively binds to SND1 and perturbs the m6A-dependent recognition [248]
of Nrf2 mRNA 3'UTR by SND1, thereby reducing the mRNA stability of Nrf2
PI3K/protein kinase B Invivo/Invitro  Suppresses the activity of GSK3{ and stabilizes Nrf2 [249]
Osteosarcomas Nrf2 Invivo/Invitro  Interacted with Nrf2, Inhibit GPX4 and xCT expression [250]
Bone cancer pain Ferrostatin-1 Invivo/In vitro  Inhibit ERK1/2 and COX-2 expression and prevented the loss of GABAergic [251]
interneurons
Sarcoma p53R17oH In vivo/In vitro  Abrogate BACH1-mediated downregulation of SLC7A11 [252]
Ovarian cancer FeNP Invivo/In vitro  Inhibite GPX4 [253]
CEBPG Invivo/Invitro  Upregulate SLC7A11 [254]
NRF2 In vivo/In vitro  Control HERC2 and VAMPS8 [255]
MEX3A Invivo/In vitro  Mediate p53 protein degradation [256]
Prostate cancer RB1 Invivo/Invitro  Upregulate ACSL4/enrich ACSL4-dependent arachidonic acid-containing [257]
phospholipids
SGK2 Invivo/In vitro  Relieving the inhibitory effect of FOXO1 on GPX4 [258]
ESCC STC2 Invivo/In vitro  Participate in SLC7A11-mediated ferroptosis in a PRMT5-dependent manner [259]
Melanoma CAMKK2 Invivo/Invitro  Activate the AMPK NRF2 pathway [260]
PKCRII Invivo/In vitro  Phosphorylation and activation of ACSL4 [261]
Breast cancer RUNX1-IT1 In vivo/Invitro  Increase GPX4 expression [262]
TNBC HLF Invivo/In vitro  Activate GGT1 to promote the ferroptosis resistance [263]

Abbreviations: HCC Hepatocellular carcinoma, BCL6 B-cell lymphoma 6, CRC Colorectal cancer, CYP1B1 Cytochrome P4501B1, AIM2 Melanoma 2, SGK2 Serum/
glucocorticoid regulated kinase 2, HBXIP Hepatitis B X-interacting protein, SCD Stearoyl-CoA desaturase, cGAS Cyclic GMP-AMP synthase, DRP1 Dynamin-related
protein 1, HMGCL Hydroxy-methyl-glutaryl-CoA lyase, DPP4 Dipeptidyl peptidase 4, 5-HT Tryptophan metabolites serotonin, 3-HT 3-hydroxyanthranilic acid, SLC27A5/
FATP5 Solute carrier family 27 member 5, ENOT Enolase 1, IRP1 Iron regulatory protein 1, PSTK Phosphoseryl-tRNA kinase, HSPA8 Heat shock protein family A member
8, TMEM164 Transmembrane protein 164, ATG5 Autophagy related 5, CST1 Cysteine protease inhibitor SN, BCL6 B-cell lymphoma 6, FZD7 Frizzled 7, DACT3-AS1
Disheveled binding antagonist of beta catenin3 antisense1, SIRTT Sirtuin 1, CYP1B1 Cytochrome P450 1B1, TIGAR TP53-induced glycolysis and apoptosis regulator,
AMPK AMP-activated protein kinase, SCD1 Stearoyl-CoA desaturase-1, IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3, AIM2 Melanoma 2, SND1
Staphylococcal Nuclease And Tudor Domain Containing 1, PI3K Phosphatidylinositol 3-kinase, FeNP Iron nitroprusside, HERC2 HECT and RLD domain containing E3
ubiquitin protein ligase 2, VAMP8 Vesicle-associated membrane protein 8, RB1 Retinoblastoma tumor suppressor protein 1, SGK2 Serum/glucocorticoid regulated
kinase 2, FOXO1 Forkhead box O1, RUNXT-IT1 RUNX1 intronic transcript 1, HLF Hepatic leukemia factor, GGTT Gamma-glutamyltransferase 1, Nrf2 Nuclear factor
erythroid 2-related factor 2, ESCC Esophageal squamous cell carcinoma, STC2 Stanniocalcin 2, GPX4 Glutathione peroxidase 4, TNBC Triple-negative breast cancer,
ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4, SLC7A11 Recombinant Solute Carrier Family 7, Member 11
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Table 2 Updated compounds targeting ferroptosis in tumors
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Diseases Compounds Models Function References
HCC Aspirin In vivo/In vitro  Restricting NF-kB-activated SLC7A11 transcription [264]
EChLESs Invivo/In vitro - Disrupt mitochondrial membrane potential depolarization [265]
and mitochondrial reactive oxygen species
AP In vivo/Invitro  TrxR [266]
Pancreatic cancer Wogonin In vivo/In vitro - Regulate Nrf2/GPX4 axis [267]
Copper In vivo/In vitro  Increase GPX4 ubiquitination and the formation of GPX4 [268]
aggregates by directly binding to GPX4 protein cysteines C107
and C148
Ponicidin In vitro Inhibit the gamma-glutamyl cycle and regulating the polyun-  [269]
saturated fatty acid metabolism
Gastric cancer Polyphyllin | In vivo/In vitro  Regulate NRF2/FTH1 pathway [270]
Sorafenib In vivo/In vitro - Activate ATF2/ATF2 inhibite SLC7A11 degradation [271]
through Upregulate HSPH1
CRC NaB In vivo/In vitro  Mediate CD44/SLC7A11 signaling pathway [272]
Erianin In vivo/In vitro  Induced autophagy-dependent ferroptosis in KRAS®'3P CRC [273]
cells, while attenuating cell proliferative and metastatic
phenotypes
Ibrutinib In vivo/In vitro  Inhibite Nrf2 [274]
Vitamin D In vivo/In vitro - Downregulate SLC7A11 [275]
Renal cell carcinoma URB597 In vivo/In vitro  Inhibite FAAH [276]
Salinomycin In vivo/In vitro  Downregulation of PDIA4 12771
NSCLC B-elemene In vivo/In vitro  Increase the expression of INcRNA H19 [278]
Timosaponin Alll In vivo/In vitro - Binding and forming a complex with HSP90, further targeted ~ [279]
and degraded GPX4
BT In vitro Degradation of GPX4 and raising the intracellular Fe?* [280]
Dihydroartemisinin  In vivo/In vitro  Caused LPO accumulation [281]
Bladder cancer EVO In vivo/In vitro  Decreases GPX4 expression [282]
Glioblastoma multiforme Fatostatin In vivo/In vitro  Inhibit the AKT/mTORC1/GPX4 signaling pathway [283]
Osteosarcomas Baicalin In vivo/In vitro  Interacted with Nrf2, Inhibit GPX4 and xCT expression [250]
Ovarian cancer Shikonin In vivo/In vitro - Upregulate HMOX1 [284]
Sodium molybdate In vivo/In vitro  Induce the elevation of the LIP/induces depletion of GSH [285]
through mediating the production of NO
Castration-resistant prostate cancer BT-Br In vivo/In vitro  NADPH-binding site inhibitor of Catalase [286]
TNBC HCL-23 In vivo/In vitro - Upregulated the expression of HO-1 [287]
Melanoma Lorlatinib In vivo/In vitro - Target IGF1R-mediated PI3K/AKT/mTOR signaling axis [34]
CTCs Propofol Invivo/In vitro  Upregulate Nrf2 [288]
FTC Curcumin In vitro Inhibit the growth of FTC by increasing the HO-1 expression [289]

Abbreviations: NaB Sodium butyrate, NSCLC Non-small NSCLC cell lung cancer, FAAH Fatty acid amide hydrolase, IncRNA Long noncoding RNA, BT Bufotalin, LPO

Lipid peroxide, EVO Evoldiamine, NO Nitric oxide, EChLESs Eupatorium chinense L, AP Alterperylenol, TrxR Target the selenoprotein thioredoxin reductase, HO-1

Heme oxygenase 1, CTCs Circulating tumor cells, FTC Follicular thyroid cancer, FTH1 Ferritin heavy chain 1, ATF2 Activation transcription factor 2, HSPH1 Heat shock
protein-110, CRC Colorectal cancer, FAAH Fatty acid amide hydrolase, PDIA4 Protein Disulfide Isomerase Family A Member 4, HSP90 Heat shock protein 90, HMOX1
Heme oxygenase 1, TNBC Triple-negative breast cancer, NRF2 NF-E2-related factor 2, GPX4 Glutathione peroxidase 4, AKT Serine/threonine kinase, mTORCT mechanistic
target of rapamycin complex 1, GSH Glutathione, PI3K Phosphoinositide 3-kinase, SLC7AT1 Recombinant Solute Carrier Family 7, Member 11

within tumorous cells and regulating iron-dependent
signaling pathways, it is plausible to provoke ferroptosis
in these cells, thereby suppressing tumor expansion and
metastasis, and augmenting the efficacy of traditional
oncologic treatments [296].

In a recent study, Wang et al. and other researchers dis-
covered that castration-resistant prostate cancer cells are
particularly sensitive to ferroptosis, highlighted that the

RB/E2F/ACSL4 molecular pathway is a critical regulator
of this process [257, 297-299]. Inactivation of the RB1
tumor suppressor gene is common in metastatic castra-
tion-resistant prostate cancer, RB1 loss/E2F activation
upregulated expression of ACSL4 and enriched ACSL4-
dependent AA-containing phospholipids [257].
Numerous other key regulators in neoplastic develop-
ment have been linked to ferroptosis. The role of Serum/
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glucocorticoid regulated kinase 2 (SGK2) in promoting
prostate cancer metastasis via ferroptosis inhibition was
identified by Cheng et al. in 2023 [258, 300]. SGK2 over-
expression phosphorylates the Thr-24 and Ser-319 sites
of forkhead box O1 (FOXO1) and relieves the inhibitory
effect of FOXO1 on GPX4. Moreover, CCAAT/enhancer-
binding protein gamma (CEBPG) was established as a
novel transcriptional modulator of ferroptosis in ovarian
cancer, regulating ferroptosis via transcriptional control
of SLC7A11 [254].

Certain neoplasms appear highly reliant on ferroptosis
defensive mechanisms for survival under metabolic and
oxidative stress. Therefore, disruption of those defenses
would be deadly to such cancer cells while sparing nor-
mal cells. In 2023, Wang et al. identified heat shock pro-
tein family A member 8 (HSPAS8) as a crucial host factor
that modulates hepatitis B virus (HBV) replication and
ferroptosis in liver cancer [238]. HSPA8 suppressed fer-
roptosis in liver cancer cells by upregulating the expres-
sion of SLC7A11/GPX4, decreasing erastin-mediated
reactive oxygen species, and accumulating Fe?* in cells
in vitro and in vivo [238]. Su et al. identified BTB domain
and CNC homology 1 (BACH1) as a cellular factor that
strongly interacts with P53%7°" [252], and p53%7°H acts
as a repressor for ferroptosis by abrogating BACH1-
mediated downregulation of SLC7A11 to enhance tumor
growth [252]. In addition, Chang et al. revealed that STC2
could interact with protein methyltransferase 5 (PRMT5)
and activate PRMT5 to participate in SLC7A11 mediated
ferroptosis [259]. Ovarian cancer (OC) is the seventh
most common malignant tumor and ranks eighth among
the causes of cancer death in females [301]. Anandhan
et al. also showed that nuclear factor erythroid 2—related
factor 2 (NRF2) maintains iron homeostasis by control-
ling HERC2 (E3 ubiquitin ligase for NCOA4 and F-Box
and Leucine-Rich Repeat Protein 5 FBXL5) and vesi-
cle associated membrane protein 8 (VAMPS8) (mediates
autophagosome-lysosome fusion) [255]. Taken together,
the modulation of the iron metabolism pathway serves as
a therapeutic means to trigger cancer cell ferroptosis.

Therapeutic potential of targeting ferroptosis in cancer
Despite remarkable strides in oncological therapeutics,
resistance remains a formidable challenge [302]. A mul-
titude of preclinical and clinical studies are centered on
circumventing drug resistance [303]. Intriguingly, fer-
roptosis has been linked to cancer therapy resistance,
and induction of ferroptosis can potentially reverse this
resistance. In recent years, certain drugs and compounds
have been found to have the ability to induce ferroptosis
and demonstrate anti-tumor activity [294].

Wen et al. discovered in 2023 that baicalin affects
NREF2 stability through ubiquitin degradation, thereby
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suppressing NRF2 downstream targets GPX4 and xCT,
thereby eliciting ferroptosis [250]. Wogonin is a flavo-
noid with anticancer activity against various cancers,
including pancreatic cancer [304]. In 2023, Liu et al.
showed that wogonin upregulates the levels of Fe, lipid
peroxidation, and superoxide, and decreases the protein
expression levels of ferroptosis suppressor genes, and
downregulates level of glutathione in pancreatic cancer
cells [267]. Ponicidin could suppress pancreatic cancer
cell proliferation via inducing ferroptosis by inhibiting
the gamma-glutamyl cycle and regulating the polyunsat-
urated fatty acid metabolism in SW1990 cells [269]. For
several decades, lung cancer has been one of the most
common cancers. Many studies have found some antitu-
mor reagents can play an important role in the treatment
of lung cancer through ferroptosis [305]. For example,
GPX4 inhibitor-Bufotalin (BT), through facilitating the
ubiquitination and degradation of GPX4, induces ferrop-
tosis of non-small cell lung cancer (NSCLC) cells [280].
Timosaponin AIIl (Tim-AIIl), A steroid saponin, can
bind to the heat shock protein 90 (HSP90), which fur-
ther promotes the ubiquitination of GPX4 and thereby
degrades GPX4 [279].

Sorafenib, a tyrosine kinase inhibitor, shows an obvi-
ous antitumor effect as a ferroptosis inducer in multiple
cancers [306]. In 2023, Xu et al. found that activating
transcription factor 2 (ATF2) was significantly upregu-
lated by Sorafenib [271]. In this study, heat shock protein
family H (Hsp110) member 1 (HSPH1) was identified
as a target of ATF2, which can interact with SLC7A11
(cystine/glutamate transporter) and increase its protein
stability [271]. In addition, Kang et al. also found salin-
omycin-induced ferroptosis in renal cell carcinomas
(RCCs) [277]. The Disulfide Isomerase Family A Mem-
ber 4 (PDIA4), as a mediator of salinomycin, suppressed
PDIA4 by increasing its autophagic degradation, increas-
ing the sensitivity of RCCs to ferroptosis [277].

As discussed, several drugs (including wogonin, poni-
cidin, sorafenib and salinomycin) have proferroptotic
activity in preclinical models [229, 267, 269, 277]. In the
future, targeting ferroptosis with specific drugs is antici-
pated to play a crucial role in cancer treatment [307].
With advancing understanding of the molecular mech-
anisms underlying ferroptosis and ongoing research
efforts, the potential impact of targeting ferroptosis in
cancer therapy can be envisaged in the following aspects:
Firstly, targeting ferroptosis holds promise as a strategy
to overcome drug resistance, a major obstacle in can-
cer treatment. By modulating iron metabolism and the
signaling pathways related to iron dependency, drugs
designed to induce ferroptosis may bypass the resist-
ance mechanisms associated with conventional thera-
pies, exerting pronounced cytotoxic effects on resistant
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tumor cells [308-310]. Secondly, targeting ferroptosis
may enhance treatment efficacy and improve patient
outcomes [278, 311]. Given the significant role of ferrop-
tosis in tumor growth, invasion, and metastasis, inter-
ventions that interfere with tumor cell iron metabolism
and induce ferroptosis have the potential to effectively
suppress tumor progression and dissemination, thereby
improving treatment responses and prognoses, ulti-
mately leading to better survival rates and quality of life
for patients [312, 313]. Furthermore, targeting ferroptosis
could offer new avenues for personalized cancer therapy
[314]. The heterogeneity of tumors and individual vari-
ability often render conventional treatment modalities
suboptimal for all patients. By targeting iron metabolism
and signaling pathways, drugs designed to induce ferrop-
tosis can enable tailored treatment approaches based on
individual patient characteristics, providing more precise
and effective therapeutic strategies [315-317]. Lastly, tar-
geting ferroptosis may emerge as a critical component of
combination therapies. Combinatorial approaches have
become a major trend in cancer treatment, as they can
enhance therapeutic efficacy while reducing side effects.
By integrating drugs targeting ferroptosis with other
treatment modalities such as chemotherapy, immuno-
therapy, or targeted therapies, synergistic effects can be
achieved, further augmenting treatment responses [318—
320]. In summary, targeting ferroptosis with specific
drugs holds tremendous potential in future cancer treat-
ment. This approach offers the prospects of overcoming
drug resistance, improving treatment efficacy, enabling
personalized therapy, and integrating with other treat-
ment modalities, thereby paving the way for enhanced
outcomes and advancements in cancer care.

Ferroptosis and ischemic/reperfusion related diseases

I/R injury is a complex physiological event that occurs
when blood supply to a tissue or organ is disrupted and
then subsequently restored [321, 322]. This process,
while seemingly paradoxical, can lead to significant tissue
damage and cell death, often exceeding the initial injury
caused by ischemia alone[323, 324]. The initial ischemic
phase can be induced by a variety of causes, such as a
blockage in the blood vessels due to a clot or plaque, or
a systemic reduction in blood flow due to shock, car-
diac arrest or organ surgeries [321]. The lack of blood
flow deprives the tissue of oxygen and nutrients, leading
to a state of hypoxia and nutrient deprivation. This can
result in cellular dysfunction and, if prolonged, irrevers-
ible cell damage and death [325]. The subsequent reper-
fusion stage is necessary to deliver oxygen and nutrients
to the ischemic tissue, however, it paradoxically leads to
further tissue damage. This process is due to the sudden
influx of oxygen and nutrients, which can result in the
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overproduction of ROS and the initiation of inflamma-
tory responses [326, 327]. The ROS can cause oxidative
damage to cellular components, while the inflammatory
responses can lead to further cell death and tissue dam-
age [328, 329].

The type of cells and tissues affected by I/R injury
can vary widely, and include the heart (as in myocardial
infarction), brain (as in stroke), kidneys (as in acute kid-
ney injury), liver (as in hepatic I/R injury), and intestines
(as in mesenteric ischemia) [322, 330—334]. At the cellu-
lar level, I/R injury can lead to various forms of cell death,
including necrosis, apoptosis, and autophagy [335, 336].
Recently, ferroptosis has been implicated in I/R injury
[337-339]. It has been proposed that the oxidative stress
and inflammation caused by I/R injury may trigger fer-
roptosis, thereby exacerbating tissue damage [48]. This
has led to the hypothesis that targeting ferroptosis could
be a novel therapeutic strategy for mitigating I/R injury.
We have summarized the potential therapeutic targets on
I/R injury in Table 3.

Myocardial I/R injury

Acute myocardial infarction (MI), a paramount life-
threatening coronary event, afflicts in millions of indi-
viduals annually, and these numbers continue to rise
worldwide [390-392]. Despite the mitigating mortality
and morbidity rates concomitant with the rapid evo-
lution of medical technologies, the heart failure pre-
cipitated by MI continues to remain alarmingly high,
imposing a substantial financial and societal burden
on individuals and communities [393, 394]. I/R injury
is an important pathological process during MI treat-
ment [395]. MI-induced myocardial ischemia results in
inadequate oxygen supply to the myocardial cells, while
oxidative stress during reperfusion exacerbates cellular
damage [396]. Studies have found that insufficient oxy-
gen supply and oxidative stress caused by ischemia lead
to the excessive accumulation of intracellular iron ions,
increasing the likelihood of ferroptotic cell death [396].
Iron contribute to myocardial cell injury through oxida-
tive stress reactions and lipid peroxidation mechanisms
[397]. Subsequently, MI is commonly remedied with
prompt and efficacious myocardial reperfusion, typi-
cally through thrombolytic therapy or primary percuta-
neous coronary intervention (PPCI) [398]. Reperfusion
therapy exacerbate damage to the myocardial tissue,
through oxidative stress, inflammatory reaction, dis-
order of energy metabolism, causing cell death, myo-
cardial stunning, arrhythmia, myocardial vertigo [399,
400]. Xiao-Hui Ma and colleagues have elucidated the
role of ischemia in inducing a specific oxidative-reduc-
tive reaction involving PUFAs-containing phospholip-
ids within myocardial cells [401]. This reaction serves
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Table 3 Updated therapeutic targets of ferroptosis in ischemia-reperfusion injury
Diseases Therapeutic targets Models Potential mechanisms References
Myocardial I/R injury ~ Alox15/15-HpETE In vivo/In vitro Promote the binding of Pgcla [339]
to the ubiquitin ligase ring finger
protein 34
MALT1 In vivo/In vitro Enhance the Nrf2/SLC7A11 pathway  [340]
Mir-196¢-3p In vivo/In vitro Inhibit NOX4, P53, and LOX expres- [341]
sion
INncRNA Mir9-3hg In vivo/In vitro Via the Pum2/PRDX6 axis [342]
Ubiquitin-specific protease 7 In vivo/In vitro Activate the p53/TfR1 pathway [343]
ATF3 In vivo/In vitro/ serum Regulate FANCD2 [344]
samples(patients)
MiR-375-3p In vivo/In vitro/ serum Regulate GPX4 [345]
samples(patients)
SEMASA-IT1 In vivo/In vitro/ serum Regulate BCL2 and SLC7A11 [346]
samples(patients) through sponging miR-143-3p
A(1) and A(2b) adenosine receptors In vivo/In vitro/ serum Regulate GPX4 [347]
samples(patients)
MiR-199a-5p In vivo/In vitro/ serum Inhibite Akt/eNOS signaling pathway  [348]
samples(patients)
Transferrin and glutamine In vivo/In vitro Ferroptosis inducer [146]
USP22 In vivo/In vitro Regulate SIRT1/p53/SLC7A11 axis [349]
Usp7 In vivo/In vitro Upregulate p53/TfR1 pathway [343]
FPN In vivo/In vitro Regulate iron homeostasis [350]
DNMT-1 In vivo/In vitro Promote NCOA4-mediated ferritin- [351]
ophagy
OxPCs In vivo/In vitro Suppress GPX4 activity [352]
ELAVL1 In vivo/In vitro Promote autophagic ferroptosis [353]
MiR-135b-3p In vivo/In vitro Downregulate GPX4 expression [354]
LncAABR07025387.1 In vivo/In vitro Sponge miR-205 to enhance ACSL4  [355]
expression
LncRNA Mir9-3hg In vivo/In vitro Regulate Pum2/PRDX6 axis [342]
Cerebral I/R injury CDGSH iron sulfur domain 2 In vivo/In vitro Upregulate the expression of GPX4, [356]
cystine-glutamate antiporter
and glutathione
PUM2 In vivo/In vitro Suppress SLC7A11 via inhibiting [357]
expression of SIRT1
TNFAIP1 In vivo/In vitro Nrf2/GPX4-mediated ferroptosis [358]
POU2F2 In vivo/In vitro Activate Sestrin2 [359]
BACH1 In vivo/In vitro Activate KDM4C-mediated COX2 [360]
demethylation
Tau In vivo Tau-iron interaction, inhibit iron [361]
overload
Ferritin In vivo/In vitro Regulate p53 and SLC7A11 [362,363]
Mitochondrial ferritin In vivo Inhibit iron overload, inhibit lipid [364]
peroxidation
NCOA4 and USP14 In vivo/In vitro Promote ferritinophagy [362]
UBIAD1 In vivo/In vitro Inhibit lipid peroxidation [365]
PGE2 In vivo Inhibit iron accumulation and lipid [366]
peroxidation
SAT1 In vivo/In vitro Transcriptional target of p53, induce  [367]
lipid peroxidation
Thrombin In vivo/In vitro Initiate esterifification of ACSL4 [368]
LncRNA PVT1/miR-214 In vivo/In vitro Inhibit TfR1 and p53 [369]
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Table 3 (continued)
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Diseases Therapeutic targets Models Potential mechanisms References
Hepatic I/R injury Mu-opioid receptor In vivo/In vitro Regulate the HIF-1a/KCNQ1OT1 axis ~ [370]
MiR-29a-3p In vivo/In vitro Via Iron Responsive Element Bind- [371]
ing Protein 2, Downregulate IREB2
expression
MET In vivo/In vitro/Human samples Disrupt iron metabolism [372]
HUWE1 In vivo/In vitro/Human samples Target TfR1 for proteasomal degrada-  [373]
tion
Renal I/R injury MiR-20a-5p In vivo/In vitro Inhibit of ACSL4-dependent fer- [374]
roptosis
Trim21 In vivo/In vitro Ubiquitylate GPX4 [375]
INncRNATUG1 In vivo/In vitro Interact with SRSF1 to regulate ASCL4  [376]
ALR In vitro Anti-oxidant, upregulate GPX4 [377]
expression
Panx1 In vivo/In vitro Regulate HO-1, NCOA4 and FTH1 [378]
CIRBP In vivo/In vitro Regulate ELAVL1 to promote fer- [379]
ritinophagy
Legumain In vivo/In vitro Promote degradation of GPX4 [380]
IDO In vitro Induce AhR-mediated ferroptosis [381]
LSD1 In vivo/In vitro Upregulate TLR4/NOX4 pathway [382]
MiR-182-5p and miR-378-3p In vivo/In vitro Downregulate GPX4 and SLC7A11 [383]
expression
MiR-3587 In vitro Downregulate HO-1 expression [384]
Lung I/R injury Nrf2 In vivo/In vitro Upregulate SLC7A11-related axis [385-387]
p53 In vivo/In vitro Regulate Nrf2 signaling pathway [388]
Spinal cord I/R injury  USP11 In vivo/In vitro Deubiquitinate Beclin 1 [389]

Abbreviations: Alox15 15-lipoxygenase-1, 15-HpETE 15-Hydroxyicosa-5,8,11,13-tetraenoic acid, MALTT Mucosa-associated lymphoid tissue lymphoma translocation
protein 1, MiR-196¢-3p MicroRNA-196¢-3p, IncRNA Mir9-3hg IncRNA MiR9-3 host gene, USP7 Ubiquitin-specific protease 7, ATF3 Activating transcription factor 3,
MiR-375-3p MicroRNA-375-3p, SEMA5A-ITT Semaphorin 5A, MiR-199a-5p MicroRNA-199a-5p, USP22 Ubiquitin-specific protease 22, FPN Ferroportin, DNMT-1 DNA
methyltransferase 1, OxPCs Oxidized phosphatidylcholines, ELAVL1T ELAV Like RNA Binding Protein 1, MiR-135b-3p MicroRNA-135b-3p, PUM2 Pumilio RNA Binding
Family Member 2, TNFAIP1 TNF Alpha Induced Protein 1, POU2F2 POU Class 2 Homeobox 2, BACH1 The transcription factor BTB and CNC homology 1, NCOA4 Nuclear
receptor coactivator-4, USP14 Ubiquitin-specific protease 14, UBIAD1 UbiA Prenyltransferase Domain Containing 1, PGE2 Prostaglandin E2, SAT1 Spermidine/Spermine
N1-Acetyltransferase 1, PVT1 Plasmacytoma variant translocation 1, MiR-29a-3p MicroRNA-29a-3p, MET MET Proto-Oncogene, Receptor Tyrosine Kinase, HUWET UBA
and WWE Domain Containing E3 Ubiquitin Protein Ligase 1, MiR-20a-5p MicroRNA-20a-5p, Trim21 Tripartite motif containing-21, IncRNA TUGT Long non-coding RNA
taurine-upregulated gene 1, ALR Augmenter of liver regeneration, Panx1 Pannexin 1, CIRBP Cold Inducible RNA Binding Protein, IDO Indoleamine, LSD1 Lysine-specific
histone demethylase 1A, MiR-182-5p MicroRNA182-5p, MiR-378-3p MicroRNA-378-3p, MiR-3587 MicroRNA-3587, Nrf2 Nuclear factor erythroid 2-related factor 2, p53

Cellular tumor antigen p53, USP11 Ubiquitin-specific protease 11

as a pivotal initiating signal for the robust initiation of
oxidative damage during reperfusion [401]. They have
proposed ALOX15 as the primary mediator responsi-
ble for the ischemia-induced peroxidation of phospho-
lipids [401]. Additionally, another study has provided
evidence demonstrating that 15-hydroperoxyeicosa-
tetraenoic acid (15-HpETE), an intermediate metabolite
derived from AA through the action of ALOX15, acts
as a critical trigger for ferroptosis in cardiac myocytes
[339]. Other targeted therapeutic strategies associated
with various genes associated with ferroptosis have also
been studied in myocardial I/R injury models. Research
has revealed that inhibition of MALT1 can reduce I/R-
induced myocardial iron efflux by enhancing the NRF2/
SLC7A11 pathway [340]. Inhibiting the expression of

key ferroptotic genes NOX4, P53, and LOX can reduce
ferroptosis in myocardial cells and improve cardiac
function [341]. By modulating the PUM2/PRDX6 axis,
it is possible to suppress myocardial iron deposition,
thereby alleviating I/R-induced cardiac injury and
improving cardiac function [342]. Tang et al. identified
a novel pathway involving USP7/P53/TfR1 in the hearts
of rats subjected to I/R treatment, where upregulation
of USP7 promoted iron deposition through activation
of the P53/TfR1 pathway [343]. Small molecule drugs
targeting ferroptosis have shown promising potential in
myocardial I/R injury. The ALOX15-specific inhibitor
ML351 has been shown to elevate the protein level of
Pgcla, suppress cardiomyocyte death, protect damaged
myocardium, and promote cardiac function recovery
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[339]. Xanthohumol (XN), an isoenoic flavonoid
derived from hops, exhibits cardioprotective effects by
mitigating ferroptosis through lipid peroxidation and
ROS generation, chelating iron ions, modulating NRF2
protein levels, and regulating GPX4 protein expression
[402]. Another study demonstrated that dapagliflozin,
the sodium glucose co-transporter 2 (SGLT2) inhibitor,
exerts inhibitory effects on ACSL4, which suppresses
ferrosome formation, by upregulating the SLC7A11/
GPX4 axis and ferritin heavy chain (FTH) expres-
sion [403]. Further research and understanding of the
mechanism of ferroptosis, especially identifying effec-
tive compounds targeting ferroptosis, in myocardial I/R
injury will help reveal the pathogenesis of myocardial
I/R injury and provide for the development of more
effective treatment strategies.

Cerebral I/R injury

Ischemic stroke, also known as cerebral infarction, is a
neurological disorder caused by localized cerebral, spi-
nal cord, or retinal infarction [404]. It is a major public
health issue with a high incidence, resulting in disability
and death, with millions of new cases reported annually
[405]. Survivors often experience long-term physical,
cognitive, and emotional impairments [405]. Addition-
ally, it also imposes a significant economic burden on
healthcare systems and societies. Ischemic stroke and
subsequent reperfusion injury elicit oxidative stress,
which results in aberrant intracellular iron ion accumula-
tion, consequently triggering ferroptosis [406]. Guo et al.
also found that rats with cerebral I/R injury had severe
brain damage and neurological deficits, accompanied
by typical molecular features of ferroptosis, including
GSH disturbances, abnormal accumulation of iron, and
increased lipid peroxides. These observations under-
score the significance of comprehending and interven-
ing in the mechanisms underlying ferroptosis, offering
potential avenues to enhance therapeutic efficacy in the
context of stroke management. Hu et al. showed that
upregulation of CDGSH iron-sulfur domain 2 alleviates
cerebral I/R injury through activation of the NRF2/HO-1
pathway, which is a key factor in maintaining cellular
redox homeostasis and lipid and iron metabolism [356].
Another study found that in cells exposed to I/R injury,
the knockdown of Retinoid X receptor y (RXRy) resulted
in the downregulation of GPX4 expression and the
upregulation of COX-2 and ROS levels [407]. Research-
ers therefore suggest that the transcriptional activation
of GPX4, mediated by RXRy, may contribute to the inhi-
bition of ferroptosis in the context of cerebral I/R injury
[407]. Furthermore, the absence of NCOA4 significantly
abrogated ferritinophagy induced by I/R injury, thereby
suppressing ferroptosis [362]. Numerous inhibitors of
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ferroptosis have shown promising effects in ameliorating
stroke. Srs11-92 (AA9), a Fer-1 analog, reduced oxidative
stress and neuroinflammation in neurons subjected to
OGD/R by activating the NRF2 pathway [408]. Research-
ers believe that AA9 has potential as a therapeutic can-
didate for protecting against neuronal damage in stroke
and other neurological diseases, by targeting NRF2-
mediated oxidative stress and neuroinflammation [408].
DI-3-n-butylphthalide, a compound derived from celery
seed, regulates ferroptosis through SLC7A11/GSH/GPX4
pathway to achieve neuroprotective effect on I/R injury
[409]. The administration of proanthocyanidins (PC), a
class of organic antioxidants, upregulates the expression
of GPX4 and SLC7A11 while downregulating the expres-
sion of TFR1, thereby exerting an inhibitory effect on
ferroptosis. Proanthocyanidins (PC), as organic antioxi-
dants, upregulate the expression of GPX4 and SLC7A11
while downregulating the expression of TFR1, thereby
inhibiting ferroptosis and ameliorating cerebral I/R injury
[410]. The continued investigation and development of
ferroptosis inhibitors hold great promise for improv-
ing the treatment and management of stroke, providing
new avenues for reducing the devastating consequences
of this cerebrovascular disorder. In summary, ferropto-
sis plays a crucial role in cerebral I/R injury, and under-
standing its mechanisms can aid in the development of
new therapeutic strategies to protect brain cells from
oxidative stress and cell death. However, further research
is still needed to explore the specific mechanisms and
potential therapeutic targets of ferroptosis in cerebral I/R
injury.

Hepatic I/R injury

Hepatic I/R injury is mainly caused by liver surgery,
such as partial hepatic resection and liver transplanta-
tion, where severe hepatic I/R injury after liver trans-
plantation leads to acute or chronic rejection and even
transplant failure by inducing inflammation and oxida-
tive stress [411, 412]. Hepatic I/R injury is frequently
associated with inflammation and oxidative stress,
which can precipitate systemic inflammatory response
syndrome (SIRS) or multiple organ dysfunction syn-
drome (MODS), exacerbating the patient’s condition and
leading to organ damage and functional impairment)
[413]. Several studies have explored the involvement of
ferroptosis in hepatic I/R injury and its potential as a
therapeutic target [414]. The study by Ye et al. provides
confirmation that MCTR1 attenuates hepatic ischemia—
reperfusion injury caused by ferroptosis through the
promotion of NRF2 expression [415]. Guo et. Declared
that transmembrane member 16A (TMEM16A), a com-
ponent of hepatocyte Ca**-activated chloride channel,
exacerbates hepatic I/R injury through the promotion
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of GPX4-dependent ferroptosis, and interrupting the
TMEMI16A-GPX4 interaction or inhibiting TMEM16A
in liver cells may represent promising therapeutic strat-
egies for the treatment of hepatic I/R injury [416]. The
HECT domain-containing ubiquitin E3 ligase HUWE1
(also known as MULE) has emerged as a promising pro-
tective factor in mitigating acute liver injury by coun-
teracting abnormal iron accumulation and inhibiting
ferroptosis [373]. There is currently limited develop-
ment and application of small molecule drugs targeting
ferroptosis in the treatment of hepatic ischemia-rep-
erfusion injury. Neutrophil membrane-coated taurine
nanoparticles increased the expression of SLC7A11 and
GPX4, and decreased the expression of Ptgs2, suggest-
ing that nano-taurine has a targeted therapeutic effect
on hepatic I/R injury by inhibiting inflammation, oxi-
dative stress and ferroptosis [417]. Dimethyl fumarate
(DME), a therapeutic agent utilized in the treatment of
relapsing—remitting multiple sclerosis, demonstrates
inhibitory effects on ferroptosis through activation of
the NRF2/SLC7A11/HO-1 axis, thereby conferring pro-
tection against hepatic I/R injury [418]. Although the
relationship between hepatic I/R injury and ferroptosis
has been confirmed, the development and application of
therapies and drugs targeting ferroptosis are still limited.
Further research is needed to explore the regulation of
iron metabolism, oxidative stress, and other molecular
targets associated with ferroptosis, aiming to discover
more effective treatment strategies and opportunities for
the management of hepatic I/R injury.

Renal I/R injury

Renal I/R injury can be triggered by multiple factors
including renal artery obstruction, hypotension, shock,
and surgical interventions [419, 420]. This injury cul-
minates in renal tissue ischemia, hypoxia, disruption
of tubular and vascular architecture, provoking inflam-
matory response and cellular death, ultimately culmi-
nating in renal dysfunction [420]. Renal I/R injury can
cause electrolyte imbalances and discomfort, while
requiring patients to undergo multiple treatments
like hemodialysis or kidney transplantation. This sig-
nificantly affects their quality of life and imposes a
financial burden [421]. The molecular mechanisms
regulating iron metabolism and ferroptosis have been
found to play a crucial role in the development and
treatment of renal I/R injury [422]. A recent study
suggests that miR-20a-5p has potential therapeutic
applications in kidney transplantation by inhibiting
ACSL4-dependent ferroptosis [374]. TRIM21 exhib-
its elevated expression in kidney tissues undergoing
renal I/R injury. Downregulation of TRIM21 mitigated
renal I/R injury and protected renal function [375].
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The involvement of cold-inducible RNA-binding pro-
tein (CIRBP) in acute kidney injury has been suggested
in another research, which proposed that ferritin-
ophagy-mediated ferroptosis may be responsible for
the enhanced ischemic kidney injury observed in the
presence of CIRBP [379]. In ischemic kidney injury,
iron chelators such as deferoxamine, deferiprone, and
lipophilic antioxidants have been shown to inhibit
lipid peroxidation and protect against cell damage
[423]. These agents can target lipoprotein-1 (Lip-
1), ferristatin-1, as well as vitamins and flavonoids,
which are involved in antioxidant defense [423, 424].
These studies also suggest that molecular mechanisms
regulating iron metabolism and ferroptosis may play
an important role in the treatment of acute ischemic
kidney injury. Some pharmacological agents target-
ing ferroptosis have also been investigated. Cyanidin-
3-glucoside (C3G), a typical flavonoid, can activate
AMPK pathway to inhibit ferroptosis in renal tubu-
lar cells after I/R injury [425]. Qi et al. found that the
regulatory effect of MGZ on the Mitoneet-mediated
iron apoptosis pathway, highlighting its potential role
in renal protection [426]. Methods such as interfering
in iron metabolism, modulating antioxidant defenses,
and inhibiting iron-related pathways have shown
promising results in preclinical studies aimed at alle-
viating renal I/R injury and preserving renal function
(Table 4). However, further research is needed to fully
understand the underlying mechanisms driving renal
I/R-induced ferroptosis and to develop effective treat-
ment strategies.

In conclusion, emerging evidence strongly supports
the pivotal role of ferroptosis in the pathogenesis of I/R
injury, highlighting its potential as a promising thera-
peutic target. However, the regulatory mechanisms
underlying ferroptosis in the context of I/R injury remain
incompletely elucidated. Further research is warranted to
unravel the new pharmacological mechanisms, toxicity
profiles, side effects, and optimal dosages of ferroptosis
inhibitors through rigorous preclinical and clinical inves-
tigations. Therefore, it is imperative to comprehensively
understand the regulatory mechanisms governing ferrop-
tosis in I/R injury and identify safe and effective targeting
strategies for modulating ferroptosis regulators to miti-
gate I/R injury.

Ferroptosis and neurodegenerative diseases

Neurodegenerative afflictions, encompassing Alzhei-
mer’s disease (AD), Parkinson’s disease (PD), Hunting-
ton’s disease (HD), and Amyotrophic Lateral Sclerosis
(ALS), constitute a cohort of incapacitating disorders
marked by the progressive neuronal attrition and the
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Table 4 Updated Compounds targeting ferroptosis in ischemia reperfusion injury
Diseases Compounds Models Function References
Myocardial I/R injury  Polydopamine Nanoparticles In vivo/In vitro Inhibit Fe accumulation and restore [427]
mitochondrial functions
CVP In vivo/In vitro Decrease intracellular Fe2 +level, [428]
enhance GPX4 expression
Atorvastatin In vivo/In vitro Regulate SMAD7/Hepcidin expression  [429]
Dexmedetomidine In vivo/In vitro Via AMPK/GSK-33/Nrf2 axis [430,431]
Resveratrol In vivo/In vitro Decrease TfR1 expression, [432]
and increase the expressions of FTH1
and GPX4
Shenmai In vivo/In vitro Targete Nrf2/GPX4 Signalling [433]
Xanthohumol In vivo/In vitro Decrease the production of lipid [402]
peroxidation and ROS
HJ11 In vivo/In vitro Suppress ACSL4 [434]
Puerarin In vivo/In vitro Reduce the expression of Ptgs2 mRNA, [435]
and increase GPX4
Dapagliflozin In vivo/In vitro Upregulate the SLC7A11/GPX4 axis [403]
and FTH and inhibite ACSL4
Cerebral I/Rinjury  Vitexin In vivo/In vitro Regulate Keap1/Nrf2/HO-1 signaling  [436]
pathway
Ferrostatin-1 In vivo/In vitro Upregulate GPX4 expression [437]
and inhibit COX-2 expression
Oxysophoridine In vivo/In vitro Decrease ACSL4 / transferrin 1 protein  [438]
and increase ferritin 1/ GPX4
Srs11-92 In vivo/In vitro Regulate Nrf2 signal pathway [408]
DI-3-n-butylphthalide In vivo/In vitro Regulate SLC7A11/GSH/GPX4 signal [409]
pathway and PDGFRB/PI3/Akt signal
pathway
Procyanidins In vivo/In vitro Activate the Nrf2/HO-1 pathway [410]
Selenium compounds In vivo/In vitro Drive GPX4 expression [24,439, 440]
Carvacrol In vitro Upregulate GPX4 expression [441]
Rehmannioside A In vivo/In vitro/Human samples  Activate SLC7A11/GPX4 axis [442]
Galangin In vivo/In vitro Activate SLC7A11/GPX4 axis [443]
Carthamin yellow In vivo Inhibit ACSL4 expression [444]
Kaempferol In vitro Activate Nrf2/SLC7A11/GPX4 axis [445]
Liproxstatin-1 In vivo/In vitro/Human samples  Inhibit lipid peroxidation [165, 338, 361, 446, 447]
Liver I/R injury Nano-taurine In vivo/In vitro Upregulate SLC7A11 and GPX4 [417]
Dimethyl fumarate In vivo/In vitro Activate the NRF2/SLC7A11/HO-1 axis  [418]
a-tocopherol In vivo Inhibit lipid peroxidation [448]
Renal I/R injury Paeoniflorin In vivo/In vitro Upregulate Slc7a11 in the glutathione  [449]
pathway
LoxBlock-1 or Curcumin In vivo Facilitate ACSL/GPx4 signaling [450]
Cyanidin-3-glucoside In vivo/In vitro Regulate AMPK pathway [425]
Legumain In vivo Facilitate chaperone-mediated [380]
autophagy
Vitamin K1 In vivo Inhibitor of ferroptosis [451]
Mitoglitazone In vivo Upregulate the expression of GPX4 [426]
Pachymic acid In vivo Upregulate Nrf2 signaling pathway [452]
16-86 In vivo/In vitro Inhibit lipid peroxidation [453]
XJB-5-131 In vivo Inhibit lipid peroxidation/anti-oxidant ~ [454]
Quercetin In vivo/In vitro Inhibit ATF3/SLC7A11/GPX4 axis [424]
Nec-1f In vivo/In vitro Inhibit RIPK1 kinase activity and fer- [455]
roptosis
Entacapone In vivo/In vitro Upregulate SLC7A11 repression [456]
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Table 4 (continued)
Diseases Compounds Models Function References
Lung I/R injury Salidroside In vivo/In vitro Activate the Nrf2/SLC7A11 signaling [457]
axis
Isoliquiritin apioside In vivo/In vitro Via a Hif-1a-dependent manner [458]
Lidocaine In vivo/In vitro Regulate the p38 MAPK pathway [459]
Irisin In vivo/In vitro Upregulate Nrf2/HO-1 axis/upregulate  [460, 461]
GPX4
Rosiglitazone In vivo/In vitro Inhibit ACSL4 expression [338,447]

Abbreviations: CVP Chuanminshen violaceumis polysaccharide, SMI Shenmai injection, HJ11 a novel traditional Chinese medicine developed from the appropriate
addition and reduction of Si-Miao-Yong-An decoction, SRS16-86 third-generation ferrostatin, XJB5-131 a mitochondria-targeted ROS and electron scavenger, Nec-1fa

highly selective inhibitor of RIPK1 (receptor interacting protein kinase 1)

attendant regression in cognitive and motor func-
tionalities. Despite prodigious research, the integral
mechanisms instigating and fostering these diseases
remain elusive. Recently, ferroptosis has been unveiled
as a plausible mechanism bearing implications for the
pathogenesis of neurodegenerative diseases [7, 462]. The
incorporation of ferroptosis in the context of neurode-
generative diseases has garnered increasing recognition
due to the burgeoning evidence associating dysregulated
iron metabolism, compromised antioxidant defenses
[463], and amplified lipid peroxidation [464] with the
pathogenesis of these disorders. Prior studies have mani-
fested alterations in iron distribution and accrual in
specific cerebral regions affected by neurodegeneration
[465—468]. Furthermore, heightened levels of lipid per-
oxidation markers and diminished antioxidant capacity
have been discerned in the brains of individuals afflicted
with neurodegenerative diseases [469, 470], suggesting a
potential role of ferroptosis in the selective neuronal loss
(Tables 5 & 6).

Alzheimer’s disease

AD manifests as a catastrophic neurodegenerative disor-
der typified by the incremental loss of cognitive faculties,
memory deterioration, and behavioral metamorphoses.
It represents the predominant form of dementia, impact-
ing millions globally [514]. Despite exhaustive research
efforts, the precise mechanisms piloting AD pathogenesis
remain enigmatic. Recently, ferroptosis has surfaced as a
prospective mechanism with implications for the genesis
and advancement of AD. Recent evidence posits that cer-
ebral iron correlates with hastened cognitive decline in
individuals exhibiting Alzheimer’s pathology [515]. Scott
and colleagues have delineated variations in cerebrospi-
nal fluid ferritin levels [470]. Furthermore, the aggrega-
tion of amyloid-beta (AP) plaques, which constitute the
signature pathologies of AD, have been associated with
ferroptosis-linked mechanisms [516]. Af accumulation

may incite oxidative stress and lipid peroxidation, height-
ening neuronal susceptibility to ferroptosis. Deteriorated
antioxidant defenses and diminished activity of crucial
enzymes engaged in lipid peroxide detoxification have
been witnessed in AD, further corroborating the partici-
pation of ferroptosis in neuronal expiration [502, 517].
Deciphering the role of ferroptosis in AD might yield
novel insights into the disease trajectory and prospective
therapeutic interventions. Interfering with ferroptosis
pathways might represent a propitious strategy for atten-
uating neurodegeneration and cognitive degradation in
AD. Diverse pharmacological methodologies, including
iron chelators, antioxidants, and ferroptosis inhibitors,
have demonstrated promise in preclinical explorations by
diminishing neurotoxicity and enhancing cognitive func-
tion in AD animal prototypes [476, 499, 500, 503, 518].
However, numerous challenges and unresolved queries
persist. Augmented research is imperative to illuminate
the precise molecular mechanisms underpinning fer-
roptosis in AD and its contribution to the progressive
neurodegeneration witnessed in afflicted individuals.
Additionally, fine-tuning therapeutic interventions tar-
geting ferroptosis, including the development of selective
and efficacious drugs, determination of an appropriate
treatment window, and managing potential off-target
ramifications, is crucial for successful clinical translation.

Parkinson’s disease

PD represents a chronic, relentlessly progressive neuro-
degenerative disorder distinguished by the degradation
of dopaminergic neurons within the substantia nigra
territory of the brain. This neuronal death culminates in
the characteristic motor symptoms of PD, encompass-
ing tremors, rigidity, and bradykinesia. Evolving evi-
dence proposes that ferroptosis may constitute a critical
determinant in the pathogenesis of Parkinson’s disease.
In postmortem cerebral evaluations from individuals
afflicted with PD, an elevation of iron regulatory protein
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Table 5 Updated therapeutic targets of ferroptosis in neurodegenerative disease
Diseases Therapeutic targets Models Potential mechanisms References
AD Fe?t/Fe’* In vivo Fe**/Fe’" ratio was mainly observed in amyloid plaque regions [471]
PS1 In vitro Promote the expression of GPX4 [472]
ALDH2 In vivo/Invitro  Inhibition of ACSL4-dependent ferroptosis [473]
Apolipoprotein E Invivo/Invitro  ApoE signals to activate the PI3K/AKT pathway that then inhibits the autophagic ~ [469]
degradation of ferritin, thus averting iron-dependent lipid peroxidation
GPX4 In vivo Gpx4 overexpression was effective in improving behavior function and reducing  [474]
neurodegeneration
NOX4 Invivo/Invitro  NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxi-  [475]
dation via the impairment of mitochondrial metabolism in Alzheimer's diseases
GSK-3(3 In vivo Ferroptosis can lead to abnormal aggregation of tau protein and might be [476]
a promising therapeutic target of tauopathies
PD GPX4 In vivo Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 [477]
to ferroptosis of dopaminergic neurons
ACSL4 In vitro ACSL4 is pivotal for ferroptosis induced by iron and PUFA dyshomeostasis [478]
in dopaminergic neurons
SEC24B In vitro Microglia ferroptosis is regulated by SEC24B and contributes to neurodegenera-  [479]
tion
LRRK2 In vitro LRRK2 protects immune cells against erastin-induced ferroptosis [480]
Alpha synuclein In vitro Endogenous levels of a-synuclein can determine the sensitivity of dopaminergic ~ [481]
neurons to ferroptosis
SNX5 Invivo/Invitro  Decrease of GPX4 [482]
PPARS In vitro PPARS attenuates 6-OHDA-induced neurotoxicity by preventing intracellular iron  [483]
accumulation
Nrf2 In vivo Mediated by decreasing the FPN1 level on brain microvascular endothelial cells, — [484]
thus hindering the process of iron entry into the brain
Nurr1 In vivo Nurr1 deficiency results in an increase in CD74 expression, thereby leading [485]
to the destruction of dopaminergic neurons
Ferritin In vitro Astrocytes increased ferritin release to respond to iron overload, which might [486]
inhibit iron-mediated oxidative damage and ferroptosis of dopamine neurons
in PD
Trx-1 Invivo/Invitro  Trx-1 inhibits ferroptosis in PD through regulating GPX4 and GSH [487]
ALS SPY1 In vitro Regulation of GCH1 and TFR1 [488]
GPX4 In vivo Human GPX4 overexpression in SOD1G93A mice significantly delayed disease [489]
onset
MPO/HOCI Invivo/Invitro  Increasing the Bax/Bcl-2 ratio and expression of caspase-3 or inhibiting [490]
the expressions of GPX4 and NQO1 and thus leading to irreversible lipid peroxida-
tion
HD ALOX5 In vivo ALOXS5 as a major factor required for the ACSL4-independent ferroptosis [491]
General neurode-  VAMP7 and syntaxin4  Invitro Peroxidated lipids and iron are released from neurons requires the exocytic [492]
generative disease machinery VAMP7 and syntaxin 4
PKAN In vitro PKAN astrocytes showed lower GPX4 level and were prone to developing a stel-  [493]
late phenotype, thus gaining neurotoxic features
Epacl Invivo/Invitro  cAMP-Epaci as a plausible therapeutic target to prevent ferroptosis [494]
Cofilin1 In vitro CofilinT acts as a redox sensor in oxidative cell death pathways of ferroptosis, [495]
and promotes glutamate excitotoxicity
HO-1 In vivo Reduction of iron deposits in the brain [496]
WDR45 In vivo Mutant WDR45 Leads to Altered Ferritinophagy and Ferroptosis in 3-Propeller [497]

Protein-Associated Neurodegeneration

Abbreviations: AD Alzheimer’s disease, PD Parkinson'’s disease, HD Huntington’s disease, ALS Amyotrophic lateral sclerosis, VAMP7 Vesicle Associated Membrane
Protein 7, PKAN Neurodegeneration associated with defective pantothenate kinase-2, GPX4 Glutathione Peroxidase 4, cAMP Cyclic adenosine monophosphate, Epac1
Exchange Protein Directly Activated by cAMP 1, HO-1 Heme oxygenase-1, WDR45 WD Repeat Domain 45, PS1 Presenilin-1, ALDH2 Aldehyde dehydrogenase 2, ACSL4
Acyl-CoA Synthetase Long Chain Family Member 4, PI3K Phosphoinositide 3-kinases, AKT Protein kinase B, NOX4 NADPH Oxidase 4, GSK-38 Alpha synuclein, PUFA
Polyunsaturated fatty acids, SEC24B SEC24 Homolog B, LRRK2 Leucine-rich repeat kinase 2, SNX5 Ferroportin 1, PPARS Peroxisome proliferator-activated receptor

8, Nurr1 The nuclear receptor 4A2, FPN1 Ferroportin-1, 6-OHDA 6-hydroxydopamine, CD74 Cluster of Differentiation 74, Trx-1 Thioredoxin-1, GSH Glutathione, TFR1
Transferrin receptor 1, SPYT Sprouty RTK Signaling Antagonist 1, SOD1 Superoxide dismutase 1, Bax Apoptosis regulator BAX, Bcl-2 B-cell leukemia-2, NQO7 NAD(P)H
dehydrogenase, ALOX5 Arachidonate 5-lipoxygenase
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Table 6 Updated compounds targeting ferroptosis in neurodegenerative disease
Diseases Compounds Models Function References
AD Senegenin In vitro Increased ACSL4 and PEBP1 proteins, and decreased GPX4 [498]
Eriodictyol Invivo/In vitro  Eriodictyol inhibits ferroptosis via vitamin D receptor mediated Nrf2  [499]
activation
Forsythoside A In vivo Anti-ferroptosis and anti-neuroinflammatory effects in erastin- [500]
stimulated HT22 cells, and the Nrf2/GPX4 axis played a key role
in these effects
Hydroxylated chalcones In vitro Inhibit ferroptosis induced by RSL or erastin and reduce the lipid (501]
peroxidation levels induced by AP1-42 protein aggregation
Salidroside In vivo Inhibiting ferroptosis via activation of the Nrf2/GPX4 axis [502]
Tetrahydroxy stilbene glycoside In vivo Enhanced NLRP3, and also the expression of DMT1, ACSL4 [503]
and NCOA4, were reduced by TSG administration
PD Quercetin In vivo/In vitro  Activating the Nrf2 protein [504]
Clausenamide In vivo Clau directly interacted with the Ser663 of ALOX5, the PKCa- [505]
phosphorylation site, and thus prevented the nuclear translocation
of ALOX5, which was essential for catalyzing the production of toxic
lipids 5-HETE
Hinokitiol Invivo/In vitro  Activating cytoprotective transcription factor Nrf2 to upregulate [506]
the antioxidant genes
iPLA2B In vivo/In vitro - Phospholipase iPLA2(3 averts ferroptosis by eliminating a redox lipid  [507]
death signal
Novel 2-(4-(benzyloxy)-5- In vitro Derivatives as multifunctional MAO-B inhibitors for the treatment [508]
(hydroxyl) phenyl) benzothia- of Parkinson’s disease
zole
Novel flavone 1,2,4-oxadiazole  In vivo/In vitro Conducted by their inhibitory activities against ROS (509]
Thonningianin A In vivo Activating the Keap1-Nrf2 [510]
General Neuro- Cannabinol In vitro Activate the antioxidant defense system via the upregulation [511]
degenerative of Nrf2, HO-1, SOD2 and GPX4
disease Caveolin-1 In vivo/In vitro  The overexpression of cav-1 may attenuate DACD by modulating  [512]
neuronal ferroptosis-mediated mitochondrial homeostasis
Selenium Compounds In vitro Selenium plays an essential role in reducing lipid peroxidation gen-  [439]
erated during ferroptosis through its incorporation into the catalytic
site of GPX4
Liproxstatin-1 In vivo Liproxstatin-1 decreased the activation of microglia and the release  [513]

of IL6 and tumor TNFa, attenuated oxidative stress and lipid peroxi-
dation

Abbreviations: cav-1 Caveolin 1, DACD Low-Molecular-Mass Penicillin Binding Protein 6b, IL6 Interleukin 6, TNFa Tumor necrosis factor, PEBP1
Phosphatidylethanolamine binding protein 1, Nrf2 Nuclear factor erythroid 2-related factor 2, HO-1 Heme oxygenase-1, SOD2 Superoxide dismutase 2, ACSL4 Acyl-
CoA Synthetase Long Chain Family Member 4, PEBP1 Phosphatidylethanolamine binding protein 1, GPX4 Glutathione Peroxidase 4, AB Amyloid beta, NLRP3 NLR
Family Pyrin Domain Containing 3, DMT1 Natural resistance-associated macrophage protein 1, NCOA4 Nuclear receptor coactivator 4, TSG Tumor necrosis factor-a-
stimulated gene/protein, ALXO5 Arachidonate 5-lipoxygenase, 5-HETE 5-Hydroxyeicosatetraenoic acid, MAO-B Monoamine oxidase B, KEAP1 Kelch-like ECH-associated

protein 1

1 (IRP1) activity was discerned within the substantia
nigra (SN). This amplified activity could provoke a dimi-
nution in ferritin concentrations and an intensification in
neuronal iron assimilation, culminating in escalated TfR1
expression. Consequently, the melanized neurons within
the SN become increasingly vulnerable to oxidative dam-
age affiliated with iron [519]. Augmented DMT1 concen-
trations, in conjunction with diminished Cp ferroxidase
activity, have been documented in both PD patients and
animal representations of PD. These manifestations are
posited to contribute to the noticeable amplification in
iron levels [520]. Alpha-synuclein (a-Syn), abundantly
expressed within the brain and implicated in numerous

pivotal synaptic processes of neurons, can bind to Fe*"
or Fe** to fabricate the a-Syn-iron complex. The up-
regulation of DMT1 ensuing from a-Syn overexpression
also exerts a profound influence on the enhancement
of iron uptake and the dysfunction of iron metabo-
lism evidenced in PD [521]. Furthermore, the distorted
expression and functionality of proteins involved in iron
homeostasis have been detected in PD, further substanti-
ating the association between iron dysregulation and the
disease [504, 509, 510, 522, 523].
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Amyotrophic lateral sclerosis

ALS epitomizes a relentlessly progressive neurodegen-
erative disorder typified by the selective compromise of
cortical and spinal motor neurons, instigating paralysis
and ultimately, mortality [524]. Although comprehen-
sion of the underlying pathophysiological mechanisms
of ALS remains incomplete, the accretion and amass-
ment of ubiquitinated proteinaceous inclusions within
motor neurons are broadly recognized as the quintessen-
tial neuropathological characteristic of this disease [525].
The majority of ALS instances, roughly 90%, materialize
sporadically and fail to exhibit a clear correlation with
familial lineage. The residual 10% of cases are tethered
to familial inheritance patterns and are typically asso-
ciated with autosomal dominant mutations. The most
prevalently observed mutations transpire within genes
such as superoxide dismutase 1 gen (SOD1), TAR DNA-
binding protein 43 (TDP-43), FUS, and CY9orf72. In a
murine model of GPX4 neuronal inducible knockout, the
specific depletion of GPX4 within neurons precipitated
rapid paralysis, severe muscular atrophy, and ultimately,
mortality, thereby evincing symptoms evocative of ALS
[526]. A recent study unveiled the depletion of GPX4 in
postmortem spinal cord samples from both sporadic and
familial ALS patients, revealing a potential involvement
of GPX4 in the pathogenesis of ALS [489]. Moreau et al.
demonstrated that the administration of deferiprone to
ALS patients engendered a significant reduction in iron
concentration within the cervical spinal cord [527]. How-
ever, the potential influence of ferroptosis inhibition on
enhancing the quality of life and survival rate among ALS
patients remains undetermined and demands further
inquiry.

Huntington’s disease

HD manifests as an inheritable neurodegenerative dis-
order typified by the gradual degeneration of specific
neuronal populations within the brain. It is initiated by
a mutation in the huntingtin gene (HTT), culminating
in the synthesis of an aberrant form of the huntingtin
protein [528]. HD is characterized by an extensive array
of motor, cognitive, and psychiatric symptoms that pro-
gressively intensify over time. Song et al. unveiled that
ALOX5-mediated ferroptosis serves as a distinct cell
death trajectory in response to oxidative stress in Hun-
tington’s disease [491]. Klepac et al. identified a signifi-
cant diminution (28%) in plasma GSH concentrations
among individuals afflicted with HD compared to age
and sex-congruent controls [529]. Magnetic resonance
imaging revealed an accumulation of iron within the
cerebral regions of HD patients [530]. Nevertheless, the
pathway inciting ferroptosis within the brain remains
largely ambiguous. The potential to procure similar
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outcomes through alternative strategies for ferroptosis
inhibition, such as the modulation of GPX4, lipid peroxi-
dation, and iron-storage proteins, has yet to be explored.
Moreover, the question of whether ferroptosis inhibition
can effectively decelerate the progression of HD remains
unaddressed and necessitates further exploration in pro-
spective investigations.

Ferroptosis and cardiovascular diseases

Cardiovascular diseases (CVDs) encompass a wide range
of conditions affecting the heart and blood vessels, con-
tributing to acute illnesses that result in numerous fatali-
ties worldwide [531]. The death of fully differentiated
cardiomyocytes plays a crucial role in the development
of various cardiovascular conditions. In this study, we
provide a comprehensive perspective on the molecular
mechanisms underlying ferroptosis in the pathogenesis
of several cardiovascular diseases, including hyperten-
sion, atherosclerosis, myocardial infarction (MI), pul-
monary hypertension (PH), cardiomyopathy, and heart
failure (HE) [39, 532].

When examining cardiomyopathy, our investigation
focused on several subtypes, namely Diabetic cardio-
myopathy (DCM), Hypertrophic cardiomyopathy, post-
transplant cardiomyopathy, Septic cardiomyopathy,
Doxorubicin-induced cardiomyopathy (DIC), and radio-
active cardiomyopathy [533-537]. The primary objec-
tive was to explore the association between the diverse
spectrum of CVDs and ferroptosis, while also identifying
potential novel compounds that target iron metabolism
and ferroptosis within the context of CVDs (Tables 7 & 8).

Myocardial infarction

MI culminates in cardiac detriment precipitated by cellu-
lar death and inadequate self-regeneration of cardiomyo-
cytes [596]. Previous investigation has elucidated that
ferroptosis participates in MI, which involves lipopro-
tein receptor-related protein 6 (LRP6) and circRNA1615
[597]. LPR6 and circRNA1615 function as a modulator of
ferroptosis via autophagy regulation [597]. Ferroptosis,
in concert with hypoxia, assumes a pivotal role in acute
myocardial infarction (AMI), prompting Liu et al. to
delineate key genes associated with AMI, ferroptosis, and
hypoxia that might serve as novel biomarkers or prospec-
tive therapeutic targets for AMI [598]. Gao et al. unveiled
that IncRNA Gm47283 orchestrates its effect by target-
ing miR-706 and Ptgs2, thus modulating Ptgs2 expression
and downstream ferroptosis, thereby establishing itself as
a primary risk factor for MI [541].

Understanding the intricate and complex interplay
between MI and ferroptosis is crucial in identifying
potential therapeutic strategies. Targeting the molecu-
lar mechanisms involved in ferroptosis, such as iron
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Table 7 Updated therapeutic targets of ferroptosis in cardiovascular diseases
Diseases Therapeutic targets Models Potential mechanisms References
MI ME2 Invivo/ In vitro - Inhibit miR-214-3p [538]
Adaptor protein HIP-55 In vivo/ In vitro - Regulate AKT/MAPK pathways [539]
FNDC5/irisin In vitro Regulate Nrf2/HO-1 axis [540]
LncRNA Gm47283 In vitro Target miR-706 / Ptgs2 [541]
DCM RDH10 In vivo Mediated disorder of cardiac retinol [542]
metabolism
TRIM46 In vitro Regulate GPX4 [543]
PA Invivo/In vitro  Regulate HSF1 and GPX4 [544]
NRF2 In vivo Regulate AMPK/NRF2 pathways [545]
CD74 In vivo/ In vitro  Regulate NLRP3/pyroptosis-mediated [546]
regulation of ferroptosis
DIC DR-Ab In vivo/In vitro  Maintain the stability of SLC7A11 [547]
on the cell surface
PRMT4 In vivo/In vitro  Inhibit Nrf2/GPX4 pathway [548]
FUNDC2 In vivo/ In vitro - Regulate GSH and stability of GPX4 [549]
SIRT1 Invivo/ Invitro  Attenuate oxidative damage [550]
p53/Park7 In vivo/In vitro  Regulate p53, restore Fe-S clusters [551,552]
and maintain iron homeostasis
Exosomal thioredoxin-1 In vivo decrease MDA, iron content [553]
and increase GSH level
METRNL Invivo/In vitro  activate SIRT1 via cCAMP/PKA signaling ~ [554]
axis improve DOX-elicited oxidative
stress, apoptosis and cardiac dysfunc-
tion
ADAR2 Invivo/In vitro  regulate miR-34a in CMs, affect pro- [555]
proliferation and anti-apoptosis effects
p62-NRF2/HO-1 In vivo/In vitro  Reduce iron levels and lipid peroxida- [556]
tion
Heart failure FUNDC1 In vivo/ Invitro - Inhibit lipid peroxidation [557]
MiR-375-3p Invivo/ Invitro - Target GPX4-an inhibitor of the ferrop-  [345]
tosis pathway
Sepsis-induced cardiomyopathy ICA69 In vivo/ Invitro  Induce STING [558]
Induce intracellular lipid peroxidation
TMEM43 In vivo/ Invitro  Regulate P53-SLCA11 pathway [559]
Spsis-induced myocardial injury N6-methyladenosine writer METTL3  In vitro Regulate SLC7AT mRNA with high [560]
methylation level
DEHP-induced myocardial injury Heme-oxygenase-1 In vivo Activate Nrf2/HO-1 pathway [561]
Myocardial cell injury induced by heat ~ TLR4 In vitro Inhibition of TLR4 alleviates Inflamma-  [562]
stroke tion and Ferroptosis
Hypertrophic cardiomyopathy SLC7AN In vivo Overexpression of Slc7a11 increases [563]
cellular glutathione levels
Mitochondrial cardiomyopathy Omal Invivo/In vitro  Regulate GPX4 [564]
Monocrotaline-induced pulmonary PRDX6 Invivo/In vitro  Regulate HMGB1/TLR4/NLRP3 signalling  [565]

hypertension

Abbreviations: Ml Myocardial infarction, DCM Diabetic cardiomyopathy, RDH10 Retinol dehydrogenase 10, DIC Doxorubicin-induced cardiomyopathy, ME2 Malic
enzyme; 2, FNDC5 Fibronectin type Il domain-containing protein 5, RDH10 Retinol dehydrogenase 10, TRIM46 Tripartite Motif Containing 46, HSF1 Heat shock factor
1, GPX4 Glutathione peroxidase 4, NRF2 Nuclear factor erythroid2-related factor 2, CD74 MIF membrane receptor cluster of differentiation 74, NKA Nat/K* ATPase,
PRMT4 Protein arginine methyltransferase 4, GSH Glutathione, FUNDC2 FUN14 domain-containing 2, SIRT1 Sirtuin 1, METRNL Meteorin-like protein, FUNDC1 FUN14
domain containing 1, ICA69 Islet cell autoantigen 69, TMEM43 Transmembrane protein 43, TLR4 Toll-like receptor 4, SLC7A11 Solute Carrier Family 7 Member 11, Omal
Overlapping with the m-AAA protease 1 homolog, PRDX6 Recombinant Peroxiredoxin 6, ICA69 Islet cell autoantigen 69

metabolism, peroxidation, and antioxidant systems, may
offer new approaches to mitigate the damage caused by
myocardial infarction and improve patient outcomes.
As shown in Table 7, Malic enzyme 2 (ME2), Adaptor

protein HIP-55, and fibronectin type III domain contain-
ing 5 (FNDCS5)/irisin have also been suggested as poten-
tial targets mediating ferroptosis in MI.
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Table 8 Updated compounds targeting ferroptosis in cardiovascular diseases
Diseases Compounds Models Function References
Ml miR-26b-5p In vivo Induce SLC7AT1 expression [566]
ldebenone Invivo/Invitro  Regulate ROS-AMPK-mTOR pathway [567]
DCM Curcumin Invivo/In vitro  Regulate Nrf2, increase the expression of oxi- [568]
dative scavenging factors
Isorhapontigenin In vivo Regulate PRDX2-MFN2-ACSL4 pathway [569]
Sulforaphane In vivo Regulate AMPK/NRF2 pathways [545]
DIC Steviol Invivo/Invitro  Unknown [570]
Ethoxyquin Invivo/Invitro  Antioxidant [571]
Histamine/H1R axis Invivo/In vitro  Regulate STAT3-SLC7A11 pathway [572]
AslV In vivo Activate Nrf2 signaling pathway and promote  [573]
GPX4 expression
5-ALA Invivo/In vitro  Inhibits iron overload [574]
Biomimetic Nanozymes Invivo/Invitro  Induce GPX4 [575]
LCZ696 Invivo/Invitro  Regulate AKT,SIRT2/SOD696 pathway [576]
Liquiritin Invivo/Invitro  Regulate SLC7A11, GPX4 [577]
LAP In vitro Regulate PI3K/AKT pathway [578]
Ergothioneine In vivo Clear ROS, reduce pro-inflammatory media- [579]
tors, chelate Fe, and maintain mitochondrial
function
Salidroside In vivo Activate AMPK-dependent signaling pathways, [580]
regulate fatty acid metabolism and maintain
mitochondrial function
Epigallocatechin-3-gallate  In vivo Reduce iron accumulation, inhibit oxidative [581, 582]
stress and abnormal lipid metabolism
5-ALA Invivo/Invitro  Maintain heme synthesis, inhibit iron overload  [574]
and lipid peroxidation
Salidroside Invivo/In vitro  Regulate fatty acid metabolism, maintain [580]
mitochondrial function, and downregulate
ferrocyte death
PAESe Invivo/Invitro  Prevent a decrease in FXN levels, resist oxida- ~ [583]
tion, increase glutathione levels, and inhibit
respiratory decay
Fisetin Invivo/Invitro  Regulate the SIRT1/Nrf2 signaling pathway, [533]
increasing GPX4 levels, Reducing MDA
and lipid ROS levels, increasing glutathione
(GSH), and antioxidant activity
Heart failure Berberine hydrochloride Invivo/Invitro  Inhibit Nrf2-dependent ferroptosis [584]
Heart failure, DCM Canagliflozin In vivo Activate AMPK/SIRT1/PGC-1a pathway [585, 586]
Adriamycin cardiomyopathy, Post-transplant, Ferrostatin-1 In vivo Inhibit lipid peroxidation [587]

cardiomyopathy, Atherosclerosis, Septic cardio-
myopathy, DCM, Palmitic acid cardiac injury

5-FU-induced cardiotoxicity, DIC

TZM-induced cardiotoxicity
high-fat diet-induced cardiac injury
Coronary microembolization
Sepsis-induced myocardial damage
Atherosclerosis

Atrial fibrillation

High-power microwave-induced cardiomyo-
pathy

Resveratrol

Empagliflozin
Celastrol (Cel)
Atorvastatin
Puerarin
QXJYG

Icariin

Tanshinone IIA

In vivo/In vitro

In vitro
In vitro
In vivo/In vitro
In vivo
In vivo/In vitro
In vivo/In vitro

In vivo/In vitro

Inhibit GPX5
Upregulated the p62-NRF2/HO-1 pathway
Mediates the miR-149/HMGB1 axis

Unknown

Regulate AKT/GSK3 signaling pathway
Regulate Hif1a/Ptgs2 pathway

Induce AMPK pathway

Regulate GPX4/xCT signaling pathway
Regulate SIRT pathway

Promote GPX4, SLC7A11 expression

[556, 588, 589]

Abbreviations: PH Pulmonary hypertension, Ml Myocardial Infarction, GPX4 Glutathione Peroxidase 4, SLC7A11 Solute Carrier Family 7 Member 11, NRF2 Nuclear factor
erythroid2-related factor 2, AMPK AMP-activated protein kinase, SIRT1 Sirtuin 1, GSH Glutathione, FXN Iron-sulfur cluster biogenesis protein Frataxin, ROS Reactive
oxygen species, HO-1 Heme oxygenase-1, GSK38 Glycogen synthase kinase-3, AKT Protein kinase
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Atherosclerosis

Atherosclerosis typifies a chronic inflammatory dis-
ease hallmarked by dysregulated lipid metabolism and
endothelial malfunction [599, 600]. Vinchi et al. have
explicated the interplay between ferroptosis and the
pathogenesis of Atherosclerosis [601]. They found that
GPX4 mitigates the evolution of atherosclerosis via cur-
tailing lipid peroxidation and diminishing the sensitivity
of vascular cells to oxidized lipids [602]. Qing-Xin-Jie-Yu
Granule (QXJYQG), a traditional Chinese medicinal com-
pound constituted of quintuple Chinese medicinal con-
stituents, could inhibit ferroptosis through the regulation
of the GPX4/xCT pathway for atherosclerosis [594]. Cur-
rently, investigations into the therapeutic efficacies of
Chinese medicine on cardiovascular diseases mediated
by ferroptosis are sparse [568, 593]. Thus, elucidating the
role and mechanism of Chinese medicine in impeding
ferroptosis might shed light on the treatment of cardio-
vascular diseases.

Pulmonary hypertension

PH is a condition characterized by elevated arterial
blood pressure in the pulmonary circulation, placing
increased strain on the heart and ultimately leading to
heart failure [603]. Patients with PH commonly expe-
rience progressive shortness of breath, which is the
predominant symptom observed. Unfortunately, the
prognosis for individuals with pulmonary hyperten-
sion is generally poor, as treatment options are limited
and the disease significantly impacts their quality of life
[604]. The pathogenesis of PH involves multiple com-
plex cellular processes and pathological changes. The
pathogenesis of PH involves complex cellular processes
and pathological changes. Notably, various types of PH
are associated with diverse inflammatory responses. In
animal models, several immunomodulatory interven-
tions have demonstrated the ability to modulate the pro-
gression and advancement of the disease [605]. These
findings highlight the importance of understanding the
intricate cellular mechanisms involved in the develop-
ment of PH and suggest potential avenues for therapeu-
tic interventions.

Disruption of signaling pathways involving ROS and
nitric oxide (NO) can contribute to the proliferation of
pulmonary arterial endothelial cells (PAECs) and pul-
monary artery smooth muscle cells (PASMCs), leading
to DNA damage, metabolic dysregulation, and vascular
remodeling [606]. Growing evidence supports the role of
ferroptosis in the development and progression of PH,
highlighting the potential of antioxidant therapy as a sig-
nificant area of investigation for PH treatment. miRNAs
have been found to modulate the process of ferroptosis
and regulate the expression of target genes involved in
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iron metabolism in PH patients. Specifically, six differen-
tially regulated miRNAs (miR-483-5p, miR-27a-3p, miR-
27b-3p, miR-26b-5p, miR-199a-5p, and miR-23b-3p)
have been implicated in PH, indicating their role in the
regulation of iron-related pathways [607]. In a study by
Xie et al., it was observed that ferroptosis is upregulated
in PAECs from rats with monocrotaline (MCT)-induced
PH. The authors proposed that pulmonary endothelial
ferroptosis triggers an inflammatory response through
the HMGB1/TLR4/NLRP3 inflammasome signaling
pathway in rats. Pharmacological inhibition of ferrop-
tosis using Ferrostatin 1 (Fer-1) was found to mitigate
the progression of MCT-induced pulmonary vascu-
lar remodeling and protect the right ventricle from the
effects of PH [608].

Considering these findings, the utilization of ferrop-
tosis inhibitors in PH treatment and the exploration of
innovative therapies based on the regulation of iron-
dependent cell death hold promise for the management
of PH.

Cardiomyopathy

Diabetic cardiomyopathy DCM is a common compli-
cation of diabetes mellitus (DM) and is associated with
an increased risk of heart failure and mortality among
diabetic individuals [609]. The disease is characterized
by left ventricular hypertrophy and diastolic dysfunction
in the early stages, progressing to dominant heart failure
with reduced systolic function in advanced stages. The
pathogenesis of DCM is multifactorial, primarily involv-
ing insulin resistance and hyperglycemia [610].

Insulin resistance, an emblematic feature of type 2 diabe-
tes, instigates compromised glucose uptake and utiliza-
tion by cardiomyocytes, culminating in energy depletion
and perturbed cardiac metabolism [611]. Conversely,
hyperglycemia contributes to the genesis of advanced
glycation end products (AGEs), oxidative stress, and
inflammation, thereby exacerbating cardiac dysfunc-
tion and provoking structural remodeling [612]. Despite
hyperglycemia governing numerous pathways within
DCM, the amplification of ROS is perceived as the cen-
tral mechanism underlying adverse remodeling [613].
The induction of ferroptosis precipitates an elevation in
intracellular levels of lipid ROS, consequently inciting
cellular death [614]. Recent evidence increasingly impli-
cates ferroptosis as a significant player in the progression
of DCM [545]. Intriguingly, sulforaphane-activated NRF2
can repress ferroptosis in cardiomyocytes via the modu-
lation of SLC7A11 levels, indicating a novel therapeutic
strategy for DCM [545].
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As our comprehension of the pathophysiological mech-
anisms underlying DCM and ferroptosis continues to
advance, innovative therapeutic approaches targeting
ferroptosis pathways may emerge. By directing interven-
tions toward pivotal regulators of ferroptosis, such as iron
metabolism and lipid peroxidation, it may be plausible to
ameliorate the deleterious effects of ferroptosis and aug-
ment cardiac function in individuals afflicted with DCM.

Hypertrophic cardiomyopathy Hypertrophic cardio-
myopathy delineates a gradually evolving compensatory
mechanism for cardiac functionality, predominantly
arising in the context of chronic stress overload [536]. It
is denoted by a surge in total myocardium and height-
ened contractility, thereby maintaining regular blood
circulation [615]. Evidence points to ferritin’s pivotal
role in guarding against cardiac ferroptosis, mediated
by SLC7A11. Under a high-iron diet, ferritin-deficient
mice demonstrated severe heart damage and hyper-
trophic cardiomyopathy with a distinctive iron death
molecular signature, while SLC7A11 overexpression in
these mice forestalled cardiac iron death and remod-
eling [563]. Wang et al. conducted bioinformatics analy-
sis into the pathogenesis of hypertrophic cardiomyopathy
(HCM) and dilated cardiomyopathy (DCM) by focusing
on the mechanisms of ferroptosis [616]. Their findings
revealed that three hub genes, namely POSTN, IGFBP5,
and FMOD, have the potential to serve as valuable bio-
markers or therapeutic targets in the field of cardiomyo-
pathies. Nevertheless, the exact characteristics of these
gene mechanisms associated with ferroptosis remain
largely uncertain, especially when considering their
implications in myocardial diseases. There might still
be underlying mechanisms awaiting clarification to pro-
vide an explanation for this phenomenon. In contrast to
DCM, the role of ferroptosis in HCM seems to be more
intricate, and the precise impact of ferroptosis on HCM
remains undisclosed.

Doxorubicin-induced cardiomyopathy Doxorubicin
(DOX), a widely used chemotherapeutic agent for
various malignancies, possesses significant cardiac
toxicity as its most notable side effect, often leading
to cardiomyopathy [617-619]. Consequently, there is
considerable potential for the development of thera-
peutic approaches aimed at addressing or mitigating
the cardiac damage caused by this drug. Doxorubicin-
induced cardiomyopathy (DIC) arises from a complex
interplay of various mechanisms, including DNA dam-
age, oxidative stress, intracellular signaling, transcrip-
tion factors, epigenetic regulatory factors, autophagy,
and metabolic inflammation [620, 621].
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Emerging evidence increasingly implicates ferroptosis
as a pivotal process in the progression of DIC. Wang
et al. demonstrated that miR-21-5p effectively inhibits
apoptosis and oxidative stress in primary cardiomyo-
cytes and mouse heart tissue exposed to DOX, offer-
ing potential leads for novel treatments in cardiovascu-
lar diseases [622]. Notably, Na Ta et al. discovered that
the mitochondrial outer membrane protein FUNDC2
governs the occurrence of iron-mediated cell death,
shielding cells from this fate in Fundc2-knockout mice
and MEF cells. Further investigations revealed that
FUNDC2 modulates the stability of mito-GSH, GPX4,
and SLC25A11, all of which are crucial in DOX-induced
ferroptosis and subsequent cardiomyopathy [549]. Wang
et al. unveiled that PRMT4 exerts inhibitory effects on
the NRF2/GPX4 signaling pathway, accelerating fer-
roptosis in DIC. This compelling evidence suggests that
targeting PRMT4 could potentially serve as a preventive
strategy to DIC [548].

Additionally, various models of cardiomyopathy induced
under different conditions were examined, alongside an
exploration of the potential influence of pharmacologi-
cal interventions on ferroptosis in these disease models,
as outlined in Table 7. The development of ferroptosis
inhibitors, coupled with a deeper understanding of the
iron-dependent cell death process, holds the promise
of breakthroughs in the treatment strategies for cardio-
myopathy. Therefore, researchers can delve into the reg-
ulatory mechanisms and signaling pathways associated
with ferroptosis to better understand its role and impact
in cardiovascular diseases. This line of inquiry will shed
light on the relationship between ferroptosis and the
development of cardiovascular conditions, offering fresh
insights and strategies for early disease diagnosis, pre-
vention, and treatment.

Ferroptosis and autoimmune diseases

Autoimmune diseases impact approximately 8-9% of
the global population, yet the underlying mechanisms
remain inadequately explored [623]. However, the study
of ferroptosis offers a fresh vantage point for investigat-
ing these conditions, introducing a novel perspective into
the realm of autoimmune disease research. One of the
contributing factors to the development of autoimmun-
ity is the aberrant initiation of cell death and inadequate
clearance of deceased cells, leading to the exposure or
release of intracellular contents that activate the immune
system [624]. Ferroptosis plays a substantial role in influ-
encing both the quantity and functionality of immune
cells625. Numerous autoimmune diseases, such as Sys-
temic Lupus Erythematosus (SLE), Rheumatoid Arthritis
(RA), Inflammatory Bowel Disease (IBD), and Multiple
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Table 9 Updated therapeutic targets of ferroptosis in autoimmune diseases
Diseases Therapeutic targets Models Potential mechanisms References
SLE CREMa In vivo IFN-a or SLE serum suppresses GPX4 expression by enhancing CREMa binding [628]
to the Gpx4 promoter
CoQ10 In vivo Suppress lipid peroxidation and ferroptosis [629]
HMGB1 In vivo/In vitro  Promote ultraviolet B (UVB)-induced tissue damage; Activate mDCs by up-regulat- [630,631]
ing the mTOR pathway
RA TNF-a In vivo Macrophages release TNF-a to increase GSH biosynthesis and protect FAPa-positive  [632-634]
synovial fibroblasts from ferroptosis
MMPs In vivo ROS activates matrix metalloproteinase (MMPs), inhibit cartilage proteoglycan [635, 636]
synthesis, promote FLSs proliferation and chondrocyte apoptosis
SAM In vivo Glycine enhance ferroptosis via SAM-mediated GPX4 promoter methylation and fer-  [632, 637]
ritin decrease
G1dP3 In vitro Promote RASFs ferroptosis cell death via a p53/SLC7A11 axis-dependent mechanism  [638]
SIRT1 In vivo/In vitro - Transcriptionally repressed by YY1 and inhibits the ferroptosis [639-642]
IBD ILl-6 and CXCL1 In vivo Dietary AA induces production of IL-6 and CXCL1, reduces expression and enzy- [625]
matic activity of GPX4, and caused lipid peroxidation and ferroptosis
Nrf2 In vivo APS prevents ferroptosis by inhibiting the NRF2/HO-1 pathway [643]
MS HMOX1, LPCAT3, RPL8  In vitro Potential ferroptosis targets for interventional strategies in MS [644]
Nrf2 In vivo Inhibitor of LPS-induced inflammation [645]
IgAN CcD71 In vivo Receptor for binding to IgA1 [646]
Hepcidin In vivo Defends against iron-mediated renal injury [647]
EAE EZH2/SLC7AN In vivo BMSC-Exos carrying miR-367-3p inhibit microglial ferroptosis via EZH2/SLC7A11 axis (648, 649]
GPX4 In vitro Inhibit the functions of CD4 T cells* [650]
ACSL4 In vivo PUFAs are esterified by ACSL4 and oxidized by iron to generate toxic PE-AA-OOH [15,261,651]
that destroy cellular membranes during ferroptosis
AS DDIT3 In vivo Change inflammatory response in the immune microenvironment [652]
HSPB1 In vivo Change inflammatory response in the immune microenvironment [652]
uc Furin In vivo Inhibit epithelial cell injury and alleviates experimental colitis by activating the Nrf2-  [653]
Gpx4 signaling pathway
AlH FGF4 In vivo Inhibite ferroptosis of hepatocytes by increasing CISD3 levels and activating Nrf2/ [654]

HO-1 signaling

Abbreviations: MS Multiple sclerosis, EAE Experimental autoimmune encephalomyelitis, UC Ulcerative colitis, AIH Autoimmune hepatitis, SLE Systemic lupus
erythematosus, CREMa cAMP-responsive element modulator a, CoQ70 Coenzyme Q10, HMGB1 High mobility group box-1 protein, IFN-a Human interferon-a, UVB
Ultraviolet B, RA Rheumatoid arthritis, TNF-a Tumor necrosis factor-a, GSH Glutathione, FAPa Fibroblast activation protein a, MMPS Matrix metalloproteinase, ROS
Reactive oxygen species, SAM S-adenosylmethionine, FLSs Fibroblast-like synoviocytes, RASFs RA synovial fibroblasts, SIRT1 Silent information regulator sirtuin 1,
CXCL1 C-X-C motif chemokine ligand 1, IECs Intestinal epithelial cells, IBD Inflammatory bowel disease, IL-6 Interleukin- 6, Nrf2 Nuclear factor erythroid2-related factor
2, LPS Lipopolysaccharides, HMOX1 Heme oxygenase 1, RPL8 Ribosomal Protein L8, TfR1 Transferrin Receptor 1, IgAN IgA Nephropathy, AKI Acute kidney injury, EZH2
Enhancer of zeste homolog, SLC7A11 Solute Carrier Family 7 Member 11, BMSC Bone mesenchymal stem cell, ACSL4 Acyl-CoA Synthetase Long Chain Family Member
4, PUFAs Polyunsaturated fatty acids, AS Ankylosing spondylitis, DDIT3 DNA damage-inducible transcript 3, HSPB1 Heat shock protein family B (small) member 1, FGF4
Fibroblast growth factor 4

Sclerosis (MS), are intricately associated with ferropto-
sis [625]. Although different autoimmune diseases may
exhibit shared clinical manifestations, each possesses dis-
tinct characteristics. For example, RA patients primarily

offer valuable insights for therapeutic approaches target-
ing autoimmune diseases[626, 627] (Tables 9 & 10).

Systemic lupus erythematosus

experience polyarthritis affecting the joints of the hands,
while major extra-articular organs, such as the kidneys,
are rarely involved. Conversely, individuals with SLE may
suffer from organ damage caused by excessive produc-
tion of multiple autoantibodies and subsequent deposi-
tion of immune complexes composed of antibodies and
antigens in various organs, including the kidneys [625].
Therefore, investigating the potential mechanisms could

SLE is a severe, debilitating autoimmune disease that
affects multiple organs and body systems. The preva-
lence of SLE worldwide is estimated to be as high as 150
per 100,000 individuals [665]. The disease is character-
ized by autoantibodies against nuclear antigens (ANA),
which are caused by a dysregulation of the immune
system [666]. Recent investigations have revealed that
neutrophils derived from lupus-prone mice or individu-
als with SLE undergo cell death through the process of
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Table 10 Updated Compounds targeting ferroptosis in autoimmune diseases
Diseases Compounds Models Function References
SLE Liproxstatin-1 In vivo Suppress lipid ROS levels in neutrophils and significantly attenuate lupus in mice [628]
models
Idebenone In vivo Downregulate NETs formation in neutrophils; Improve mitochondrial metabo- [629]
lism and ATP production; Ameliorate endothelium-dependent vasorelaxation
and reduce lipid peroxidation
MitoQ In vivo Reduce NETs and ROS, downregulate serum levels of IFN and reduce immune [629]
complex formation in kidneys
OA Ferrostatin-1 In vivo Rescue the collagen Il expression and attenuated the cartilage degradation [655, 656]
and OA progression
IBD OTSSP167 In vivo MELK-selective inhibitor, inhibit ferroptosis and reduce DSS-induced colitis in mice  [657]
by suppressing the protein kinase B (AKT)/IKK/p65 and extracellular signal-regu-
lated kinase (ERK)/IKK/p65 signaling cascades
TisCNSs In vivo/In vitro - Eliminate excess ROS against oxidative stress-induced cell damage [658]
EAE Ferrostatin-1 In vivo Suppress the expression of MDA and 4-HNE in oligodendrocyte; enhance GPX4, [659]
xCT expression
AH Ferrostatin-1 In vivo Ameliorate the influence of AIH on the Nuclear factor E2-related factor 2 (Nrf2)/ [660]
Heme oxygenase-1 (HO-1) signaling pathway
Synovitis ICA In vitro Activate the Xc-/GPX4 axis [661]
IKE and etanercept In vivo Induce ferroptosis in synovial fibroblasts and attenuate arthritis progression [633]
Osteoarthritis pPADN In vitro Scavenge ROS [662]
EAP DFO/EDA In vivo Chelate iron ions and scavenge free radicals [663]
Lupus nephritis  Liproxstatin-2 In vivo Inhibit the ferroptosis of human proximal tubular cells [664]

Abbreviations: Lip-1 Liproxstatin-1, ROS Reactive oxygen species, IDE Idebenone, SLE Systemic lupus erythematosus, NETs Neutrophil extracellular traps, ATP Adenosine
5'-triphosphate, MitoQ Mitochondrial-targeted coenzyme Q10, IFN Interferon, Fer-1 Ferrostatin-1, RA Rheumatoid arthritis, Nrf2 Nuclear factor erythroid2-related
factor 2, IBD Inflammatory bowel disease, MELK Maternal embryonic leucine zipper kinase, DSS Dextran sulfate sodium salt, ERK Extracellular signal-regulated kinase,
EAE Experimental autoimmune encephalomyelitis, AIH Autoimmune hepatitis, HO-1 Heme oxygenase-1, ICA Icariin, TfR1 Transferrin receptor 1, GPX4 Glutathione
peroxidase 4, NCOA4 Nuclear receptor coactivator 4, IKE Imidazole ketone erastin, GCs Glucocorticoids, DPEP1 Dipeptidase 1, SLC7A11 Solute carrier family 7 member
11, Dipeptidase 1, pPADN phenylboronic acid modified L-DOPA-derived nanoparticles, OA Osteoarthritis, DFO Deferoxamine, EDA Ethylenediamine, EAP Experimental
autoimmune prostatitis, LN Lupus nephritis, ASH Alcohol-associated steatohepatitis, MDMX Murine double minute X, PPARa Peroxisome proliferator-activated

receptor

ferroptosis [667]. Notably, the presence of autoantibodies
and interferon «a in the serum acts as a stimulant for neu-
trophil ferroptosis. This stimulation leads to an increased
binding of the transcriptional suppressor CREMa to the
GPX4 promoter, resulting in the suppression of GPX4
expression. Consequently, this cascade of events pro-
motes the accumulation of lipid-ROS [165, 166]. In mice,
the presence of neutrophil-specific GPX4 haploinsuffi-
ciency leads to the development of a phenotype resem-
bling SLE. Additionally, inhibiting ferroptosis in vivo
slows down the progression of the disease in lupus-sus-
ceptible MRL/lpr mice. These findings shed light on the
involvement of neutrophil ferroptosis in the underlying
causes of SLE [667]. Additionally, the effective suppres-
sion of lipid ROS levels in neutrophils and the signifi-
cant inhibition of lupus development in a murine model
have been observed through the use of the ferroptosis
inhibitor liproxstatin-1 [667]. Furthermore, the prolifera-
tion of pathogenic T cells, specifically T follicular helper
(Tfh) cells, plays a crucial role in the pathogenesis of
SLE [668]. Iron overload promotes the expansion of Tth
cells, secretion of pro-inflammatory cytokines, and anti-
body production in mice prone to lupus. Mice subjected

to a high-iron diet exhibited an increased proportion of
Tfh cells and antigen-specific germinal center responses
[669]. At the molecular level, overexpression of miR-21
inhibits 3-hydroxybutyrate dehydrogenase-2 (BDH2),
leading to iron accumulation and enhanced activity of
Fe’*-dependent TET enzymes. This, in turn, results in
hydroxymethylation of the BCL6 gene and differentiation
of Tth cells. In summary, maintaining iron homeostasis is
crucial for controlling the proliferation of pathogenic T
cells, might provide novel therapeutic potential in treat-
ing SLE [669].

Rheumatoid arthritis

The primary pathogenesis of RA involves immune dys-
function and inflammation, leading to notable patho-
logical changes such as synovitis, progressive cartilage
degradation, and subchondral bone destruction [670].
While the exact mechanism of RA remains unknown,
immune cells and fibroblast-like synoviocytes (FLS) are
believed to play significant roles in disease progression
[671, 672]. For instance, in FLS associated with RA,
glycine has been shown to enhance s-adenosylmethio-
nine (SAM) levels, leading to SAM-mediated GPX4
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promoter methylation and decreased FTH1 expression.
These actions regulate the ferroptosis process [632].
Furthermore, the inhibition of system xc- by Eras-
tin has been demonstrated to induce damage to car-
tilage tissue by upregulating the expression of matrix
metalloproteinase 13 (MMP-13) in chondrocytes and
suppressing type II collagen expression, thereby exac-
erbating RA [655]. umor Necrosis Factor (TNF), a piv-
otal pro-inflammatory cytokine in the pathogenesis of
RA, has been found to inhibit ferroptosis by upregu-
lating SLC7A11, glutamate-cysteine ligase catalytic
subunit (GCLM), and glutamate-cysteine ligase regu-
latory subunit (GCLC). This, in turn, promotes cys-
tine uptake and cellular GSH biosynthesis [633]. In a
Collagen-Induced Arthritis (CIA) mouse model, low
doses of an undisclosed compound (IKE) along with the
TNF antagonist etanercept induced ferroptosis in fibro-
blasts and attenuated the progression of arthritis [633].
These findings elucidate the mechanisms by which
TNF modulates resistance to ferroptosis and suggest
the therapeutic potential of ferroptosis-focused thera-
pies targeting dysregulated fibroblasts across a broader
range of diseases [633].

Inflammatory bowel disease

IBD is a progressive and recurrent condition with a ris-
ing global incidence, encompassing both Crohn’s Disease
(CD) and Ulcerative Colitis (UC) [673]. These diseases
are characterized by extensive cell death in the gut and
colon due to chronic inflammation [673, 674]. In an
experimental colitis model induced by Dextran Sodium
Sulfate (DSS), upregulation of HO-1 within the inflamed
colon has been observed, leading to anti-inflammatory
and antioxidative effects[675]. NF-«B is involved in the
production of cytokines and chemokines in inflammatory
cells, as well as the regulation of Endoplasmic Reticulum
(ER) stress signaling and ferroptosis processes [676—678].
One study suggests that phosphorylated NF-kB-p65 pro-
tects intestinal epithelial cells from ferroptosis by allevi-
ating endoplasmic reticulum stress, potentially indicating
therapeutic targets for UC treatment involving ferropto-
sis and NF-kB-p65 phosphorylation [679]. Curculigoside
(CUR), the main active constituent of Rhizoma Curculig-
inis, exhibits diverse biological activities and has shown
protective effects on intestinal epithelial cell death, GSH
levels, Malondialdehyde (MDA) content, and Lactate
Dehydrogenase (LDH) activity. These effects are signifi-
cantly diminished upon knockdown of GPX4 [680]. CUR
prevents ferroptosis in UC by inducing GPX4, highlight-
ing the potential of GPX4 as a therapeutic target for UC
[680, 681]. Studies indicate that ferroptosis inhibitors
such as Liproxstatin-1 (Lip1), Fer-1, and Deferoxamine
(DFO) alleviate disease symptoms and prevent colon
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length reduction in DSS-induced colitis in mice, empha-
sizing the beneficial impact of ferroptosis inhibition on
IBD [679, 681, 682]. Overall, targeting ferroptosis inhibi-
tion may offer a new avenue for the treatment of IBD.

Muiltiple sclerosis

MS is characterized by chronic inflammation in the cen-
tral nervous system, marked by neuroinflammation,
demyelination, oligodendrocyte depletion, and neuro-
degeneration [683]. Microglia, known for their ability to
alter transcriptional profiles and exhibit diverse inflam-
matory phenotypes, play a crucial role in the develop-
ment of MS [684]. The ferroptosis inducer RSL3 has
been found to reduce inflammation in microglia and
peritoneal macrophages (PM) in response to lipopoly-
saccharide (LPS) stimulation, while conditioned medium
from cells undergoing ferroptosis significantly amplifies
inflammation in these cells [645]. Interestingly, despite
their resistance to ferroptosis, BV2 cells and PMs exhibit
reduced inflammation by increasing the abundance of
NRF2 protein. Treatment with RSL3 and Fer-1 concur-
rently decreases systemic inflammation in vivo [645].
However, the precise mechanism of ferroptosis in MS
remains to be fully elucidated.

Overall, cytokines, such as Tumor Necrosis Factor-
alpha (TNF-a) and Interferon-alpha (IFN-a), modulate
ferroptosis in different ways, contributing uniquely to the
pathogenesis of autoimmune diseases [628, 633]. There-
fore, it is crucial to understand the intricate interactions
between different cell death pathways and the signifi-
cance of these interactions in the context of autoimmune
diseases.

Ferroptosis and infection

Infection embodies a dynamic interaction entailing the
complicatedly interplay and conflict between invading
pathogens and the host organism [685]. The infection
process commences once these pathogens breach the
host’s defenses via diverse avenues, often culminating in
substantial detriment to host cells [686]. Recent research
accentuates the cardinal role of ferroptosis in the context
of pathogenic infections, as expounded extensively in
several recent studies [685, 687, 688]. Consequently, this
discourse aims to encapsulate our current understanding
of the nexus between ferroptosis and pathogenic infec-
tions, emphasizing the underpinning molecular mecha-
nisms, principal regulators, and prospective therapeutic
approaches.

A range of pathogens—encompassing bacteria, viruses,
fungi, and parasites—typically cause diseases via three
mechanisms: direct cellular damage, toxin activity, and
immune response [689]. Emerging evidence underscores
a robust association between pathogenic infections and
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Table 11 Updated therapeutic targets of ferroptosis in infections
Diseases Therapeutic Targets Models Potential Mechanisms References
Sepsis Sestrin2 Invivo/In vitro  Downregulate the ATF4-CHOP-CHACT [694]
signaling pathway
AUF1 Invivo/In vitro - Upregulate NRF2 expression; downregulate  [695]
ATF3 expression
ADSCs exosomes In vivo/In vitro - Upregulate GPX4 in PMVECs [696]
YAP1 In vivo/In vitro  Disrupted the interaction between NCOA4  [21]
and FTH1; prevent the degradation of fer-
ritin to Fe2 +; inhibit lipid peroxidation
MUCi In vivo/In vitro  Downregulate Keap1 expression; upregu- [697]
late GPX4 expression
eCIRP In vivo/In vitro  Downregulate GPX4 expression; increase [698]
lipid peroxidation
NETs Invivo/In vitro  Downregulate GPX4 expression [699]
METTL3 In vivo/In vitro  Downregulate GPX4 expression [699]
Pulmonary tuberculosis GPX4 In vivo/In vitro - Inhibit lipid peroxidation [700]
Heme oxygenase-1 In vivo/In vitro  Modulate intracellular ROS production [701]
Mycobacterium tuberculosis Rv1324 Protein  In vivo/In vitro  Increase lipid peroxidation [702]
HIF-1a/SLC7AT11/GPx4 Invivo/In vitro - Increase lipid peroxidation; reduce antioxi-  [703]
dant levels
P aeruginosa infection 15-lipoxygenase In vivo/In vitro  Upregulate 15-HpETE-PE signaling pathway  [704]
iINOS/NO- In vitro Inhibit lipid peroxidation [705]
RNase E In vitro Increase pyoverdine and pyochelin sidero-  [706]
phore gene expression
Clostridium difficile infection  aryl-hydrocarbon receptor Invivo/In vitro  Downregulate CYP1A1 expression; increase  [31]
lipid peroxidation
F. nucleatum infection PEBP1 In vivo/In vitro  Upregulate Raf1-MAPK signaling pathways ~ [707]
Hepatitis A virus 3Cpro In vivo Increase lipid peroxidation [708]
Hepatitis B virus miR-222 In vivo/In vitro  Downregulate TFRC expression [709]
Hepatitis B virus protein X In vivo/In vitro  Downregulate SLC7A11 and GPX4 expres-  [649]
sion
SRSF2/PCLAF tv1 axis In vivo Upregulate GPX4 expression [710]
Hepatitis C virus FADS2 In vivo/In vitro - Increase lipid peroxidation (691]
Zika virus HMOX1 In vivo Upregulate the Nrf2-SLC7A11-HO-1 [32]
pathway
SAT1 In vivo Increase lipid peroxidation [32]
SLC40A1 In vivo Export iron [32]
CybB In vivo Increase lipid peroxidation [32]
Influenza mFeS In vivo/In vitro  Inactivate the extracellular influenza virus [711]
by inducing viral ferroptosis depending
on Fe’*
NRF2-KEAP1-GCLC signal pathway In vivo/In vitro  Induce I-glutamine metabolic reprogram-  [712]
ming
Enterovirus infection ACSL4 In vitro Upregulate ACSL4 expression [713]
E. piscicida infection c-di-GMP In vivo/In vitro  Promotes iron accumulation, mitochondrial ~ [714]
dysfunction, and production of reactive
oxygen species
Viral encephalitis- HSV-1 Nrf2-Keap! In vivo/In vitro - Inhibit lipid peroxidation [715]
Endometritis Farnesoid X receptor In vivo/In vitro  Downregulate GXP4 and SLC7A11 expres- [716]
sion
Epstein-Barr virus PSTK Invivo/In vitro  Downregulate GXP4 expression [717]
CVB3 virus Sp1 Invivo/In vitro - Upregulate TFRC expression [718]
LCMV mTORC2 In vivo/In vitro - Upregulate GPX4 expression [719]
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Table 11 (continued)
Diseases Therapeutic Targets Models Potential Mechanisms References
AIDS CD36 In vivo/In vitro  Increase lipid peroxidation [720]

HIV-1 Tat Invivo/In vitro  Downregulate the expression of miR-204, [721]

upregulate the expression of its target-
ACSL4

Abbreviations: 15-HpETE-PE 15-hydroperoxy-arachidonoyl-PE, iNOS Inducible nitric oxide synthase, Keap1 Kelch-like ECH-associated protein 1, GCLC

Glutamate-cysteine ligase catalytic subunit, ATF4 Activating transcription factor 4, CHOP C/EBP homologous protein, CHACT Glutathione specific gamma-

glutamylcyclotransferase 1, AUF1 AU-rich RNA-binding factor 1, Atf3 Activating transcription factor 3, ADSCs Adipose mesenchymal stem cell, PMVECs Pulmonary
microvascular endothelial cell, YAPT Yes-associated protein, NCOA4 Nuclear receptor coactivator 4, FTH1 Ferritin Heavy Chain 1, MUCT Mucin 1, eCIRP Extracellular
cold-inducible RNA-binding protein, NETs Neutrophil extracellular traps, METTL3 m6A enzyme methyltransferase-like 3, CYP1AT Cytochrome P450 1A1, c-di-GMP
cyclic dimeric GMP, ROS Reactive oxygen species, HIF-1a Hypoxia-inducible factor-1alpha, SLC7A11 Solute carrier family 7 member 11, HMOX1 Heme oxygenase 1,
SAT1 Spermidine/spermine N (1)-acetyltransferase-1, SLC40A1 Solute carrier family 40 member 1, CybB Cytochrome b, 3Cpro 3C protease, miR-222 microRNA-222,
TFRC Transferrin receptor, SRSF2 Serine/arginine-rich splicing factor 2, PCLAF Proliferating cell nuclear antigen clamp-associated factor, tv1 variant 1, FADS2 Fatty acid
binding protein 2, AIDS Acquired immunodeficiency syndrome, CD36 Cluster of differentiation 36, HSV-1 Herpes simplex virus 1, PSTK O-phosphoseryl-tRNA (Sec)
kinase, Sp1 Specificity protein 1, TFRC Transferrin receptor 1, LCMV Lymphocytic choriomeningitis virus, mTORC2 mechanistic target of rapamycin complex 2, PEBP1
Phosphatidylethanolamine binding protein 1, MAPK Mitogen-activated protein kinase

Table 12 Updated compounds targeting ferroptosis in infections

Diseases Compounds Models Function References
Sepsis HETO016 In vivo/In vitro - Inhibit STING pathways; upregulate GPX4 [722]
and FTH expression
Uridine In vitro Upregulate Nrf2/HO-1 axis [723]
Proanthocyanidins In vivo/In vitro  Inhibit lipid peroxidation [724]
[taconate In vivo/In vitro - Upregulate Nrf2/HO-1 axis; upregulate GSH [725]
and GPX expression
Vitamin £ In vivo/In vitro  Inhibit lipid peroxidation [726]
Pulmonary tuberculosis Zinc oxide nanoparticles In vivo/In vitro - Inhibit lipid peroxidation [727]
P aeruginosa infection: skin infection FeCl, In vivo/In vitro  Increase intracellular labile Fe?*; inhibit lipid [728]
peroxidation
P aeruginosa infection: Intestinal infection Baicalein In vivo/In vitro  Upregulate GPX4 expression [704]
P aeruginosa infection: pulmonary infections  Idebenone In vivo/In vitro  Inhibit lipid peroxidation [729]
P aeruginosa infection: pulmonary infections ~ Gallium nitrate In vitro Target and inhibit siderophores [706]
F. nucleatum: periodontitis Piperlongumine In vivo/In vitro  Reduce the level of intracellular Fe?*, amelio- [707]
rate the impairment in mitochondrial function
Fisetin In vivo/In vitro  Reduce the level of intracellular Fe*, amelio- [707]
rate the impairment in mitochondrial function
COVID-19 Deferoxamine Invivo/In vitro  Chelate iron; downregulate hepcidin | expres-  [730]
sion
Lactoferrin In vivo/In vitro - Bind iron and inhibit viral replication [731]
Vitamin C In vitro Inhibit lipid peroxidation [732]
Melatonin In vitro Chelate iron and block iron-dependent lipid [732]
peroxidation
Vitamin E In vitro Inhibit lipid peroxidation [732]
Hepatitis C virus IKE In vivo/In vitro - Inhibit system xc”, increase lipid peroxidation  [691]
BWA4C In vivo/In vitro - Increase lipid peroxidation; inhibit viral replica-  [691]
tion
Enterovirus infection Rosiglitazone In vitro Downregulate ACSL4; inhibit viral replication [713]
Pioglitazone In vitro Downregulate ACSL4; inhibit viral replication [713]
Endometritis Obeticholic acid In vivo/In vitro - Upregulate FXR expression [716]
Malaria Deferoxamine In vivo/In vitro  Chelate iron; Inhibit lipid peroxidation [733]
Liproxstatin-1 In vivo/In vitro  Inhibit lipid peroxidation [733]
Artemisinin In vivo/In vitro  Increase lipid peroxidation [733]

Abbreviations: GPX4 Glutathione Peroxidase 4, STING Stimulator of interferon response cGAMP interactor 1, Nrf2 Nuclear factor erythroid 2-related factor 2, HO-1 Heme
oxygenase-1, GSH Glutathione, GPX Glutathione peroxidase, ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4, IKE Imidazole ketone erastin, FXR Farnesoid X

Receptor, Lip-1 Liproxstatin-1
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ferroptosis [690] (Table 11). On one side of this balance,
the host organism can curtail infection by inciting ferrop-
tosis; for instance, oxidative degradation of cellular lipids
can suppress hepatitis C virus (HCV) replication [691].
Conversely, certain pathogens may bolster their prolifera-
tion and survival by inducing ferroptosis; mycobacterium
tuberculosis (Mtb), for example, initiates ferroptosis to
augment its pathogenicity and dissemination [692]. These
pathogens orchestrate ferroptosis by impeding lipid per-
oxidation [693]. Comprehending the potential signaling
mechanisms of ferroptosis in the context of pathogenic
infections will undoubtedly pave the way for the develop-
ment of novel therapeutic agents (Table 12).

Bacterial infection
Bacteria can provoke host tissue deterioration and
organ impairment through the activation of ferroptosis
[42]. For instance, Pseudomonas aeruginosa (P. aerugi-
nosa), an important opportunistic pathogen, is the main
cause of ventilator-associated pneumonia, urinary tract,
blood flow and chronic infection [734-736]. However,
P. aeruginosa show natural resistance to many classes
of antibiotics [737]. Not only that, the effectiveness of
antimicrobials in treating P. aeruginosa infection has
gradually declined in recent years [738, 739]. Hopefully,
regulate ferroptosis to intervene in the development
of various resistance mechanisms in P. aeruginosa has
emerged as a promising treatment option [740]. P. aer-
uginosa possesses the capability to express lipoxygenase
(pLoxA), which catalyzes the oxidation of host AA-phos-
phatidylethanolamine (AA-PE) to 15-hydroperoxy-AA-
PE (15-Ho-AA-PE), thereby instigating ferroptosis in
human bronchial epithelial cells [741]. Concurrently, it
undermines the host’s GPX4 defenses by mobilizing
lysosomal chaperon-mediated autophagy (CMA)'*. In
response, the host organism activates the inducible nitric
oxide synthase/nitric oxide (iNOS/NOe) driven anti-
ferroptosis mechanism to halt lipid peroxidation [705].
Consequently, pLoxA and iNOS/NOes may serve as
potential therapeutic targets for P. aeruginosa-associated
afflictions, such as cystic fibrosis. Another investigation
demonstrated that ferric chloride could relieve P. aerug-
inosa-mediated cell death [728]. Baicalein, a mammalian
lipoxygenases inhibitor, markedly relieves animal mor-
tality, PAO1 colonization, intestinal epithelial cell death,
and generation of ferroptotic oxidized phosphatidyletha-
nolamine (PEox) signals [704]. These studies underscore
that P. aeruginosa propagation occurs through ferropto-
sis, thereby motivating us to explore strategies to curb P.
aeruginosa infection by focusing on ferroptosis-induced
necrosis.

Ferroptosis is also critical to the pathogenic mecha-
nism of Mtb, which is the main pathogenic factor of
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tuberculosis [693]. Tuberculosis is one of the world’s
deadliest infections and, along with malaria and HIV/
AIDS, has the most significant socio-economic impact
on humanity [742]. It is reported that ferroptosis plays
a major role in cell death and tissue necrosis induced
by Mtb [55]. Protein tyrosine phosphatase A (PtpA), an
effector secreted by Mtb, inhibits GPX4 expression by
targeting protein arginine methyltransferase 6 (PRMT6),
ultimately precipitating ferroptosis and bolstering the
pathogenicity and dispersion of Mtb [692]. In an in vivo
context, GPX4-deficient mice infected with Mtb dis-
played a significant upsurge in lung necrosis and bacte-
rial load, meanwhile, an outcome relieved by the lipid
peroxidation inhibitor, ferrostatin-1 [700]. These findings
support the role of iron-induced death in Mtb-triggered
necrosis. Further research revealed that the knockdown
of heme oxygenase 1 (Hmox1) by siRNA resulted in a
diminution of antioxidant factors GPX4 and FSP1 [32],
along with an increased release of intracellular bacteria in
Bacillus Calmette-Guérin (BCG)-infected macrophages
[743]. These observations suggest that Mtb propagation
occurs through ferroptosis, thereby inspiring us to search
for promising strategies to manage pulmonary tuberculo-
sis by focusing on ferroptosis-induced necrosis.
Ferroptosis also has a bearing on the evolution and
progression of sepsis [744]. Sepsis is a severe medical
condition characterized by dysfunctional organ function
resulting from the host’s inadequate response to infec-
tion [745]. The immune response, initiated by the invad-
ing pathogen, fails to restore normal balance, leading
to a pathological syndrome characterized by sustained
inflammation and immunosuppression [746]. Intense
stress during sepsis can disrupt the metabolic processes
of ions, lipids, and energy in organisms [747]. Numer-
ous studies have increasingly demonstrated the signifi-
cant role of ferroptosis in modulating inflammation and
sepsis [748, 749]. The interplay between Stimulator of
Interferon Response cGAMP Interactor 1 (STING) and
Nuclear Receptor Coactivator 4 (NCOA4) triggers ferri-
tin-phagocytosis mediated ferroptosis, culminating in an
amplified inflammatory response and impacting the tran-
scription factor [722]. Subsequent studies revealed that
HETO0016, a selective 20-HETE synthase inhibitor, could
reverse this mechanism [722]. Moreover, our body can
also alleviate sepsis by modulating ferroptosis. Sestrin
2 (Sesn2), a stress-responsive protein, inhibits ferropto-
sis in septic Dendritic Cells (DC) by downregulating the
ATF4-CHOP-CHACI1 signaling pathway [694]. Yes-asso-
ciated protein 1 (YAP1), a crucial regulator of the Hippo
signaling pathway, can disrupt the interaction between
NCOA4 and ferritin heavy chain 1 (FTH1) to inhibit lipid
peroxidation and ferroptosis [21]. Another investigation
found that adipose-derived stem cells (ADSCs) exosomes
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augment the expression of NRF2 and GPX4, resulting in
a relief of oxidative stress injury and ferroptosis in lung
tissue [696]. These studies collectively suggest that inter-
ference with ferroptosis can to some extent govern the
progression of sepsis. However, further relevant research
in this domain is still required to provide promising tar-
get insights and effective therapeutic agents for sepsis.

Viral infection
Viral hepatitis, a collection of infectious diseases primar-
ily evidenced by liver inflammation and necrotic lesions,
results from the influence of an array of hepatitis viruses
[750]. Several different viruses cause hepatitis, includ-
ing hepatitis A, B, C, D, and E. The hepatitis A and E
viruses typically cause acute infections. The hepatitis B,
C, and D viruses can cause acute and chronic infections
[751]. The transmission of viral hepatitis poses a pub-
lic health concern, and chronic infection can negatively
impact a person’s quality of life, leading to symptoms
and long-term complications [752]. Studies have shown
that ferroptosis may be involved in the development of
inflammatory responses, hepatocyte damage, and liver
fibrosis in the liver tissues of patients with viral hepatitis
[753]. The human hepatitis A virus 3C protease (3Cpro)
has been recently identified as the instigator of caspase-
independent cell death, with affected cells demonstrating
plasma membrane rupture, depletion of mitochondrial
potential, and mitochondrial and nuclear engorgement
[708]. Subsequent investigations unveiled that cell death
orchestrated by 3Cpro was proficiently obviated by fer-
roptosis inhibitors [708]. These findings infer that 3Cpro
expression provokes ferroptosis in human cells. HBV X
protein (HBx), a crucial HBV regulatory protein, bears
associations with oxidative stress and lipid peroxida-
tion [754]. In vitro and in vivo examinations revealed
that HBx curbed the expression of solute carrier family
3 member 2 (SLC3A2), amplifying liver toxicity and fer-
roptosis induced by d-galactosamine/lipopolysaccharide
(D-GalN) [649]. Nevertheless, the host also possesses
the capacity to curtail infection via ferroptosis induc-
tion. Oxidative degradation of cellular lipids drasti-
cally impedes hepatitis C virus (HCV) replication [691].
Yamane and colleagues posited that fatty acid desaturase
2 (FADS2) operates as a rate-limiting factor for ferrop-
tosis, with the escalated expression of FADS2 inhibiting
HCV replication’. Moreover, BWA4C, a 5-lipoxygenase
inhibitor, can endorse LPO restriction to limit HCV rep-
lication [691]. Despite the multitude of studies forging
connections between viral hepatitis and ferroptosis, addi-
tional research is mandated to cultivate pharmaceuticals
for these associated targets.

The COVID-19 pandemic in 2019 jolted the global
populace. The observation that augmented ferroptosis
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transpires in various tissues and cells impacted by
COVID-19 warrants significant attention. Han and his
team discovered that SARS-CoV-2 infection initiates
dysfunction in the human sinoatrial node (SAN)-like
pacemaker cells and induces ferroptosis [755]. Vitamin K
diminishes the levels of ROS by managing the expression
of antioxidant enzymes, proven to curtail lipid peroxi-
dation and inhibit ferroptosis, contributing to its thera-
peutic efficacy in COVID-19 patients [756]. Han and his
group, conducting drug screening utilizing Hesc-SAN-
like pacemaker cells, recognized imatinib and deferoxam-
ine as potential candidates for safeguarding pacemaker
cells against SARS-CoV-2 infection and ferroptosis [756].

One more instance pertains to AIDS. AIDS, caused by
the human immunodeficiency virus (HIV), is a chronic
infectious disease that primarily attacks the immune
system, specifically CD4* T cells [757]. As the virus
replicates and weakens the immune system, it signifi-
cantly compromises the body’s ability to defend against
infections and diseases [758]. In the context of HIV, it
has been observed that key markers of ferroptosis, such
as iron accumulation and lipid peroxidation, play a sig-
nificant role [759, 760]. In further research, Xiao and
colleagues documented that classical indicators of fer-
roptosis were discernible in CD4" T cells of HIV immune
non-responders, inclusive of increased lipid peroxidation
in mitochondria and destruction of mitochondrial struc-
ture [720]. Furthermore, Kannan and colleagues declared
that the HIV-1 Tat protein can upregulate ACSL4 expres-
sion, escalating lipid peroxidation, which results in the
discharge of proinflammatory cytokines and the acti-
vation of microglia730. Further studies disclosed that
miR-204 functions as an upstream regulator of ACSL4
and inhibits both HIV-1 TAT-mediated ferroptosis and
pro-inflammatory cytokine release [721]. These results
suggest that the HIV-1 Tat protein and miR-204 might
represent potential therapeutic targets against HIV infec-
tion. Consequently, the regulation of ferroptosis emerges
as a promising therapeutic target and strategy for com-
bating HIV. Nevertheless, further research is necessary to
elucidate this and provide treatment strategies targeting
ferroptosis for AIDS patients.

Other infection

In recent years, there has been growing evidence impli-
cating the involvement of ferroptosis in the pathogen-
esis of malaria [761], a persistent public health challenge
in economically disadvantaged regions, posing a grave
threat to the well-being and lives of local populations
[762]. Heather S Kain discerned that impeding GPX4 or
SLC7A11 precipitates a substantial reduction in malaria
liver-stage parasite infection [733]. Further, Erastin and
Sorafenib, inhibitors of SLC7A11, exhibit inhibitory
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actions on malaria [733]. Another study has shown that
desferriamine and lipstatin-1 can stimulate cellular lipid
peroxidation and the accumulation of unstable iron asso-
ciated with dead iron [763]. However, the role of fer-
roptosis in malaria remains murky. Further research is
required to elucidate the intricate interactions between
factors related to iron toxicity, malarial parasites, and
host immune response in order to combat this devastat-
ing infectious disease.

Regardless, extant studies of ferroptosis-pathogen
interactions remain relatively rudimentary. Moreover,
the understanding of the mechanism underlying the
pathogenic regulation of ferroptosis is still deficient in
certain areas. Particular pathogen infections necessitate
more rigorous investigation to provide novel therapeutic
strategies for the evolution of antiviral pharmaceuticals
or vaccines. A question that arises is how current medi-
cations ameliorate disease symptoms via iron-induced
death. For instance, the ferroptosis inhibitor, ferro-
statin-1, demonstrates a more pronounced inhibitory
effect on Mtb-induced ferroptosis than the reactivation
of GPX4 [700], intimating those other mechanisms may
participate in Mtb-induced ferroptosis. Recognizing
which cellular constituents are involved in the regula-
tion of pathogen-associated ferroptosis may likewise lay
the groundwork for drug screening initiatives designed to
treat infectious diseases.

Ferroptosis in iron-overload diseases

Iron-overload diseases represent a cluster of disorders
distinguished by the excessive accumulation of iron
within the body. Several circumstances such as genetic
aberrations, blood transfusions, or extended intake of
iron supplements can initiate an iron load that outstrips
the capacity of iron-binding proteins, precipitating tis-
sue damage [764, 765]. Common iron-overload maladies
encompass hereditary hemochromatosis, alcoholic liver
disease (ALD), chronic liver disease, and aplastic anemia
[766—768]. Left untreated, these diseases can cause seri-
ous health problems, including liver disease, heart dis-
ease, diabetes, and arthritis [767-769]

Iron-overload diseases can be divided into two cat-
egories: primary and secondary overload [770]. The
primary iteration, exemplified by hereditary hemochro-
matosis and juvenile haemochromatosis, predominantly
arises from genetic perturbations, which attenuate hep-
cidin levels and enhance bodily iron absorption, insti-
gating excessive iron deposition within internal organs
[767, 770-773]. Conversely, the pathogenesis of sec-
ondary iron overload predominantly originates from
ineffective hematopoiesis, induced by auto-anemic dis-
orders, leading to diminished secretion levels of hepci-
din and an upsurge in intestinal iron absorption, thereby
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engendering iron overload [774, 775]. Concurrently,
human blood transfusions liberate substantial quantities
of iron, culminating in an iron overburden [774].

Chronic liver disease

The liver, due to its inherent predisposition to oxidative
detriment, frequently presents with excessive iron accre-
tion, a quintessential characteristic pervading a plethora
of severe hepatic afflictions [776]. Studies have deline-
ated iron overload as a seminal feature of ALD [777, 778],
postulating that ethanol may engender liver iron overbur-
den through assorted mechanisms. These encompass the
activation of iron-regulatory proteins, thereby elevating
transferrin receptor expression, and the repression of the
transcription factor CCAAT/enhancer-binding protein
a(C/EBP«a) or bone morphogenetic protein (BMP)-medi-
ated Smad signaling pathways, resulting in attenuated
hepcidin expression [779-781].

This hepcidin downregulation fosters increased expres-
sion of the divalent metal transporter 1 and ferroportin
within the duodenum, culminating in enhanced intesti-
nal iron absorption [782, 783]. Hence, strategies aiming
to augment hepcidin or activate the transferrin receptor
may exhibit therapeutic potential [20, 778, 784]. Utili-
zation of specific antioxidants, such as vitamin E and
N-acetylcysteine (NAC), may relieve alcohol-mediated
C/EBPa inhibition in the liver, reduce hepcidin expres-
sion, and enhance DMTI1. Simultaneously, targeting
hepatic sirtuin 1 and cytochrome P450 2E1(CYP2E1)
may also provide therapeutic benefits in ALD, principally
through lipid peroxidation reduction [20, 785, 786].

Non-alcoholic fatty liver disease and steatohepatitis,
conversely, are characterized by iron-deficient hepato-
cytes and iron overload in hepatic stellate cells [787]. This
phenomenon occurs due to iron deficiency intensifying
hepatocyte lipogenesis and insulin resistance through
HIF2a-ATF4 signaling, while the accumulation of iron
engenders excess reactive oxygen species production,
thereby exacerbating liver fibrosis [787-789]. Iron che-
lators such as DFO can efficaciously reverse abnormal
lipid metabolism and hepatic damage induced by high-
fat, high-iron diets [790-792]. Therapeutic approaches
that aim to enhance NRF2 activity have been shown to
facilitate ubiquitination and proteasomal degradation of
target proteins, which are mediated by Kelch-like ECH-
associated protein 1, B-transducin repeat-containing pro-
tein, and/or HMG-CoA reductase degradation protein 1
[793]. Preventative measures such as Vitamin C, querce-
tin, mitochondrial ROS scavenger Mito-TEMPO, and
curcumol to thwart steatosis, and the utilization of iron
chelators or ferroptosis inhibitor liproxstatin-1 to main-
tain iron homeostasis, are favorable approaches to relieve
nonalcoholic fatty liver disease (NAFLD) [794—797].
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Table 13 Updated therapeutic targets of ferroptosis in iron-overload/ other diseases
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Diseases Therapeutic targets Models Potential mechanisms References
ALD FNDC3B In vivo/In vitro - Induce AMPK;inhibit lipid peroxidation [818]
RAGE In vivo/In vitro  Reduce steatosis, inflammation and oxidative stress [778]
of the liver, increase iron uptake (Tf/TfR) and storage
(Ferritin), and reduce iron output (FPN1/Hepcidin), affect-
ing the iron metabolism mechanism of hepatocytes
and macrophages
Hepcidin In vivo Downregulation of DMT1 and FPN expression, reducing ~ [782, 790]
iron absorption
SIRT1 In vivo NAD(+)-dependent protein deacetylase, Improved [20]
iron metabolism, increased liver glutathione content,
and reduced lipid peroxidation
Vitamin E and N-acetylcysteine In vivo/In vitro Antioxidants, abolish the alcohol-mediated down-regula- [779]
tion of C/EBPa binding activity and hepcidin expression
and up-regulate DMT1
CYP2E1 In vivo/In vitro  Reduce oxidative stress and acute liver injury [785]
FXR In vivo/In vitro - Regulate iron homeostasis, inhibit hepatotoxicity [819]
Epo In vitro Generate red blood cells, maintain iron homeostasis [820]
and metabolism;
Rnf217 In vivo/In vitro  The target of Tet1, mediates the ubiquitination and sub-  [783]
sequent degradation of FPN
NAFLD/NASH HIF2a-ATF4 In vitro Block hepatocyte EV secretion or deplete EV iron cargo,  [788]
restore liver iron homeostasis
PCBP1 In vivo/In vitro  Bind cytosolic iron and deliver it to iron enzymes for acti-  [821]
vation and to ferritin for storage
iGPX4 In vivo/In vitro - Interact with cGPX4 to facilitate the transformation [512]
of cGPX4, thus promotes ferroptosis
Nrf2 In vivo/In vitro - Regulate glutathione homeostasis, mitochondrial func-  [793, 809, 822]
tion, lipid metabolism
FRDA TfR1 In vivo/In vitro  Affects ISC-related proteins, delays Tf cycle, and affects [804]
iron homeostasis
FXN In vivo Reduce oxidative stress, increase ISC activity, maintain [807, 810, 823-826]
calcium homeostasis, and mitochondrial biological
function
PPARy In vivo Maintain mitochondrial function, inhibit lipid peroxida- [808]
tion
Nrf2 In vivo/In vitro  Regulate glutathione homeostasis, mitochondrial func-  [793, 809, 822]
tion, lipid metabolism
T2DM Epo In vitro Generate red blood cells, maintain iron homeostasis [820, 827]
and metabolism;
SYT7 In vivo/In vitro  Increase insulin, enhance  Cell function and glucose [815]
tolerance
MitoNEET In vitro Maintain energy metabolism, iron homeostasis, and free  [817]
radical production
NAF-1 In vitro Maintain insulin secretion, mitochondrial and ER struc- [814]
ture and function
Caveolin-1 In vivo/In vitro  Modulate Neuronal Ferroptosis-Mediated Mitochondrial ~ [512]
Homeostasis
Glrx5 In vivo/In vitro  Involved in the assembly of iron-sulfur clusters required ~ [816]
for complexes of the respiratory chain
OA GPX4 In vivo/In vitro  Regulate ferroptosis and ECM degradation [828, 829]
TRPV1 In vivo/In vitro  Promote the expression of GPX4 [828]
FGF23 In vivo/In vitro A critical phosphate-regulating hormone, response [830]
to low oxygen/iron
NCOA4 In vivo/In vitro  Interact with ferritin, increase autophagic degradation [831]

of ferritin and iron levels via JNK-JUN-NCOA4 axis
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Diseases Therapeutic targets Models Potential mechanisms References
B-thalassemia Tfr2 In vivo/In vitro  Balance red blood cell production, activate ferritin, [832,833]
and regulate erythropoietin signaling
TfR1 In vivo/In vitro  Affects ISC-related proteins, delays Tf cycle, and affects [834]
iron homeostasis
DN ACSL4 In vivo Reduce lipid peroxidation product MDA and iron content  [835]
CKD FGF23 In vivo/In vitro A critical phosphate-regulating hormone, response [830]
to low oxygen/iron
Inflammatory arthritis - Tfr2 In vivo/In vitro  Balance red blood cell production, activate ferritin, [832,833]

and regulate erythropoietin signaling

Abbreviations: ALD Alcoholic liver disease, FNDC3B Fibronectin type Il domain-containing protein 3B, AMPK Adenosine 5'-monophosphate-activated protein kinase,
RAGE Receptor for advanced glycation end products, Tf Transferrin, Tf Transferrin, TfR Transferrin receptor, FPN1 Ferroportin 1, DMT1 Divalent metal transporter 1,

SIRT1 Aberrant liver sirtuin 1, NAD Nicotinamide Adenine Dinucleotide, C/EBPa CCAAT-enhancer-binding protein a, CYP2ET Cytochrome P450 2E1, FXR Farnesoid X
receptor, Epo Erythropoietin, TET1 Tet-methylcytosine dioxygenase 1, NAFLD Nonalcoholic fatty liver disease, NASH Non-alcoholic steatohepatitis, HIF-2a Hypoxia-
inducible factor-2alpha, ATF4 Activating transcription factor 4, PCBP1 Poly rC binding protein 1, GPX4 Glutathione peroxidase 4, cGPX4 Canonical-GPX4, iGPX4
Inducible-GPX4, Nrf2 Nuclear factor erythroid 2-related factor 2, FRDA Friedreich ataxia, TfR7 Membrane transferrin receptor 1, ISC Iron sulfur cluster, FXN Frataxin,
PPARy Peroxisome proliferator-activated receptor gamma, T2DM Type 2 diabetes mellitus, SYT7 Synaptotagmin 7, MitoNEET/NAF-1 Human NEET proteins, Glrx5
Glutaredoxin 5, OA Osteoarthritis, ECM Extensive extracellular matrix, TRPV1 Transient receptor potential vanilloid 1, FGF23 Fibroblast growth factor 23, NCOA4 Nuclear
receptor coactivator 4, JNK Jun N-terminal kinase, Tfr2 Transferrin receptor 2, DN Diabetic nephropathy, ACSL4 Acyl-CoA synthetase long-chain family member 4, MDA

Malondialdehyde, CKD Chronic kidney disease

In conclusion, iron overload-induced chronic liver dis-
ease caused by iron overload is a complex condition that
requires multidisciplinary approaches for effective man-
agement. While current therapies aim to reduce iron
burden and relieve the harmful effects of oxidative stress
and inflammation, emerging therapies targeting specific
pathways involved in disease pathogenesis offer hope for
improved treatment outcomes in the future.

Brain iron accumulation

Cerebral iron accumulation, a prevalent comorbidity in
a multitude of cognitive and motor function disorders
such as AD, PD, multiple system atrophy, and multiple
sclerosis, is often evidenced by heightened iron deposi-
tion in the brain [469, 503, 798—803]. Yet, the mecha-
nistic comprehension of the correlation between this
accumulation and neurodegenerative disorders remains
insufficient [802].

Friedrich’s ataxia (FRDA), a monogenic recessive neu-
rodegenerative condition, is characterized by progressive
cerebellar and sensory ataxia, precipitated by the ampli-
fication of GAA repeats within the frataxin (FXN) gene,
which encodes for the mitochondrial protein frataxin
involved in iron-sulfur cluster biogenesis [804—806].
Frataxin deficiency can influence iron-sulfur cluster-
containing proteins, culminating in iron accumulation
within the brains and hearts of afflicted individuals [807].
The primary drivers of FRDA encompass aberrant iron
metabolism, mitochondrial dysfunction, and subsequent
oxidative damage [808].

Frataxin deficiency will curtail the availability of coen-
zyme A for TfR1 palmitoylation, while compounds such

as artesunate, coenzyme A, and dichloroacetate may ame-
liorate iron overload through the enhancement of TfR1
palmitoylation [804]. In FRDA, NRF?2 is typically down-
regulated, however, treating afflicted fibroblasts with
NRF2 inducers like EPI-743 and sulforaphane could rectify
iron deficiency and redox imbalance by targeting NRF2-
mediated iron homeostasis [809, 810]. Concurrently, the
utilization of leriglitazone and targeting of peroxisome-
proliferator-activated receptor gamma may serve as effica-
cious strategies to improve mitochondrial function, thus
offering a therapeutic avenue for FRDA [808, 811].

At present, an absolute remedy for FRDA remains elu-
sive, with extant treatment modalities merely offering
symptomatic relief. However, recent years have seen the
advent of innovative therapeutic stratagems encompass-
ing gene therapy, small molecule pharmaceuticals, and
cell-based interpositions, all of which imbue optimism
for the development of more efficacious treatment alter-
natives for afflicted patients.

10-associated endocrine diseases

Accumulating evidence implicates iron dysregulation as
a pivotal factor in the progression of an array of endo-
crine disorders, including those of the pancreas and kid-
neys [812, 813]. Within the pancreas, iron deficiency in
cells can result in diminished insulin secretion [813, 814].
Similarly, iron deficiency in the liver, adipose tissue, and
muscles can induce insulin resistance, thereby mediating
the onset and advancement of type 2 diabetes mellitus
(T2DM) (769, 813].
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Table 14 Updated compounds targeting ferroptosis in iron-overload/ other diseases
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Compounds

Diseases

Models

Function

References

Hepcidin peptide
4-Methylpyrazole

Vitamin E and N-acetylcysteine

GW4064

EWCDs

Curcumol

Vitamin C

Mito-TEMPO

LPT1
DFP

Artesunate, CoA, and dichloro-
acetate

EPI-743 and SFN
Au(8) -pXs

MIN-102 (INN: leriglitazone)

SNH6

DFX

Naringenin

Mitapivat

DFO, efonidipine, DFX FCT

DFO
Fer-1, deferiprone

Rosi

Esomeprazole

ALD

NAFLD

FRDA

T2DM

OA

B-thalassemic

HD, PVL, OA, NAFLD, DolC

DN

Hereditary anemias, liver iron-
overload

In vivo
In vivo

In vivo

In vivo

In vivo/In vitro

In vivo/In vitro

In vivo/In vitro

In vivo/In vitro

In vivo

In vivo

In vivo/In vitro

In vivo/In vitro
In vivo

In vivo

In vivo

In vivo/In vitro

In vivo/In vitro

In vivo

In vivo/In vitro

In vivo/In vitro
In vivo/In vitro

In vivo

In vivo

Increase expression of ferritin

Alcohol metabolism enzyme
inhibitors, inhibit C/EBPa
Reduce ferritin transcription

Antioxidants, reduce oxidative
stress, increase ferritin expres-
sion

FXR agonist, Regulate iron
homeostasis, inhibit hepato-
toxicity

Iron chelator, inhibit the pro-
duction of induced oxygen,
reduce endoplasmic reticulum
stress, and regulate NF-kB

Inhibit hepatocyte senescence
through YAP/NCOAA4, regulate
ferritinophagy

Inhibit PA/OA, induce steatosis
and maintains iron homeostasis

Reduce MtROS-mediated
ferroptosis, alleviate lipid
droplet accumulation and lipid
peroxidation

Regulate PANoptosis, prevent
steatosis

Iron chelator

Improve TfR1 palmitoylation,
decrease iron overload

Induce Nrf2

Improve mitochondrial reactive
oxygen species response

Increase frataxin, improve
mitochondrial function and cal-
cium homeostasis, inhibit lipid
peroxidation

Supplement NAD (+) and che-
late iron

Iron chelator, inhibit iron-
induced ferroptosis, driving
lipid peroxidation

Reduce oxidative stress
through the NRF2-HO-1 path-
way, alleviate cartilage damage
under iron overload

A pyruvate kinase activator,
Improve the burden of blood
transfusion and reduce iron
overload

Iron chelator, inhibit iron-
induced ferroptosis, driving
lipid peroxidation

Iron chelator

Inhibit cell death; Inhibiti lipid

peroxidation, Increase GPX4/
GSH levels

Reduce lipid peroxidation prod-
uct MDA and iron content

Proton pump inhibitor, reduce
liver iron content

[782]
[779]

[779,821]

[794]

[795]

[796]

[836]

[837]

[838]

[839]

[840-842]

[798, 819, 829, 843-845]
[556, 796, 812, 814, 829, 846-848]

[835]

[849]
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Table 14 (continued)
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Compounds Diseases

Models

Function References

DFAs Hemochromatosis, high iron In vivo
diet-induced/dextran-stimu-

lated iron accumulation

Metal-curcumin complexes FRDA, cancer, arthritis, osteopo-
rosis, and neurological disorders

such as AD

Empagliflozin T2DM, anaemia, chronic kidney  In vivo

disease

Momelotinib MF In vivo

HUCMSCs DMED In vivo

Pkd1 ADPKD

CPX, CPX-O PKD

Rosi DN In vivo

BCA IOKOA

Polydatin Gouty arthritis

In vivo/In vitro

In vivo/In vitro

In vivo/In vitro

In vivo/In vitro

In vivo/In vitro

I[ron chelator, inhibit iron-
induced ferroptosis, driving
lipid peroxidation

[845]

Remove iron, reduce oxidative
stress, enhance Fe-S clusters,
compensate for FXN deficiency,
improve the morphology

and function of mitochondria

(810, 850]

Empagliflozin; Increase

red blood cell production
and increase early iron utiliza-
tion

Regulate BMP6/ACVR1/SMAD
and IL-6/JAK/STAT3 pathways,
decrease hepcidin (master iron
regulator) expression, higher
serum iron and hemoglobin
levels, and restore erythro-
poiesis

Upregulate SLC7A11/GPX4,
reduce oxidative stress levels,
and reduce iron content

[851,852]

[853]

Increase 4HNE, promote

the proliferation of survived
Pkd1 mutant cells via activation
of Akt, S6, Stat3

Chelat iron, inhibit iron-
dependent enzymes, induce
ferritin degradation via ferritin-
ophagy

Reduce lipid peroxidation prod- [835]
uct MDA and iron content

[854]

RegulatE iron levels and NRF2/  [855]
System xc/GPX4 axis, scav-

enge free radicals and prevent

lipid peroxidation, regulate iron

homeostasis

Regulate PPAR-y and ferritin [856]

activation

Abbreviations: GW4064 the FXR agonist, ALD Alcoholic liver disease, C/EBPa CCAAT-enhancer-binding protein a, FXR Farnesoid X receptor, EWCDs Fluorescent egg
white-based carbon dots, NAFLD Nonalcoholic fatty liver disease, NF-Kb Nuclear factor kappaB, YAP Yes-associated protein, NCOA4 Nuclear receptor coactivator

4, PA/OA Palmitic acid (PA)/oleic acid (OA), Mito-TEMPO Mitochondrial ROS scavenger, LPT1 Ferroptosis inhibitor liproxstatin-1, DFP Iron chelator deferiprone, SFN
Sulforaphane, CoA Coenzyme A (CoA), Nrf2 Nuclear factor erythroid 2-related factor 2, TfRT Membrane transferrin receptor 1, Au8-pXs ROS detoxifying gold quantum
clusters, FRDA Friedreich ataxia, SNH6 6-methoxy-2-salicylaldehyde nicotinoyl hydrazone, NAD Nicotinamide Adenine Dinucleotide, DFX Deferoxamine, T2DM Type

2 diabetes mellitus, OA Osteoarthritis, HO-1 Heme oxygenase-1, DFO Deferiprone, Fer-1 Ferrostatin-1, HD Huntington'’s disease, PVL Periventricular leukomalacia,
DolC Doxorubicin DOX-induced cardiotoxicity, GSH Glutathione, DN Diabetic nephropathy, MDA Malondialdehyde, DFAs new deferric amine compounds, FXN

Frataxin, BMP6 Bone morphogenetic protein 6, ACVR1 Activin A receptor type |, SMAD Suppressor of Mother against Decapentaplegic, /L-6 Interleukin-6, STAT3 Signal
Transducer And Activator Of Transcription 3, MF Myelofibrosis, HUCMSCs Human umbilical cord mesenchymal stem cells, SLC7A11 Glutamate-cystine-exchanger Xct,
DMED Diabetic mellitus erectile dysfunction, Pkd1 Gene encoding polycystin-1, ADPKD Autosomal dominant polycystic kidney disease, 4HNE 4-hydroxynonenal, AKT
Akermanite, S6 Phosphorylated ribosomal S6 protein, CPX Ciclopirox, CPX-O Ciclopirox’s olamine salt, PKD Polycystic kidney disease, Rosi ACSL4 inhibitor rosiglitazone,

BCA Biochanin, IOKOA Iron overload-induced KOA, PAESe Phenylaminoethyl selenides, PPAR-y Peroxisome proliferator activated receptor gamma

Research has revealed that iron overload inhibits
insulin secretion and compromises islet  cell function
through the downregulation of synaptotagmin 7 (SYT7),
both in vivo and in vitro models [815]. This suggests
SYT7might present a potential therapeutic target for
T2DM. Furthermore, free fatty acids, hyperglycemia,
and inflammatory cytokines are principal mediators of

B-cell toxicity inT2DM, impairing mitochondrial metab-
olism [816]. Preservation of mitochondrial homeostasis
through glutaredoxin 5, caveolin-1, and mitochondrial
electron transport can relieve the impacts of T2DM
[512, 816, 817].

In summation, iron overload-induced T2DM embod-
ies a multifaceted condition encompassing an array of
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mechanisms, inclusive of oxidative stress, inflamma-
tion, and mitochondrial dysfunction. Existing thera-
peutic options remain limited, necessitating innovative
therapeutic strategies such as antioxidant therapy and
targeted interventions. To develop more efficacious
treatments, an intricate understanding of the under-
lying pathophysiological mechanisms remains para-
mount. At present, phlebotomy, iron modulator
supplementation, and iron chelation therapy stand as
the primary modalities to mitigate excessive iron accu-
mulation. Clarifying the root cause of iron overload
could indeed enhance clinical therapeutics. Notably,
iron overload within the body can precipitate a wide
array of organ complications, with numerous specific
mechanisms still awaiting elucidation. The future tra-
jectory of iron overload disease management may well
lie in employing targeted pharmaceuticals and synthe-
sizing drug complexes from these specific materials.
Potential therapeutic targets and compounds are duly
summarized in Tables 13 & 14.

Conclusion and perspective

Ferroptosis, a form of regulated cell death characterized
by iron-dependent accumulation of lipid hydroperoxides,
has emerged as a significant area of study in cell biology
and disease research. It is distinct from other forms of
cell death such as apoptosis, necrosis, and autophagy, and
is tightly linked to numerous biological processes, includ-
ing amino acid, iron, and polyunsaturated fatty acid
metabolism, and the biosynthesis of glutathione, phos-
pholipids, NADPH, and CoQ10 [9, 857].

The role of ferroptosis in pathological cell death asso-
ciated with degenerative diseases, carcinogenesis,
stroke, intracerebral hemorrhage, traumatic brain injury,
ischemia—reperfusion injury, and kidney degeneration is
increasingly being recognized [10, 858—861]. Moreover,
the potential of ferroptosis as a tumor-suppressor func-
tion that could be harnessed for cancer therapy is an
exciting development.

However, the strategies for tumor suppression and organ
injury are fundamentally incongruous. Additional elucida-
tion of the mechanisms of iron-dependent cellular death at
every disease stage can equip us with more precise preven-
tative and therapeutic strategies. In addition, other forms
of cellular death, such as cuproptosis, have been discov-
ered. The roles that these various forms of cell death play
in disease processes warrant further exploration.

Therefore, Future investigations in the field of ferrop-
tosis should focus on further elucidating the molecu-
lar mechanisms underlying this form of cell death. This
includes understanding the roles of key regulators such
as GPX4, FSP1, NRF2, NADPH oxidase, and p53 in
ferroptosis.
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Hitherto, an array of compounds targeting essential
proteins have been deployed to either promote or inhibit
ferroptosis, though little has been found in clinical appli-
cation. Hence, the development of effective therapeutic
strategies to modulate ferroptosis could have significant
implications for the treatment of a wide range of diseases,
including cancer and neurodegenerative disorders. The
potential of ferroptosis inhibitors in protecting against
pathological conditions such as acute kidney injury also
warrants further exploration. Whether multi-target
therapy will also seize a prominent position in this field
remains a topic of ongoing research.

Moreover, the identification of ferroptosis markers is
crucial in differentiating them from cell death induced
by oxidative stress and in guiding the development and
evaluation of ferroptosis-specific drugs. Assuring safety,
efficacy, minimizing off-target effects, and ensuring effec-
tive drug delivery present formidable challenges to ongo-
ing research.

In general, a deeper understanding of the specific
mechanisms of ferroptosis in different diseases and inter-
ventions targeting ferroptosis at various stages of disease
progression will provide valuable insights and inform
more accurate prevention and treatment strategies for
patients.
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