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Abstract: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and
sleep disordered breathing (SDB) is a treatable risk factor that has been seen to occur concurrently,
and is known to propagate mortality and morbidity in a number of cardiovascular disease states
including heart failure, and indeed hypertrophic cardiomyopathy. In this review, we summarize past
studies that explored the simultaneous occurrence of HCM and SDB, and the pathophysiology of
SDB in relation to heart failure, arrhythmias, cardiac ischemia and pulmonary hypertension in HCM.
The current therapeutic modalities, with the effect of obstructive sleep apnea (OSA) treatment on
HCM, are then discussed along with potential future directions.
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1. Introduction

Hypertrophic cardiomyopathy (HCM) has been a known cause of cardiac morbidity and mortality
with the first pathological report documented in the 1950s by Teare [1] at St. George’s Hospital,
London. Following this, Braunwald and colleagues described the clinical profile of the condition [2],
and over the ensuing years various names like idiopathic hypertrophic subaortic stenosis (IHSS) and
hypertrophic obstructive cardiomyopathy (HOCM) were coined, describing what was believed to be
the hallmark features of obstruction [3]. HCM is presently recognized as the commonest inherited
cardiac condition, where population studies have estimated the prevalence of HCM in the population
to be at least one in 500 [4]. Contemporary guidelines define HCM as a condition characterized by
unexplained left ventricular (LV) hypertrophy that is not explained by abnormal loading conditions
and occurs in the absence of another cardiac or systemic disease that would be capable of producing
the magnitude of hypertrophy seen in a patient [3]. In the clinical setting, HCM is said to be highly
likely in the presence of asymmetric LV wall thickening (≥15 mm on echocardiography) [3]. The
majority of adult HCM is due to sarcomeric gene mutations, inherited in an autosomal dominant
fashion, with variable penetrance and clinical heterogeneity. However, 5–10% of adult cases are
caused by various other genetic conditions including hereditary neuromuscular and metabolic diseases,
chromosomal abnormalities and genetic syndromes, which may have different degrees of skeletal
muscle involvement. In pediatric populations, sarcomeric causes dominate, but non-sarcomeric causes
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are more frequent than in adults [5], and can be associated with more severe disease and earlier
expression [6].

An apnea is the absence of inspiratory airflow for at least 10 s. Hypopnea on the other hand, is a
reduction in airflow lasting 10 s or longer, which is associated with a fall in arterial oxyhemoglobin
saturation or an arousal. Obstructive sleep apnea (OSA) is an acquired clinical condition, defined as a
≥10 s pause in respiration associated with ongoing respiratory effort. A diagnosis is made when a
patient has an apnea–hypopnea index (AHI: Number of apneas and hypopneas per hour of sleep) of
>5 with increased daytime sleepiness [7]. Snoring and wake-time sleepiness are the most common
manifestations of OSA; however, although they are relatively sensitive, they lack specificity [8].

OSA is a significant reversible cause of many cardiovascular diseases including hypertension [9],
myocardial infarction [10], atrial fibrillation (AF) [11,12], sudden cardiac death (SCD) [13] and renal
disease [14]. Most importantly, it is known to be associated with an increased arrhythmia risk in both
normal populations and in populations with established cardiovascular diseases such as ischemic
heart disease and heart failure [15,16]. There exist a number of mechanisms by which morbidity and
mortality in hypertrophic cardiomyopathy may be advanced by the presence of sleep apnea, as has
been demonstrated in heart failure patients. Given the limited advances in treatment of hypertrophic
cardiomyopathy over the past two decades, this is an important potential avenue for treatment and
warrants further exploration.

Here, we review the literature on OSA and its role in HCM patients, with an emphasis on
symptoms, heart failure, outflow tract obstruction, AF, ventricular arrhythmias (VA) and SCD. We also
seek to identify potential challenges and opportunities in understanding the role OSA plays in adult
HCM patients, along with its future directions in investigation and management.

2. Review Criteria

To explore all studies looking at the association between sleep disordered breathing (SDB) and
HCM, a search for articles published between 1st January 1980 and 1st November 2019 were included in
the MEDLINE database. The following key words were used: sleep-disordered breathing, obstructive
sleep apnea, central sleep apnea, cardiomyopathy and hypertrophic cardiomyopathy. All studies were
carefully examined for methodology used in recruitment, diagnosis and assessment of cardiovascular
outcomes in HCM patients with OSA.

3. Prevalence of Sleep Disordered Breathing (SDB) in Hypertrophic Cardiomyopathy (HCM)

An increased prevalence of SDB (as defined in Appendix A.) has been observed in both adult
and pediatric populations. Among the pediatric population, a pilot study [17] with overnight
polysomnography (PSG) showed that 48% of 21 patients had SDB. Among these, 24% had central sleep
apnea (CSA) while the remaining had OSA.

Among adults, the first evidence of increased prevalence of sleep apnea in HCM was published
by Banno et al. [18], where among patients with different cardiomyopathies, 15 patients with HCM
were studied. Overnight PSG done in these patients showed seven (47%) patients to have OSA; no
patient was found to have CSA.

Following this, as in Figure 1, four observational studies published between 2009 and 2011 showed
the prevalence of SDB to range from 32% to 71% [19–22]. Although the prevalence of SDB was clearly
high in these studies, these studies utilized overnight oximetry or a type III portable monitor to diagnose
SDB. These studies are not as sensitive and specific in diagnosing and classifying SDB as overnight
PSG, and overnight oximetry cannot reliably distinguish between central and obstructive forms.

Additionally, as shown in Table 1, the majority of patients in all four studies were largely male,
elderly and had relatively higher body mass indices (BMI). This may reflect a selection bias as well
as changes in temporal trends. Patients referred for overnight oximetry or PSG were likely selected
on the basis of clinical symptoms, body habitus and pre-test probabilities, thus demonstrating a
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higher diagnostic yield. These studies therefore provided estimated frequencies and not prevalence or
incidence given non-representative biased sample sizes, without controls.
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Table 1. Summary of all published studies assessing sleep disordered breathing in patients with
hypertrophic cardiomyopathy (HCM). Baseline characteristics are included.

Author Prinz et al. Konecny et al. Pedrosa et al. Eleid et al.

Year published 2011 2010 2010 2009

Patients (n) 63 91 80 100

HCM patients n (%) 63 (100) 91 (100) 80 (100) 100 (100)

Age (years) 59 (34–85) 52 (20–83) 47 (32–58) 55 (44–75)

Male (%) 63 68 49 59

OSA n (%) 44 32 40 71

BMI mean (range)
(kg/m2) 26.9 (21.4–32.4) 31 (26–36) 26.4 (17–35.8) 31.1 (24.6–37.6)

Method used Portable monitor Overnight
oximetry Portable monitor Overnight

oximetry

Criteria used

American
Academy

of Sleep Medicine
1999 criteria

>5 events/hr of
decrease in O2
saturation of at
least 4%, with a

threshold of 90%

American
Academy

of Sleep Medicine
1999 criteria

>5 events/hr of
decrease in O2
saturation of at
least 4%, with a

threshold of 90%

RDI/ODI (events/h) 34.8 (2.3–67.3) 8.6 9.2 (4.1–24.8) N/A

Nadir SpO2 (%) N/A N/A 84 (78–88) N/A

HCM-Hypertrophic cardiomyopathy; OSA-Obstructive sleep apnea; BMI-Body mass index; RDI-Respiratory
disturbance index; ODI-Oxygen desaturation index.

As recently as 2019, Patel et al. [23] did a retrospective study where they looked at 94 patients
with HCM who underwent clinical PSGs and found 80% of patients to have OSA, 6.6% to have a
combination of OSA and CSA and 1.1% to have CSA alone. A major shortcoming of the study was the
presence of a referral bias where there was a high pretest probability for SDB and thus these patients
were selectively sent for PSG.
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4. Cardiovascular Diseases and Obstructive Sleep Apnea (OSA)

4.1. Pathophysiology

There is increasing evidence suggesting that OSA increases the likelihood of cardiovascular risk
factors to which HCM patients are uniquely susceptible. As shown in Figure 2, pathophysiological
mechanisms implicated include: (1) increased sympathetic activity, driven mainly by recurrent apneas
during sleep [24]; (2) altered cardiovascular variability, with OSA patients having decreased heart rate
variability and an elevated blood pressure variability [25]; (3) vasoactive substance release, precipitated
by hypoxemic stress [26]; (4) triggering of systemic inflammation [27]; (5) insulin resistance and glucose
intolerance independent of BMI [28].

OSA is known to increase the risk of factors that contribute to morbidity and mortality in HCM
including arrhythmias, myocardial hypertrophy and sudden cardiac death [29]. As shown in Figure 2,
factors that contribute to the pathophysiology of OSA are also strongly relevant to the natural history
of HCM. Additionally, there is increasing evidence that OSA may increase cardiovascular risk in
non-HCM cardiovascular conditions such as heart failure and coronary artery disease, and there have
been suggestions to introduce screening for SDB in HCM patients to mitigate this risk [30]. More
recent studies provide support for implementing these practices on the bedside. The following section
reviews key relationships between OSA and cardiovascular diseases relevant to HCM.

Figure 2. Pathophysiological interaction between obstructive sleep apnea (OSA) and HCM.

4.1.1. Heart Failure

Wang et al. [31] showed that of the 164 heart failure patients (but not HCM) studied with
overnight PSG, 26% had an AHI ≥ 15 and three months of continuous positive airway pressure (CPAP)
attenuated abnormalities in diastolic function. It was observed that nocturnal oxygen desaturation
also independently predicted dysfunctional ventricular relaxation during diastole [32].
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In HCM, most patients manifest an HFpEF phenotype, while others develop HFrEF at a later
stage [3]. HCM patients may have a high prevalence of heart failure, where one study [33], among
a cohort of 1000 patients with a confirmed diagnosis of HCM, showed a nearly 50% prevalence of
heart failure with mild to severe symptoms. Another study [34], with a larger cohort of 3208 patients,
showed a heart failure prevalence of 67%. OSA can also cause the progression of heart failure through
multiple mechanisms [14,29] including: (1) increased adrenergic outflow to kidney, heart and vessels;
(2) acute and chronic increase in afterload; and (3) increased right ventricular afterload. Progression of
heart failure in HCM patients is usually due to severe LV obstruction or adverse LV remodeling, which
are both exacerbated by OSA.

There is evidence to suggest that the increased negative intrathoracic pressure seen in OSA
increases transmural pressures across the ventricles, atria and aorta, which could further aggravate
LV remodeling and worsen LV obstruction [35]. Furthermore, tissue Doppler imaging studies with
Dobutamine stress echocardiography have suggested that OSA may reduce myocardial contractile
reserve [36].

4.1.2. Coronary Artery Disease

Histopathological analysis at post-mortem in HCM patients with SCD demonstrates extensive
evidence of myocardial damage [37]. Evidence of all phases of both acute (coagulative necrosis and
neutrophilic infiltrate) and subacute (myocytolysis and granulation tissue healing) myocardial ischemia
with septal fibrotic scar presence were found in 74% of cases and did not correlate topographically
with a major coronary artery. No patients demonstrated significant major epicardial atherosclerotic
coronary artery stenosis. However, four out of 19 patients had deep myocardial bridging of the left
anterior descending artery.

A number of potential mechanisms have been suggested for microvascular dysfunction in HCM
including decreased arteriolar density, fibrosis, myofibril disarray and elevated LV end-diastolic
pressure (LVEDP) [38,39]. Reduced diastolic compliance secondary to progressive hypertrophy and
disarray increasing stiffness may lead to reduced coronary micro-circulation filling [40]. Myocardial
bridging with coronary artery compression may also be implicated.

Abnormal intramural coronary arteries with severely thickened walls and marked luminal
narrowing have been found at rates of 20 times more frequently in HCM patients at autopsy than
in controls [41]. Intimal hyper-proliferation alongside medial hypertrophy and subsequent luminal
narrowing may further ischemia. All of the above, paired with excess myocardial oxygen demand
caused by significant LV hypertrophy, may explain the presence of acute as well as chronic changes
of ischemia.

A single center cohort study assessed myocardial blood flow (MBF) via positron emission
tomography (PET) scan in 51 HCM patients (of whom 14 complained of typical anginal symptoms)
once normal coronary arteries had been confirmed via invasive coronary angiography and compared
this with 12 control patients complaining of atypical chest pain [42]. MBF was found to be severely
reduced in HCM patients as compared to controls.

The degree of impairment was found to be similar in the intraventricular septum as well as LV free
wall. There was no significant difference in MBF based on the presence or absence of anginal symptoms
nor left ventricular outflow tract (LVOT) obstruction. Those patients with the most severely reduced
MBF were most likely to have progressed to NYHA class III/IV symptoms or require ICD implantation
due to development of life-threatening ventricular arrhythmia or to have died from cardiovascular
causes after follow-up (average 8.1 years). Severely reduced MBF was later found to be a strong
predictor (94% negative predictive value) of progression of adverse ventricular remodeling and systolic
impairment even in those who had normal LV cavity sizes and function at initial evaluation [43].
Although the role of SDB on coronary perfusion has been well studied [10,44,45], there are few studies
that determine the effect SDB on MBF in HCM.
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4.1.3. Arrhythmias

Atrial Fibrillation:
Atrial fibrillation (AF) is the most common sustained arrhythmia in HCM, approximately 25% of

HCM patients will develop AF [46]. While left ventricular filling rates remain unchanged in HCM, the
degree of left ventricular filling occurring passively is reduced due to non-compliance. Left ventricular
diastolic filling is maintained through increased atrial systolic contribution (31% in HCM patients
vs 16% in healthy subjects). This explains why AF is poorly tolerated in HCM. A faster heart rate
associated with AF will also lead to reduced diastolic filling time [47]. Higher left atrial pressures and
ongoing structural changes correlate with the increasing incidence of AF. Increased atrial interstitial
fibrosis is a hallmark of atrial remodeling and a cause of electrical disruption, leading to delayed
intra-atrial and inter-atrial conduction [48].

In a porcine model, repeated negative tracheal pressure induction during tracheal occlusion
reproducibly shortened atrial refractory period length and significantly increased AF inducibility as
well as premature atrial contraction, considered precursors to onset of paroxysms of AF. Vagotomy,
atropine or beta blocker administration all influenced said changes, suggesting that these were
secondary to sympatho-vagal imbalance [12,49]. When exposed to isolated hypercapnia, a sheep
model demonstrated prolongation of the atrial effective refractory period (AERP). While this reduced
the likelihood of AF during the period of hypercapnia itself, this was significantly elevated during
the period of return to eucapnia [11]. Isolated hypoxia in a rabbit model has been seen to reduce
conduction velocity and prolong the refractory period whist reducing homogeneity in conduction as
well as inducing pulmonary vein potentials predisposing to atrial arrhythmias including AF [50,51].

Intrathoracic pressure swings caused by intermittent collapse of the airway in OSA induce changes
in cardiac transmural pressure and myocardial stretch, particularly affecting the thin-walled atria [52].
Induced negative intrathoracic pressures during repeated Mueller maneuvers (attempted inspiration
against a closed glottis) have demonstrated similar changes in atrial dimensions [53].

Interestingly, however, a temporal link between SDB and paroxysms of AF has been demonstrated,
suggesting that chronicity and atrial remodeling may not be the only factors inducing OSA-related
AF, but also that acute apneic changes may be to blame. These could include blood gas changes,
intrathoracic pressure changes or sympatho-vagal imbalance. Indeed, direct recordings of sympathetic
nerve activity alongside respiration and blood pressure have demonstrated high levels of resting
sympathetic activity during wakefulness and normoxia in OSA. During periods of apnea, hypoxemia
and hypercapnia induce further increases in sympathetic activity and surges in systolic blood pressure,
both of which were seen to normalize with CPAP treatment [54,55].

Ventricular Arrhythmias:
Hypertrophic areas of ventricular myocardium in HCM display fibrotic changes with significant

myocyte disarray. These areas show abnormal electrical conduction with reduced voltage potentials.
Acute and sub-acute myocardial ischemia and the associated necrotic changes and those associated with
sleep disordered breathing predispose to arrhythmogenesis of which mechanisms include abnormal
automaticity with spontaneous electrical impulse formation and propagation, triggered automaticity
related to hypoxemia or acidemia, as well as re-entrant circuits [56].

A recent study by Wang et al. [57] investigated the association between non-sustained ventricular
tachycardia (NSVT) and OSA in HCM patients, as well as echocardiographic differences between
HCM patients with and without OSA. A total of 130 HCM patients underwent polysomnographic
examination as well as holter monitoring for 24 h and echocardiography. A higher prevalence of NSVT
and supraventricular tachycardia (SVT) was seen to be associated with those HCM patients diagnosed
with OSA. HCM patients with OSA of increased severity were seen to have a higher prevalence of
NSVT as well as SVT.

HCM patients without OSA had a prevalence of NSVT of 12% and SVT of 21% as compared to
those with severe OSA (AHI > 30) with a prevalence of NSVT of 54% and SVT of 54%. Interestingly,



J. Clin. Med. 2020, 9, 901 7 of 13

multivariate analysis demonstrated only family history of HCM or of sudden cardiac death to be
independent factors for NSVT with age and left atrial diameter being independent factors for SVT.

In the setting of HCM and its associated subendocardial ischemia, tachycardia driven by excessive
sympathetic activation brought about by sleep apnea may further exacerbate ischemia, potentiating
the substrate for arrhythmia [57] Certainly, the presence of NSVT has been confirmed as an established
risk factor for SCD in HCM as well as for the risk of receiving appropriate shock therapy in HCM
patients with a defibrillator in situ [58,59].

4.1.4. Pulmonary Hypertension

Pulmonary hypertension (PH) is characterized by a mean pulmonary artery pressure
≥25 mmHg [60]. PH may develop in patients with HCM, where diastolic dysfunction and mitral
regurgitation (secondary to LVOT obstruction) can cause high diastolic pressure in the left side of
the heart. Wu et al. [61] showed that HCM patients have a PH incidence of 12.3%. Following this,
Musumeci et al. [62] retrospectively analyzed 361 diagnosed HCM patients with echocardiography
where they observed 41 patients (11.4%) with PH diagnosed with an elevated pulmonary artery
systolic pressure (PASP). They also showed that PH was associated with an unfavorable HCM-related
morbidity and mortality risk

PH in HCM is found to be more commonly post-capillary PH than precapillary PH due to an
increased left atrial pressure [63]. Sleep apnea could have a contributory role as OSA has been linked
to increased left atrial size in HCM, particularly in obstructive HCM [19]. Ong et al. [64] studied a
cohort of 1570 patients with HCM who were followed for 3.3 years and observed that a third of these
patients had concomitant PH and this was associated with an increased mortality risk. Regarding
treatment of OSA, Nerbass et al. [65] examined the role of nasal CPAP in HCM patients and reported
that obstructive HCM patients have an elevation in pulmonary artery pressure when on CPAP. These
data require further exploration.

5. Treatment

5.1. Current Treatment Modalities for HCM

The ACCF/AHA hypertrophic cardiomyopathy guidelines [3] state that the most common
presentations are: (1) atrial fibrillation, where it is associated with greater risk of stroke and systemic
thromboembolism; (2) heart failure, which may be progressive and is characterized by exertional
dyspnea; this may progress to end stage with LV remodeling and systolic dysfunction; and (3) SCD
due to ventricular arrhythmias.

5.2. Prevention of SCD

Initial and periodic (every 12 to 24 months) SCD risk stratification is recommended, where personal
history of arrhythmias, family history of SCD (including ICD therapy for ventricular arrhythmias),
unexplained syncope, NSVT, left atrial diameter and LV wall thickness ≥30 mm are considered. The
HCM risk SCD [66] is a risk prediction model for HCM that had been used to direct the use of
implantable cardioverter defibrillators (ICDs) for the prevention of SCD. The risk prediction has been
extensively tested for validation and shown to be the best available risk predictor [67,68]. As of now,
OSA is not part of the ESC risk calculator, but it could become a part of the prediction model in the
future when studies could potentially show evidence of OSA increasing SCD risk.

Other risk modifiers that are considered are: (1) late-gadolinium enhancement (LGE) on cardiac
MRIs [69], (2) double mutations with compound heterozygotes and digenic carriers [70], (3) marked
LVOT obstruction (Gradient ≥ 30 mmHg), and (4) LV apical aneurysms with LGE [71].
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5.3. Therapy

The guidelines recommend (Class I) that asymptomatic patients be treated for their conditions
that may contribute to cardiovascular morbidity (e.g., hypertension, diabetes, hyperlipidemia and
obesity). In symptomatic patients, the guidelines suggest both pharmacologic and invasive measures.

Class I pharmacological measures include beta-blocker medications for the treatment of symptoms
like angina or dyspnea, where if low doses are ineffective, the dose is titrated to a heart rate (resting) of
less than 60–65 bpm. The use of verapamil is recommended for patients who do not respond to beta
blocking drugs. IV phenylephrine is recommended for the treatment of obstructive HCM patients
with acute hypotension unresponsive to fluid administration.

Other (Class IIa and IIb) recommendations include adding disopyramide, diltiazem and diuretics
for symptoms in patients who do not respond to Class I therapies. Invasive therapies like surgical
myectomy or alcohol ablation are recommended for the treatment of eligible patients with severe
drug-refractory symptoms and LVOT obstruction.

5.4. Effects of OSA Treatment on HCM

CPAP therapy remains the most commonly used and gold standard therapy for OSA. Peker
et al. reported a significantly elevated risk of developing of cardiovascular diseases in patients with a
history of OSA in the absence of hypertension or cardiovascular disease at baseline with a significant
reduction in CVD incidence (OR 0.1) with effective treatment of OSA [72]. Milleron et al. reported
significant lower rates of major adverse cardiovascular events (MACE) (defined as a composite of death,
myocardial ischemia, acute exacerbation of heart failure or the need for coronary revascularization) in
patients with a history of significant CAD and OSA treated with CPAP therapy versus those that were
not [73].

When studying 26 patients with HCM—both obstructive and non-obstructive—and the acute
effects of 10cm H2O CPAP administration vs sham CPAP, the earlier referenced Nerbass study found
no changes in blood pressure, cardiac output/stroke volume, ejection fraction or LVOT gradient. Right
atrial size was reduced; however, the right ventricular outflow acceleration time was significantly lower,
presumably because of an increase in pulmonary artery pressure. Interestingly, left atrial size was
acutely reduced in obstructive HCM patients [65]. Indeed, recurrent negative intra-thoracic pressures,
hypoxia, and hypercarbia, as well as resultant acidosis, may potentiate pulmonary hypertension.

Altered adrenergic signaling has been reported in both sleep apnea as well as HCM. This has been
suggested as one potential mechanism for remodeling seen in HCM; OSA-related hypoxemia—which
corrects with CPAP therapy—has also been implicated in the pathogenesis of fibrosis and progression
of HCM with OSA [74]. Early data from our ongoing prospective study showed an increased 24-h
urine norepinephrine level.

Systemic blood pressure and sympathetic activity are improved with CPAP therapy, and there is
evidence that CPAP therapy may in fact reverse or slow progression of left ventricular hypertrophy [75].
Hence, there is strong precedent to support further research on the downstream effects of treatment of
OSA in HCM patients.

6. Future Direction

Sleep apnea has a high prevalence in the general population and is a recognized independent
risk factor for hypertension, CAD, AF, VA, myocardial infarction, HF and SCD. Observational studies
and our ongoing prospective research demonstrate a high frequency of SDB in HCM, a condition
associated with a higher than expected frequency of angina, HF syndrome, AF, VA and SCD. The
two conditions occurring together pose a particularly unique and exciting challenge in that they may
potentiate altered cardiovascular hemodynamics: HCM with obstruction resulting in intra-cavity
gradients, diastolic dysfunction, atrial remodeling and an atrial cardiomyopathy and OSA inducing left
atrial stretch, changes in intrathoracic pressure affecting venous return and altered neural circulatory
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control with increased sympathetic drive. Investigating the structural and physiological changes in
HCM with and without sleep apnea using state-of-the-art imaging and physiological assessment affords
the opportunity to investigate and define pathophysiology in a hitherto relatively unexplored area.
How OSA interacts with more recent risk modifiers, such as late gadolinium enhancement, awaits
further investigation. Most important, however, is whether effective treatment of OSA may improve
outcomes in HCM, a question that awaits the initiation and completion of randomized controlled trials.
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Appendix A

Supplement 1 Definitions. Sleep disordered breathing (SDB): Defined according to the American
Academy of Sleep Medicine (AASM) criteria where an apnea is the absence of inspiratory airflow
for at least 10s. Hypopnea on the other hand, is a decrease in airflow lasting 10s or longer, which is
associated with a drop in arterial oxyhemoglobin saturation or an arousal.

References

1. Teare, D. Asymmetrical hypertrophy of the heart in young adults. Br. Heart J. 1958, 20, 1–8. [CrossRef]
2. Braunwald, E.; Lambrew, C.T.; Rockoff, S.D.; Ross, J., Jr.; Morrow, A.G. Idiopathic hypertrophic subaortic

stenosis. I. A description of the disease based upon an analysis of 64 patients. Circulation 1964, 30, 3–119.
[CrossRef]

3. Gersh, B.J.; Maron, B.J.; Bonow, R.O.; Dearani, J.A.; Fifer, M.A.; Link, M.S.; Naidu, S.N.; Nishimura, R.A.;
Ommen, S.R.; Rakowski, H.; et al. 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of
Hypertrophic Cardiomyopathy. Circulation 2011, 124, e783–e831.

4. Maron, B.J.; Gardin, J.M.; Flack, J.M.; Gidding, S.S.; Kurosaki, T.T.; Bild, D.E. Prevalence of hypertrophic
cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in
the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 1995, 92, 785–789.
[CrossRef]

5. Maron, B.J.; Spirito, P.; Wesley, Y.; Arce, J. Development and progression of left ventricular hypertrophy in
children with hypertrophic cardiomyopathy. N. Engl. J. Med. 1986, 315, 610–614. [CrossRef]

6. Colan, S.D.; Lipshultz, S.E.; Lowe, A.M.; Sleeper, L.A.; Messere, J.; Cox, G.F.; Lurie, P.R.; John Orav, E.;
Towbin, J.A. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: Findings
from the Pediatric Cardiomyopathy Registry. Circulation 2007, 115, 773–781. [CrossRef]

7. Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical
Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of
Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [CrossRef]

8. Myers, K.A.; Mrkobrada, M.; Simel, D.L. Does this patient have obstructive sleep apnea? The Rational
Clinical Examination systematic review. J. Am. Med. Assoc. 2013, 310, 731–741. [CrossRef]

9. Venkataraman, S.; Vungarala, S.; Covassin, N.; Somers, V.K. Sleep Apnea, Hypertension and the Sympathetic
Nervous System in the Adult Population. J. Clin. Med. 2020, 9, 591. [CrossRef]

10. Lee, C.-H.; Khoo, S.-M.; Chan, M.Y.; Wong, H.-B.; Low, A.F.; Phua, Q.-H.; Richards, A.M.; Huay-Cheem, T.;
Tiong-Cheng, Y. Severe Obstructive Sleep Apnea and Outcomes Following Myocardial Infarction. J. Clin.
Sleep Med. 2011, 7, 616–621. [CrossRef]

11. Stevenson, I.H.; Roberts-Thomson, K.C.; Kistler, P.M.; Edwards, G.A.; Spence, S.; Sanders, P.; Kalman, J.M.
Atrial electrophysiology is altered by acute hypercapnia but not hypoxemia: Implications for promotion of
atrial fibrillation in pulmonary disease and sleep apnea. Heart Rhythm 2010, 7, 1263–1270. [CrossRef]

12. Linz, D.; Schotten, U.; Neuberger, H.-R.; Böhm, M.; Wirth, K. Negative tracheal pressure during obstructive
respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm 2011, 8, 1436–1443. [CrossRef]

http://dx.doi.org/10.1136/hrt.20.1.1
http://dx.doi.org/10.1161/01.CIR.29.5S4.IV-3
http://dx.doi.org/10.1161/01.CIR.92.4.785
http://dx.doi.org/10.1056/NEJM198609043151003
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.621185
http://dx.doi.org/10.5664/jcsm.6506
http://dx.doi.org/10.1001/jama.2013.276185
http://dx.doi.org/10.3390/jcm9020591
http://dx.doi.org/10.5664/jcsm.1464
http://dx.doi.org/10.1016/j.hrthm.2010.03.020
http://dx.doi.org/10.1016/j.hrthm.2011.03.053


J. Clin. Med. 2020, 9, 901 10 of 13

13. Priori, S.G.; Blomström-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.;
Fitzsimons, D.; Hatala, R.; Hindricks, G.; et al. 2015 ESC Guidelines for the management of patients with
ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2015, 36, 2793–2867.
[CrossRef]

14. Somers, V.K.; White, D.P.; Amin, R.; Abraham, W.T.; Costa, F.; Culebras, A.; Daniels, S.; Floras, J.S.; Hunt, C.E.;
Olson, L.J.; et al. Sleep Apnea and Cardiovascular Disease. J. Am. Coll. Cardiol. 2008, 52, 686–717. [CrossRef]

15. Xie, J.; Sert Kuniyoshi, F.H.; Covassin, N.; Singh, P.; Gami, A.S.; Wang, S.; Chahal, C.A.A.; Wei, Y.; Somers, V.K.
Nocturnal Hypoxemia Due to Obstructive Sleep Apnea Is an Independent Predictor of Poor Prognosis After
Myocardial Infarction. J. Am. Heart Assoc. 2016, 5, e003162. [CrossRef]

16. Xie, J.; Sert Kuniyoshi, F.H.; Covassin, N.; Singh, P.; Gami, A.S.; Chahal, C.A.A.; Somers, V.K. Excessive
Daytime Sleepiness Independently Predicts Increased Cardiovascular Risk After Myocardial Infarction.
J. Am. Heart Assoc. 2018, 7, e007221. [CrossRef]

17. Al-Saleh, S.; Kantor, P.F.; Chadha, N.K.; Tirado, Y.; James, A.L.; Narang, I. Sleep-disordered Breathing in
Children with Cardiomyopathy. Ann. Am. Thorac. Soc. 2014, 11, 770–776. [CrossRef]

18. Banno, K.; Shiomi, T.; Sasanabe, R.; Otake, K.; Hasegawa, R.; Maekawa, M.; Ito, T. Sleep-Disordered Breathing
in Patients with Idiopathic Cardiomyopathy. Circ. J. 2004, 68, 338–342. [CrossRef]

19. Eleid, M.F.; Konecny, T.; Orban, M.; Sengupta, P.P.; Somers, V.K.; Parish, J.M.; Mookadam, F.; Brady, P.A.;
Sullivan, B.L.; Khandheria, B.K.; et al. High Prevalence of Abnormal Nocturnal Oximetry in Patients with
Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2009, 54, 1805–1809. [CrossRef]

20. Konecny, T.; Brady, P.A.; Orban, M.; Lin, G.; Pressman, G.S.; Lehar, F.; Tomas, K.; Gersh, B.J.; Tajik, A.J.;
Ommen, S.R.; et al. Interactions Between Sleep Disordered Breathing and Atrial Fibrillation in Patients with
Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2010, 105, 1597–1602. [CrossRef]

21. Pedrosa, R.P.; Lima, S.G.; Drager, L.F.; Genta, P.R.; Amaro, A.C.; Antunes, M.O.; Arteaga, E.; Mady, C.;
Lorenzi-Filho, G. Sleep quality and quality of life in patients with hypertrophic cardiomyopathy. Cardiology
2010, 117, 200–206. [CrossRef] [PubMed]

22. Prinz, C.; Bitter, T.; Oldenburg, O.; Horstkotte, D.; Faber, L. Incidence of Sleep-Disordered Breathing in
Patients with Hypertrophic Cardiomyopathy. Congest. Heart Fail. 2011, 17, 19–24. [CrossRef] [PubMed]

23. Patel, S.I.; Shamoun, F.E.; Esser, H.; Parthasarathy, S.; Ackerman, M.J.; Geske, J.B.; Ommen, S.R.; Love, W.T.;
Somers, V.K.; Chahl, A.C.A.; et al. Sleep Disordered Breathing in Hypertrophic Cardiomyopathy. Sleep Vigil.
2019. [CrossRef]

24. Somers, V.K.; Dyken, M.E.; Clary, M.P.; Abboud, F.M. Sympathetic neural mechanisms in obstructive sleep
apnea. J. Clin. Investig. 1995, 96, 1897–1904. [CrossRef]

25. Narkiewicz, K.; Montano, N.; Cogliati, C.; van de Borne, P.J.H.; Dyken, M.E.; Somers, V.K. Altered
Cardiovascular Variability in Obstructive Sleep Apnea. Circulation 1998, 98, 1071–1077. [CrossRef]

26. Phillips, B.G.; Narkiewicz, K.; Pesek, C.A.; Haynes, W.G.; Dyken, M.E.; Somers, V.K. Effects of obstructive
sleep apnea on endothelin-1 and blood pressure. J. Hypertens. 1999, 17, 61–66. [CrossRef]

27. Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Kales, A.; Tyson, K.; Chrousos, G.P. Elevation of Plasma
Cytokines in Disorders of Excessive Daytime Sleepiness: Role of Sleep Disturbance and Obesity. J. Clin.
Endocrinol. Metab. 1997, 82, 1313–1316. [CrossRef]

28. Ip, M.S.M.; Lam, B.; Ng, M.M.T.; Lam, W.K.; Tsang, K.W.T.; Lam, K.S.L. Obstructive sleep apnea is
independently associated with insulin resistance. Am. J. Respir. Crit. Care Med. 2002, 165, 670–676. [CrossRef]

29. Javaheri, S.; Barbe, F.; Campos-Rodriguez, F.; Dempsey, J.A.; Khayat, R.; Javaheri, S.; Malhotra, A.;
Martinez-Garcia, M.A.; Mehra, R.; Pack, A.I.; et al. Sleep Apnea. J. Am. Coll. Cardiol. 2017, 69, 841–858.
[CrossRef]

30. Konecny, T.; Somers, V.K. Sleep-Disordered Breathing in Hypertrophic Cardiomyopathy. Chest 2014, 146,
228–234. [CrossRef]

31. Wang, H.; Parker, J.D.; Newton, G.E.; Floras, J.S.; Mak, S.; Chiu, K.-L.; Rattanaumpawan, P.; Tomilson, G.;
Bradley, T.D. Influence of Obstructive Sleep Apnea on Mortality in Patients with Heart Failure. J. Am. Coll.
Cardiol. 2007, 49, 1625–1631. [CrossRef]

32. Fung, J.W.H.; Li, T.S.T.; Choy, D.K.L.; Yip, G.W.K.; Ko, F.W.S.; Sanderson, J.E.; Hui, D.S.C. Severe obstructive
sleep apnea is associated with left ventricular diastolic dysfunction. Chest 2002, 121, 422–429. [CrossRef]
[PubMed]

http://dx.doi.org/10.1093/eurheartj/ehv316
http://dx.doi.org/10.1016/j.jacc.2008.05.002
http://dx.doi.org/10.1161/JAHA.115.003162
http://dx.doi.org/10.1161/JAHA.117.007221
http://dx.doi.org/10.1513/AnnalsATS.201309-325OC
http://dx.doi.org/10.1253/circj.68.338
http://dx.doi.org/10.1016/j.jacc.2009.07.030
http://dx.doi.org/10.1016/j.amjcard.2010.01.023
http://dx.doi.org/10.1159/000321718
http://www.ncbi.nlm.nih.gov/pubmed/21150200
http://dx.doi.org/10.1111/j.1751-7133.2010.00196.x
http://www.ncbi.nlm.nih.gov/pubmed/21272223
http://dx.doi.org/10.1007/s41782-019-00080-6
http://dx.doi.org/10.1172/JCI118235
http://dx.doi.org/10.1161/01.CIR.98.11.1071
http://dx.doi.org/10.1097/00004872-199917010-00010
http://dx.doi.org/10.1210/jcem.82.5.3950
http://dx.doi.org/10.1164/ajrccm.165.5.2103001
http://dx.doi.org/10.1016/j.jacc.2016.11.069
http://dx.doi.org/10.1378/chest.14-0084
http://dx.doi.org/10.1016/j.jacc.2006.12.046
http://dx.doi.org/10.1378/chest.121.2.422
http://www.ncbi.nlm.nih.gov/pubmed/11834652


J. Clin. Med. 2020, 9, 901 11 of 13

33. Maron, B.J.; Rowin, E.J.; Casey, S.A.; Link, M.S.; Lesser, J.R.; Chan, R.H.M.; Garberich, R.F.; Udelson, J.E.;
Maron, M.S. Hypertrophic Cardiomyopathy in Adulthood Associated with Low Cardiovascular Mortality
with Contemporary Management Strategies. J. Am. Coll. Cardiol. 2015, 65, 1915–1928. [CrossRef] [PubMed]

34. Charron, P.; Elliott, P.M.; Gimeno, J.R.; Caforio, A.L.P.; Kaski, J.P.; Tavazzi, L.; Tendera, M.; Maupain, C.;
Laroche, C.; Rubis, P.; et al. The Cardiomyopathy Registry of the EURObservational Research Programme of
the European Society of Cardiology: Baseline data and contemporary management of adult patients with
cardiomyopathies. Eur. Heart J. 2018, 39, 1784–1793. [CrossRef] [PubMed]

35. Buda, A.J.; Pinsky, M.R.; Ingels, N.B.; Daughters, G.T.; Stinson, E.B.; Alderman, E.L. Effect of Intrathoracic
Pressure on Left Ventricular Performance. N. Engl. J. Med. 1979, 301, 453–459. [CrossRef] [PubMed]

36. Okuda, N.; Ito, T.; Emura, N.; Suwa, M.; Hayashi, T.; Yoneda, H.; Kitaura, Y. Depressed myocardial contractile
reserve in patients with obstructive sleep apnea assessed by tissue Doppler imaging with dobutamine stress
echocardiography. Chest 2007, 131, 1082–1089. [CrossRef] [PubMed]

37. Basso, C. Hypertrophic cardiomyopathy and sudden death in the young: Pathologic evidence of myocardial
ischemia. Adv. Cardiomyopathies 2000, 31, 988–998. [CrossRef]

38. Villa, A.; Bettencourt, N.; Zarinabad, N.; Baydes, R.H.; Nagel, E.; Chiribiri, A. Stress perfusion CMR in
hypertrophic cardiomyopathy: Comparison with late gadolinium enhancement. J. Cardiovasc. Magn. Reson.
2014, 16, P324. [CrossRef]

39. Villa, A.D.M.; Sammut, E.; Zarinabad, N.; Carr-White, G.; Lee, J.; Bettencourt, N.; Razavi, R.; Nagel, E.;
Chiribiri, A. Microvascular ischemia in hypertrophic cardiomyopathy: New insights from high-resolution
combined quantification of perfusion and late gadolinium enhancement. J. Cardiovasc. Magn. Reson. 2015,
18, 4. [CrossRef]

40. Fernlund, E.; Schlegel, T.T.; Platonov, P.G.; Carlson, J.; Carlsson, M.; Liuba, P. Peripheral microvascular
function is altered in young individuals at risk for hypertrophic cardiomyopathy and correlates with
myocardial diastolic function. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H1351–H1358. [CrossRef]

41. Maron, B.J.; Wolfson, J.K.; Epstein, S.E.; Roberts, W.C. Intramural (“small vessel”) coronary artery disease in
hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 1986, 8, 545–557. [CrossRef]

42. Cecchi, F.; Olivotto, I.; Gistri, R.; Lorenzoni, R.; Chiriatti, G.; Camici, P.G. Coronary Microvascular Dysfunction
and Prognosis in Hypertrophic Cardiomyopathy. N. Engl. J. Med. 2003, 349, 1027–1035. [CrossRef]

43. Olivotto, I.; Cecchi, F.; Gistri, R.; Lorenzoni, R.; Chiriatti, G.; Girolami, F.; Torricelli, F.; Camici, P.G. Relevance
of Coronary Microvascular Flow Impairment to Long-Term Remodeling and Systolic Dysfunction in
Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2006, 47, 1043–1048. [CrossRef]

44. Shah, N.A.; Yaggi, H.K.; Concato, J.; Mohsenin, V. Obstructive sleep apnea as a risk factor for coronary events
or cardiovascular death. Sleep Breath 2010, 14, 131–136. [CrossRef]

45. Butt, M.; Khair, O.A.; Dwivedi, G.; Shantsila, A.; Shantsila, E.; Lip, G.Y.H. Myocardial Perfusion by Myocardial
Contrast Echocardiography and Endothelial Dysfunction in Obstructive Sleep Apnea. Hypertension 2011, 58,
417–424. [CrossRef] [PubMed]

46. Siontis, K.C.; Geske, J.B.; Ong, K.; Nishimura, R.A.; Ommen, S.R.; Gersh, B.J. Atrial fibrillation in hypertrophic
cardiomyopathy: Prevalence, clinical correlations, and mortality in a large high-risk population. J. Am. Heart
Assoc. 2014, 3, e001002. [CrossRef]

47. Bonow, R.O.; Frederick, T.M.; Bacharach, S.L.; Green, M.V.; Goose, P.W.; Maron, B.J.; Rosing, D.R. Atrial
systole and left ventricular filling in hypertrophic cardiomyopathy: Effect of verapamil. Am. J. Cardiol. 1983,
51, 1386–1391. [CrossRef]

48. Burstein, B.; Nattel, S. Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. J. Am. Coll.
Cardiol. 2008, 51, 802–809. [CrossRef]

49. Linz, D.; Schotten, U.; Neuberger, H.-R.; Böhm, M.; Wirth, K. Combined blockade of early and late activated
atrial potassium currents suppresses atrial fibrillation in a pig model of obstructive apnea. Heart Rhythm
2011, 8, 1933–1939. [CrossRef]

50. Lammers, W.J.; Kirchhof, C.; Bonke, F.I.; Allessie, M.A. Vulnerability of rabbit atrium to reentry by hypoxia.
Role of inhomogeneity in conduction and wavelength. Am. J. Physiol. 1992, 262, H47–H55. [CrossRef]

51. Lin, Y.K.; Lai, M.S.; Chen, Y.C.; Cheng, C.C.; Huang, J.H.; Chen, S.A.; Chen, Y.-J.; Lin, C.-I. Hypoxia and
reoxygenation modulate the arrhythmogenic activity of the pulmonary vein and atrium. Clin. Sci. 2012, 122,
121–132. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jacc.2015.02.061
http://www.ncbi.nlm.nih.gov/pubmed/25953744
http://dx.doi.org/10.1093/eurheartj/ehx819
http://www.ncbi.nlm.nih.gov/pubmed/29378019
http://dx.doi.org/10.1056/NEJM197908303010901
http://www.ncbi.nlm.nih.gov/pubmed/460363
http://dx.doi.org/10.1378/chest.06-2444
http://www.ncbi.nlm.nih.gov/pubmed/17426213
http://dx.doi.org/10.1053/hupa.2000.16659
http://dx.doi.org/10.1186/1532-429X-16-S1-P324
http://dx.doi.org/10.1186/s12968-016-0223-8
http://dx.doi.org/10.1152/ajpheart.00714.2014
http://dx.doi.org/10.1016/S0735-1097(86)80181-4
http://dx.doi.org/10.1056/NEJMoa025050
http://dx.doi.org/10.1016/j.jacc.2005.10.050
http://dx.doi.org/10.1007/s11325-009-0298-7
http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.170910
http://www.ncbi.nlm.nih.gov/pubmed/21747042
http://dx.doi.org/10.1161/JAHA.114.001002
http://dx.doi.org/10.1016/0002-9149(83)90317-X
http://dx.doi.org/10.1016/j.jacc.2007.09.064
http://dx.doi.org/10.1016/j.hrthm.2011.07.018
http://dx.doi.org/10.1152/ajpheart.1992.262.1.H47
http://dx.doi.org/10.1042/CS20110178
http://www.ncbi.nlm.nih.gov/pubmed/21880017


J. Clin. Med. 2020, 9, 901 12 of 13

52. Kasai, T.; Bradley, T.D. Obstructive Sleep Apnea and Heart Failure. J. Am. Coll. Cardiol. 2011, 57, 119–127.
[CrossRef] [PubMed]

53. Orban, M.; Bruce, C.J.; Pressman, G.S.; Leinveber, P.; Romero-Corral, A.; Korinek, J.; Konecny, T.;
Villarraga, H.R.; Kara, T.; Caples, S.M.; et al. Dynamic Changes of Left Ventricular Performance and
Left Atrial Volume Induced by the Mueller Maneuver in Healthy Young Adults and Implications for
Obstructive Sleep Apnea, Atrial Fibrillation, and Heart Failure. Am. J. Cardiol. 2008, 102, 1557–1561.
[CrossRef] [PubMed]

54. Somers, V.; Javaheri, S. Cardiovascular effects of sleep-related breathing disorders. Princ. Pract. Sleep Med.
2017, 1243–1252. [CrossRef]

55. Monahan, K.; Storfer-Isser, A.; Mehra, R.; Shahar, E.; Mittleman, M.; Rottman, J.; Punjabi, N.; Sanders, M.;
Quan, S.F.; Resnick, H.; et al. Triggering of Nocturnal Arrhythmias by Sleep-Disordered Breathing Events.
J. Am. Coll. Cardiol. 2009, 54, 1797–1804. [CrossRef] [PubMed]

56. Mehra, R.; Benjamin, E.J.; Shahar, E.; Gottlieb, D.J.; Nawabit, R.; Kirchner, H.L.; Sahadevan, J.; Redline, S.
Association of Nocturnal Arrhythmias with Sleep-disordered Breathing. Am. J. Respir. Crit. Care Med. 2006,
173, 910–916. [CrossRef]

57. Wang, S.; Cui, H.; Song, C.; Zhu, C.; Wu, R.; Meng, L.; Yu, Q.; Huang, X.; Wang, S. Obstructive sleep
apnea is associated with nonsustained ventricular tachycardia in patients with hypertrophic obstructive
cardiomyopathy. Heart Rhythm 2019, 16, 694–701. [CrossRef]

58. Monserrat, L.; Elliott, P.M.; Gimeno, J.R.; Sharma, S.; Penas-Lado, M.; McKenna, W.J. Non-sustained
ventricular tachycardia in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2003, 42, 873–879. [CrossRef]

59. Wang, W.; Lian, Z.; Rowin, E.J.; Maron, B.J.; Maron, M.S.; Link, M.S. Prognostic Implications of Nonsustained
Ventricular Tachycardia in High-Risk Patients with Hypertrophic Cardiomyopathy. Circ. Arrhythmia
Electrophysiol. 2017, 10, e004604. [CrossRef]

60. McLaughlin, V.V.; Archer, S.L.; Badesch, D.B.; Barst, R.J.; Farber, H.W.; Lindner, J.R.; Mathier, M.A.;
McGoon, M.D.; Park, M.H.; Rosenson, R.S.; et al. ACCF/AHA 2009 Expert Consensus Document on
Pulmonary Hypertension. J. Am. Coll. Cardiol. 2009, 53, 1573–1619. [CrossRef]

61. Wu, X.; Cui, H.; Xiao, M.H.; Lu, J.; Zhu, C.S.; Wang, S.Y.; Huang, X.H. Prevalence of pulmonary hypertension
in patients with hypertrophic obstructive cardiomyopathy: A case-control study. Zhonghua Xin Xue Guan
Bing Za Zhi 2016, 44, 1010–1014.

62. Musumeci, M.B.; Mastromarino, V.; Casenghi, M.; Tini, G.; Francia, P.; Maruotti, A.; Romaniello, A.; Magri, D.;
Lillo, R.; Adduci, C.; et al. Pulmonary hypertension and clinical correlates in hypertrophic cardiomyopathy.
Int. J. Cardiol. 2017, 248, 326–332. [CrossRef] [PubMed]

63. Kanbayashi, K.; Minami, Y.; Haruki, S.; Maeda, R.; Itani, R.; Ashihara, K.; Hagiwara, N. Association of
elevated pulmonary artery systolic pressure with stroke and systemic embolic events in patients with
hypertrophic cardiomyopathy. Int. J. Cardiol. 2017, 240, 320–323. [CrossRef] [PubMed]

64. Ong, K.C.; Geske, J.B.; Hebl, V.B.; Nishimura, R.A.; Schaff, H.V.; Ackerman, M.J.; Klarich, K.W.; Siontis, K.C.;
Coutinho, T.; Dearani, J.A.; et al. Pulmonary hypertension is associated with worse survival in hypertrophic
cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 604–610. [CrossRef] [PubMed]

65. Nerbass, F.B.; Salemi, V.M.C.; Pedrosa, R.P.; Portilho, N.D.P.; Ferreira-Filho, J.C.A.; Moriya, H.T.; Murillo, O.A.;
Arteaga-Fernandez, E.; Drager, L.F.; Lorenzi-Filho, G. Acute Effects of Nasal CPAP in Patients with
Hypertrophic Cardiomyopathy. Chest 2016, 150, 1050–1058. [CrossRef]

66. O’Mahony, C.; Jichi, F.; Pavlou, M.; Monserrat, L.; Anastasakis, A.; Rapezzi, C.; Anastasakis, A.; Rapezzi, C.;
Biagni, E.; Gimeno, J.R.; et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic
cardiomyopathy (HCM risk-SCD). Eur. Heart J. 2014, 35, 2010–2020. [CrossRef]

67. O’Mahony, C.; Jichi, F.; Ommen, S.R.; Christiaans, I.; Arbustini, E.; Garcia-Pavia, P.; Cecchi, F.; Olivotta, I.;
Kitaoka, H.; Gotsman, I.; et al. International External Validation Study of the 2014 European Society
of Cardiology Guidelines on Sudden Cardiac Death Prevention in Hypertrophic Cardiomyopathy
(EVIDENCE-HCM). Circulation 2018, 137, 1015–1023. [CrossRef]

68. O’Mahony, C.; Akhtar, M.M.; Anastasiou, Z.; Guttmann, O.P.; Vriesendorp, P.A.; Michels, M.; Magri, D.;
Autore, C.; Fernandez, A.; Ochoa, J.P.; et al. Effectiveness of the 2014 European Society of Cardiology
guideline on sudden cardiac death in hypertrophic cardiomyopathy: A systematic review and meta-analysis.
Heart 2019, 105, 623–631. [CrossRef]

http://dx.doi.org/10.1016/j.jacc.2010.08.627
http://www.ncbi.nlm.nih.gov/pubmed/21211682
http://dx.doi.org/10.1016/j.amjcard.2008.07.050
http://www.ncbi.nlm.nih.gov/pubmed/19026314
http://dx.doi.org/10.1016/B0-72-160797-7/50106-3
http://dx.doi.org/10.1016/j.jacc.2009.06.038
http://www.ncbi.nlm.nih.gov/pubmed/19874994
http://dx.doi.org/10.1164/rccm.200509-1442OC
http://dx.doi.org/10.1016/j.hrthm.2018.12.017
http://dx.doi.org/10.1016/S0735-1097(03)00827-1
http://dx.doi.org/10.1161/CIRCEP.116.004604
http://dx.doi.org/10.1016/j.jacc.2009.01.004
http://dx.doi.org/10.1016/j.ijcard.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/28733069
http://dx.doi.org/10.1016/j.ijcard.2017.05.019
http://www.ncbi.nlm.nih.gov/pubmed/28499672
http://dx.doi.org/10.1093/ehjci/jew024
http://www.ncbi.nlm.nih.gov/pubmed/26922089
http://dx.doi.org/10.1016/j.chest.2016.05.004
http://dx.doi.org/10.1093/eurheartj/eht439
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030437
http://dx.doi.org/10.1136/heartjnl-2018-313700


J. Clin. Med. 2020, 9, 901 13 of 13

69. Weng, Z.; Yao, J.; Chan, R.H.; He, J.; Yang, X.; Zhou, Y.; He, Y. Prognostic Value of LGE-CMR in HCM. JACC
Cardiovasc. Imaging 2016, 9, 1392–1402. [CrossRef]

70. Sedaghat-Hamedani, F.; Kayvanpour, E.; Tugrul, O.F.; Lai, A.; Amr, A.; Haas, J.; Proctor, T.; Ehlermann, P.;
Jensen, K.; Katus, H.A.; et al. Clinical outcomes associated with sarcomere mutations in hypertrophic
cardiomyopathy: A meta-analysis on 7675 individuals. Clin. Res. Cardiol. 2018, 107, 30–41. [CrossRef]

71. Steriotis, A.K.; Sharma, S. Risk Stratification in Hypertrophic Cardiomyopathy. Eur. Cardiol. 2015, 10, 31–36.
[CrossRef] [PubMed]

72. Peker, Y.; Hedner, J.; Norum, J.; Kraiczi, H.; Carlson, J. Increased Incidence of Cardiovascular Disease in
Middle-aged Men with Obstructive Sleep Apnea: A 7-year follow-up. Am. J. Respir. Crit. Care Med. 2002,
166, 159–165. [CrossRef] [PubMed]

73. Milleron, O. Benefits of obstructive sleep apnoea treatment in coronary artery disease: A long-term follow-up
study. Eur. Heart J. 2004, 25, 728–734. [CrossRef]

74. Drager, L.F.; Bortolotto, L.A.; Figueiredo, A.C.; Silva, B.C.; Krieger, E.M.; Lorenzi-Filho, G. Obstructive
sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest 2007, 131,
1379–1386. [CrossRef] [PubMed]

75. Cloward, T.V.; Walker, J.M.; Farney, R.J.; Anderson, J.L. Left Ventricular Hypertrophy Is a Common
Echocardiographic Abnormality in Severe Obstructive Sleep Apnea and Reverses with Nasal Continuous
Positive Airway Pressure. Chest 2003, 124, 594–601. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcmg.2016.02.031
http://dx.doi.org/10.1007/s00392-017-1155-5
http://dx.doi.org/10.15420/ecr.2015.10.01.31
http://www.ncbi.nlm.nih.gov/pubmed/30310420
http://dx.doi.org/10.1164/rccm.2105124
http://www.ncbi.nlm.nih.gov/pubmed/12119227
http://dx.doi.org/10.1016/j.ehj.2004.02.008
http://dx.doi.org/10.1378/chest.06-2703
http://www.ncbi.nlm.nih.gov/pubmed/17494787
http://dx.doi.org/10.1378/chest.124.2.594
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Review Criteria 
	Prevalence of Sleep Disordered Breathing (SDB) in Hypertrophic Cardiomyopathy (HCM) 
	Cardiovascular Diseases and Obstructive Sleep Apnea (OSA) 
	Pathophysiology 
	Heart Failure 
	Coronary Artery Disease 
	Arrhythmias 
	Pulmonary Hypertension 


	Treatment 
	Current Treatment Modalities for HCM 
	Prevention of SCD 
	Therapy 
	Effects of OSA Treatment on HCM 

	Future Direction 
	
	References

