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Osteosarcoma (OS) is associated with poor prognosis due to its high incidence of metastasis and chemoresistance. It often arises in
areas of rapid bone growth in long bones during the adolescent growth spurt. Although certain genetic conditions and alterations
increase the risk of developing OS, the molecular pathogenesis is poorly understood. Recently, defects in differentiation have
been linked to cancers, as they are associated with high cell proliferation. Treatments overcoming these defects enable terminal
differentiation and subsequent tumor inhibition. OS development may be associated with defects in osteogenic differentiation.
While early regulators of osteogenesis are unable to bypass these defects, late osteogenic regulators, including Runx2 and Osterix,
are able to overcome some of the defects and inhibit tumor propagation through promoting osteogenic differentiation. Further
understanding of the relationship between defects in osteogenic differentiation and tumor development holds tremendous
potential in treating OS.

1. Introduction

Osteosarcoma is the most common primary malignant
bone tumor. Most patients with osteosarcoma complain of
symptoms for several months and initially present with a
pathologic fracture [1, 2]. Although OS can occur in any
bone, it frequently involves the metaphysis of long bones
where high bone turnover occurs during longitudinal growth
spurts [2]. Radiographic imaging, combined with biopsy, is
required for definitive diagnosis [2]. However, a problem
lies in the detection of the pulmonary metastases, as only

around 15%–20% of patients will have radiographically
detectable pulmonary metastases, while approximately 80%
of the patients will either develop or already have radiograph-
ically undetectable micrometastases [1–4]. These pulmonary
lesions are responsible for the high mortality associated with
OS [1, 2]. Treatment of OS includes surgical resection of both
primary and pulmonary lesions combined with radiotherapy
[2]. However, due to the high suspicion for micrometas-
tases, nearly all patients will also receive preoperative and
postoperative chemotherapy with agents such as cisplatin,
doxorubicin, methotrexate, and isofosfamide [1, 2, 5–7].
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These agents expose patients to longterm toxicities, including
hearing loss, cardiomyopathy, sterility, and hypomagnesemia
[2, 8–13]. Even with this aggressive management, OS patients
still have a poor prognosis. Patients who present without
detectable metastases have a 70% longterm disease-free
survival; once a metastasis has been detected, the disease is
likely to relapse [1, 2, 5–7]. Thus, there is a critical need
to identify metastatic markers that can accurately predict
the presence or absence of metastatic disease at the time of
diagnosis and provide both prognostic value and potential
targets for novel therapies in the future.

Although the etiology underlying OS is poorly under-
stood, the tumors often develop in settings of high bone
turnover, such as the adolescent growth spurt [2]. Fur-
thermore, numerous genetic and cytogenetic abnormalities
have been associated with OS, including mutations of
tumor suppressors and oncogenes, as well as chromosomal
amplifications, deletions, rearrangements, and transloca-
tions [1, 2, 14]. The most common alterations are associated
with chromosomes 1, 9, 10, 13, and 17, or involve the
p53 and Rb genes [1]. Given the numerous alterations
associated with OS, it is no surprise that no singular
consensus mechanism can account for OS tumorigenesis.
Recent investigations have focused on the role of osteogenic
differentiation in the pathogenesis of OS. This is supported
by the similarities between OS tumors cells and primitive
osteoblasts [15]. It is plausible that the genetic and epigenetic
alterations associated with OS alter the signaling pathways
associated with osteogenic differentiation, arresting the cells
as undifferentiated precursors. By approaching OS as a
disease caused by differentiation defects, we not only acquire
a unique understanding of OS pathogenesis, but suggest
avenues for developing novel therapies that can target OS
differentiation.

2. Molecular Biology of Osteosarcoma

2.1. Loss of Tumor Suppressors. Both sporadic and inherited
mutations to pathways associated with p53 and Rb tumor
suppressor genes are associated with osteosarcoma. Rb is a
key regulator in the G1/S transition. In its hypophospho-
rylated state, Rb acts as a tumor suppressor by binding to
and inactivating E2F, resulting in cell cycle arrest [16]. Cyclin
D1 and CDK4 phosphorylate and inactivate Rb during the
G1/S transition, thereby allowing cell cycle progression to
occur [16]. Approximately 70% of sporadic OS cases have
shown genetic alterations in the Rb1 locus, and individuals
heterozygous for a germline inactivation of Rb1 have a
1,000-times greater probability of OS [1, 17–20]. Moreover,
inactivation of the Rb1 locus has been implicated as a poor
prognostic factor in patients with OS [1, 2, 14].

OS development has also been associated with another
tumor suppressor in the Rb signaling pathway, p16INK4A [21].
It functions through inactivation of CDK4, causing cell cycle
arrest at the G1/S transition. Alterations in p16INK4A cause an
inability to regulate CDK4 and the G1/S transition, leading
to an uninhibited cell cycle progression that mimics the Rb
mutation phenotype. The downregulation of p16INK4A also

serves as a poor prognostic factor in pediatric patients with
OS [14, 22].

The tumor suppressor gene p53 maps to 17p13, a region
that is frequently abnormal in patients with OS [14, 23]. The
p53 gene product acts as a transcription factor that regulates
cell cycle progression through apoptotic and DNA repair
mechanisms, and has been implicated in the pathogenesis
of a variety of human cancers, including OS [24–27]. In
OS patients, studies have frequently found point mutations,
gene rearrangements, and allelic loss at the p53 locus [1].
Furthermore, patients with the Li-Fraumeni syndrome, a
disorder characterized by a germline mutation at the p53
locus, have a significantly higher risk of developing OS
[28–30].

2.2. Induction of Oncogenes. Activation of a variety of
oncogenes has been implicated in OS tumorigenesis. The
c-Myc oncogene encodes for a transcription factor that
regulates both cell proliferation and growth [31, 32]. It is
reported that up to 12% of OS tumors have amplification
at the c-Myc locus while the expression of Myc appears
to be correlated with a higher risk for relapse [1, 33–36].
Furthermore, overexpression of c-Myc in Ink4a/Arf−/− bone
marrow stromal cells leads to a malignant transformation
[37]. Another oncogene associated with OS is MDM2, an
important negative regulator of p53. It encodes a protein that
inactivates the N-terminal transactivation domain of p53
and marks it for degradation via polyubiquitination [1, 23–
25, 27]. Located at the 12q13 locus, MDM2 has been found
to be amplified in up to 10% of OS tumors [38–40]. Finally,
CDK4, an oncogene associated with the regulation of cell
cycle progression, has shown high levels of expression in up
to 65% of low-grade OS [41]. CDK4 forms a complex with
cyclin D1 and phosphorylates RB, thereby releasing the E2F
transcription factor and promoting cell cycle progression
[1]. Other important oncogenes that have been reported in
association with OS include, but are not limited to, FOS,
ERBB2 and CCND1 [1].

2.3. Syndromes Associated with OS. A variety of syndromes
show a predisposition to the development of OS. In patients
affected by Paget’s disease of the bone, approximately 1%
will develop OS [42]. Paget’s disease of bone results when
there is a disconnection between osteoclast and osteoblast
activity, resulting in largely deformed bone. Furthermore,
Paget’s disease accounts for a substantial fraction of patients
over 60 years old with OS [42]. Another syndrome that
increases the risk of OS is Rothmund-Thomson syndrome,
an autosomal recessive disorder that results from a muta-
tion in an RECQ helicase, resulting in photosensitivity,
cataracts, and skeletal dysplasias [43]. In one study, 32%
of patients with Rothmund-Thomson developed OS, with
a tendency to occur at a younger age [43]. Finally, patients
with neurofibromatosis 2 (NF2) have decreased expression
levels of merlin, an ERM-related protein that acts as a
tumor suppressor [44, 45]. Merlin increases the stability of
p53 by inhibiting MDM2-mediated degradation, and the
loss of merlin in NF2 is thought to destabilize p53 [46].
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NF2 heterozygous mice showed a propensity of highly
metastatic tumors, including poorly differentiated OS [46].

2.4. Dysregulation of Signaling Pathways. Recently, many
investigations have focused on aberrations in cell signaling
pathways that have been linked to the development of
many different human tumors, including OS. One exam-
ple is the TGFβ signaling pathway, which involves three
distinct proteins (TGFβ 1–3) that are involved in cellular
differentiation, cell growth, and apoptosis [47–50]. In OS
tumors, there is significantly higher expression of TGFβ1
and TGFβ3 compared to TGFβ2 [51]. Expression levels of
TGFβ3 strongly correlate with OS tumor progression [51].
Alterations in other signaling pathways that are implicated,
but whose roles are less delineated in OS, include Shh,
FGFR2, MET/HGF, and BMPs [1, 52–54]. Later, we discuss
the signaling pathways associated with the Wnt proteins
and Runx2, and their relationship with defects in osteogenic
differentiation and subsequent OS tumor development.

2.5. Mesenchymal Stem Cell Differentiation. Mesenchymal
stem cells (MSCs) are bone marrow stromal cells that
can differentiate into osteogenic, chondrogenic, adipogenic,
neurogenic, or myogenic lineages [55–58]. Osteogenic dif-
ferentiation is a complex, tightly regulated process that is
critical for proper bone formation and is influenced by a
variety of endogenous and environmental factors [1, 59]. As
MSCs pass through each successive stage of differentiation,
they are thought to lose their proliferative capacity. Markers
of the osteoblastic differentiation cascade include connective
tissue growth factor (CTGF) (early), alkaline phosphatase
(ALP), Osterix, Runx2 (early/middle), osteopontin (OPN),
osteocalcin (OCN), and collagen 1a1 (Col 1a1) (late) [1, 15,
47, 57, 59–64] (Figure 1).

Many signaling pathways and associated regulatory genes
control the complex MSC differentiation cascade [65]. For
example, myogenic differentiaion is controlled by factors
such as the MyoD and Mef2 family of transcription factors
[58, 66, 67]. Commitment of MSCs to the adipogenic lineage
is a two-phase process of cell determination and differentia-
tion that is regulated in part by PPARγ, as well as BMPs 4 and
7 [57–59, 68, 69]. Chondrogenic differentiation is regulated
by multiple transcription factors and growth factors, such
as Sox9, BMP2, BMP7, and FGF2, many of which represent
early regulators of the osteogenic differentiation pathway
[57, 58]. The factors controlling these pathways are integral
in regulating the osteogenic cascade through interpathway
cross-talk and feedback cycles. Some of the most important
of these molecules include the BMPs, PPARγ, Runx2, and the
Wnts (Figure 1).

BMPs belong to the TGFβ superfamily of growth fac-
tors, which are considered pivotal regulators of early MSC
commitment. The osteogenic BMPs include 2, 4, 6, 7, and
9, with BMP 6 and 9 showing the most potent osteogenic
activity both in vitro and in vivo [1, 47, 57–59, 70–74]. BMP
4 and 7 also exhibit adipogenic activity, but commitment to
the adipogenic or osteoblastic lineage is mutually exclusive
[57, 59, 74–83]. These osteogenic BMPs are able to induce

undifferentiated MSCs to express many early osteoblast
progenitor markers, such as the connective tissue growth
factor (CTGF), inhibitor of DNA binding (Id), alkaline
phosphatase (ALP) and runt-related transcription factor 2
(Runx2) [57, 75, 76, 84–87].

PPARγ is considered the main regulator of adipogenesis.
However, it plays a crucial cross-regulatory role in osteoblas-
togenesis, as PPARγ expression shifts MSC differentiation
from the osteogenic to the adipogenic cascade [59, 88]. For
example, PPARγ-deficient mice show a lack of adipogenesis
with an increase in osteogenic activity [59, 89]. Furthermore,
PPARγ seems to be involved in BMP-induced osteogenesis,
as PPARγ knockout mice fail to differentiate in response to
BMP stimulation [59, 74, 85]. These results suggest that in
addition adipogenesis, PPARγ may act as a differentiation
regulator in conjunction with the osteogenic BMPs to
promote MSC differentiation along an osteogenic lineage.

Runx2 is considered one of the master regulators in MSC
osteoblast differentiation [58, 90–92]. Runx2 knockout is
fatal in mice, leading to a cartilaginous skeleton without any
ossification and delayed chondrocyte maturation [93, 94].
Moreover, Runx2 interacts with numerous transcriptional
activators and repressors, which are crucial in osteogenesis,
such as Rb, PTH/PTHrP, MAPLK, and histone deacetylases
[58, 92, 95–97]. In particular, it is thought to be a critical
regulator in the BMP-mediated osteogenic differentiation
pathway [98].

Wnts are a group of highly conserved, secreted proteins,
and are one of the major osteogenic regulators [58, 99–102].
Wnt genes are expressed in developing limbs and the Wnt
coreceptor LRP5 has been shown to regulate bone formation
[58, 103–105]. Osteoblast maturation is dependent on Wnt
proteins, as Wnt deficient cells fail to undergo terminal
differentiation in the presence of the hedgehog signaling
proteins [106]. Overexpression of a Wnt antagonist leads to
the presence of lytic bone lesions, while activation of Wnt/
β-Catenin signaling is frequently observed in osteosarcoma
[107, 108]. It appears Wnt molecules control both osteoblas-
tic differentiation and cell proliferation while shunting away
from chondrogenic differentiation [109].

The effect of terminal differentiation on stem cells is
crucial in understanding oncogenesis. When cells progress
down a differentiation cascade, they lose their proliferative
capabilities in exchange for a differentiating potential. As
a result, they are less responsive to growth factors and
increasingly susceptible to apoptosis and cytotoxic agents
such as chemotherapy [59]. Thus, it is conceivable that
tumorigenesis may result from disruptions that prevent ter-
minal differentiation, thereby allowing tumor-initiating cells
to retain their highly proliferative precursor cell phenotypes.

3. Association between Differentiation
Defects and Cancer

Stem cells are undifferentiated precursor cells that have a
pluripotent ability to give rise to many different types of
tissues. They are defined by their capacity for self-renewal,
proliferation, and differentiation into mature cells of
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Figure 1: (a) Mesenchymal stem cells (MSCs) progress down the osteogenic differentiation cascade. MSCs are pluripotent bone marrow
stromal cells that are able to differentiate into bone, muscle, tendon, and adipose tissue. Osteogenic differentiation of MSCs is a tightly
regulated process by different signaling. Bone morphogenetic proteins (BMPs) and their downstream mediators, such as inhibitor of DNA
binding (Id) proteins and connective tissue growth factor (CTGF), are early markers in the osteogenic differentiation cascade. Runx2
and Wnt proteins are important regulators of osteoblastic differentiation. Alkaline phosphatase and Osterix are early/middle markers,
while osteocalcin and osteopontin are late markers of bone formation. (b) Defects in osteogenic differentiation lead to osteosarcoma
(OS) development. If alterations in the MSC differentiation cascade block the progression to terminally differentiated osteoblasts or
osteocytes, it is likely that tumorigenic precursors are formed. Such undifferentiated OS precursors would maintain the ability to
proliferate and increase the risk for OS development. Although not well understood, some of the potential defects may include genetic
and/or epigenetic changes in Wnt signaling, Rb, p53, and p27. These defects may lead to uncontrolled cell proliferation and disrupted
differentiation. Thus, these alterations disrupt the delicate balance between proliferation and differentiation, leading to a tumorigenic
phenotype.

a particular tissue. Recent studies have linked undifferenti-
ated progenitor cells with tumorigenesis, and their similar
ability to self-renew and proliferate [63]. A crucial aspect
of stem cell biology is to regulate the balance between
proliferation and terminal differentiation. A dysregulation of
this balance in favor of proliferation appears to be associated
with many different human tumors (Figure 1).

Both normal stem cells and cancer-initiating cells show
a unique ability for self-renewal. Pathways that are nor-
mally associated with cancer are also crucial to stem cell
proliferation, and vice versa. For example, the notch, Sonic
hedgehog, and Wnt signaling pathways are associated with
the regulation of the hematopoietic stem cell (HSC) pathway,
development and oncogenesis [63, 106, 110–114]. Osteoblast
maturation is dependent on Wnt proteins, as Wnt-deficient
cells fail to undergo terminal differentiation in the presence
of the hedgehog signaling proteins [106]. Overexpression

of β-catenin in the Wnt pathway can expand the pool of
transplantable HSCs from cultured HSCs by propagating
stem cell division [62, 63]. Gli1, an intracellular mediator
of the hedgehog family, regulates limb bud and osteogenic
development [113, 114]. This pathway has also been linked
to increased proliferation and tumorigenic transformation
[114]. Furthermore, this link is demonstrated in the rela-
tionship between epidermal progenitor cells and epithelial
cancers [115]. Tumorigenesis is thought to be a summation
of multiple events over a period of time. If some of these
alterations were blocked to arrest the progenitor cells in
undifferentiated, highly proliferative state, it may explain
the tumor cells’ abilities of self-renewal and propagation
[63, 116, 117].

Recently, the notion of “cancer stem cells” has taken
shape, where a small subset of stem cells fail to undergo
terminal differentiation and maintain their proliferative
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capacities, enabling the tumor to continue to self-propagate
and regenerate new cells [63, 118]. As reported by Reya
et al., both cancer cells and stem cells maintain tremendous
proliferative capacity and display similar phenotypic cellular
markers [63]. Additionally, both tumors and stem cells
consist of a heterogenous population of cells with different
proliferative potentials at various stages of differentiation
[63]. Thus, the cancer stem cells may be derived from normal
undifferentiated progenitor cells, and are thought to drive
tumorigenesis.

Multiple therapeutic interventions have targeted the
defects in differentiation and are able to promote terminal
differentiation of cancer cells and make them more suscep-
tible to apoptosis. Furthermore, these therapies are able to
target a specific tissue type, and therefore avoid the systemic
toxicities of most chemotherapeutic agents. For example,
in breast cancer the estrogen receptor (ER) blocks differen-
tiation in part through induction of cellular proliferation
[119]. Tamoxifen targets this receptor, enabling the cells
to undergo differentiation and associated apoptosis [120].
PPARγ ligands and retinoids are able to treat liposarcoma
through the induction of terminal differentiation [121–125].
In patients with prostate cancer, antiandrogens and retinoids
can promote differentiation, and thus decrease tumorige-
nesis [126, 127]. Finally, clinical trials have suggested that
ARA-C can induce complete remission in patients with AML
by inducing the differentiation of myeloid leukemia cells
[128]. While there are numerous examples of successful
differentiation therapy, one particular example is seen in the
treatment of Ewing’s sarcoma, another primary bone tumor.

4. Ewing’s Sarcoma: An Example of
Differentiation Defects in a Bone Tumor

Ewing’s sarcoma is the second most common malignant
pediatric bone tumor [129]. A part of the molecular patho-
genesis underlying Ewing’s sarcoma is the overexpression of
EWS/ETS or EWS/FLI-1 fusion oncogenes that prevent MSC
differentiation along the adipogenic and osteogenic lineage
[130]. The fusion protein carries out its functions by binding
Runx2 and regulating the transcription of the hedgehog
mediator Gli1 [130–133]. Silencing of this oncogene leads to
the recovery of the MSCs differentiation capabilities [134].
Moreover, expression of this EWS/FLI-1 fusion protein in
murine primary MSCs leads to the inhibition of MSC
differentiation, and subsequent development of a EWS/FLI-
1-dependent Ewing’s sarcomas [129]. Collectively, these
results suggest that inhibition of MSC differentiation may
be crucial to the pathogenesis of Ewing’s sarcoma, and
that restoration of MSC differentiation potential may be an
effective therapy in patients with Ewing’s sarcoma.

5. Osteosarcoma as a Result of
Differentiation Defects

OS cells share many similar features to undifferentiated
osteoprogenitors, including a high proliferative capacity,
resistance to apoptosis, and similar expression of many

osteogenic markers, such as CTGF, Runx2, ALP, Osterix, and
Osteocalcin [1, 15, 47, 57, 59–64]. Furthermore, the more
aggressive OS phenotypes often resemble early progenitors,
while less aggressive tumors seem to share more similarities
with osteogenic MSCs that have progressed further along the
differentiation cascade [55, 59].

Analysis of the expression of osteogenic markers in OS
cells demonstrates an early osteogenic phenotype. Alkaline
phosphatase, a well-documented early marker of osteogen-
esis, has a much lower expression in OS tumor cells when
compared to hFOB1.19 cells, a committed osteoblastic line
[64, 135]. Similarly, the late osteogenic markers osteopontin
and osteocalcin are highly expressed in mature, differentiated
osteoblasts, but are minimally expressed in both primary
OS tumors and OS cell lines [47, 57, 136, 137]. CTGF, a
multifunctional growth factor that is normally upregulated
at the earliest stages of osteogenic differentiation, also shows
elevated basal expression in human OS cells [76]. These
results suggest that OS cells likely fail to undergo terminal
differentiation, and that the degree of dedifferentiation may
correlate with a worse prognosis.

By retaining a phenotype similar to undifferentiated
osteoprogenitors, OS cells are able to maintain a capac-
ity for uncontrolled proliferation. For example, it is well
established that gradual telomere shortening is an effective
mechanism of cell senescence when stem cells become
terminally differentiated. However, more than 50% of OS
cells utilize an alternative lengthening of telomere (ALT)
pathway that prevents telomere shortening, allowing the
tumor cells to evade senescence and resemble their stem
cell progenitors [138]. As a result, OS cells demonstrate
similar rates of proliferation, growth factors responsiveness,
and capacity for self-renewal to osteoprogenitor stem cells
[139]. Furthermore, the stage at which differentiation is
interrupted likely correlates with the aggressiveness and
metastatic potential of the various OS tumors.

The Runx2 and Wnt regulators of osteogenic differenti-
ation are two examples of alterations in the differentiation
cascade potentially underlying tumorigenesis (Figure 1).
Runx2 is a member of the runt family of transcription
factors that has been linked to a variety of human cancers
such as leukemia and gastric cancer [98, 140, 141]. Runx2
is a master regulator of osteoblastic differentiation that is
consistently altered in human OS [98]. Runx2 and its associ-
ated protein p27KIP1, are important regulators of the G1 cell
cycle checkpoint [98]. Runx2 also physically interacts with
the hypophosphorylated form of Rb, a known coactivator
of Runx2, to create a feed forward loop that promotes
terminal cell cycle exit and the formation of a differentiated
osteoblastic phenotype [98]. Additionally, Runx2 regulates
BMP-induced osteogenesis, synergistically inducing many
terminal differentiation markers [98]. Interestingly, Runx2
has a very low expression in OS cell lines. When considering
the role of Runx2 in the cell cycle and terminal differentiation
regulation associated with BMPs, Rb, and p27KIP1, it is
natural that any alterations would lead to uncontrolled
proliferation and loss of differentiation. Accordingly, high-
grade osteosarcomas show decreased expression of p27KIP1,
while lower-grade tumors have detectable p27KIP1 levels.
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Furthermore, dedifferentiated OS tumors have significantly
lower levels of p27KIP1 in comparison to well-differentiated
OS. Since OS differentiation status bears prognostic sig-
nificance, disruptions in the Runx2 pathway and loss of
differentiation may be an important step in the development
of highly aggressive, less differentiated OS tumors.

Wnt signaling pathway has been implicated in a variety of
human diseases [62, 142, 143]. The canonical Wnt pathway
involves binding of the Wnt glycoprotein to the trans-
membrane Frizzled receptor and LRP5/6 coreceptors [61,
144–146]. Ligand-receptor binding prevents downstream
phosphorylation of β-catenin, allowing it to translocate to
the nucleus and activate downstream genes that mediate cell
proliferation and differentiation [61]. This canonical Wnt
pathway plays a crucial role in osteoblast differentiation, as
evidenced by the fact that Wnt3a expression leads to cell
proliferation and suppression of osteogenic differentiation
in adult MSCs [147]. Multiple aberrations in the Wnt sig-
naling pathway have been associated with OS tumorigenesis
[108, 148]. For example, elevated levels of β-Catenin, an
important regulator of the Wnt pathway, are correlated
with osteoprogenitor proliferation and OS metastasis [108,
148]. Furthermore, OS tumors overexpressing LRP5, a Wnt
coreceptor, are associated with a poorer prognosis and
decreased patient survival [149]. Therefore, it is reasonable to
believe that deregulation of the Wnt signaling pathway may
lead to OS tumorigenesis by preventing terminal osteogenic
differentiation and promoting cell proliferation (Figure 1).

Given these results, it appears that a lack of terminal
differentiation may not only be responsible for OS tumori-
genesis, but may also predict its malignant potential. By
preventing terminal differentiation, tumors can retain their
proliferative phenotypes, responsiveness to growth factors,
and overall aggressiveness. If osteosarcoma is a consequence
of these differentiation defects, we can focus future research
on identifying new therapies targeting cellular differentiation
thereby avoiding some of the negative consequences associ-
ated with conventional chemotherapy.

6. Therapeutic Potential by Targeting
Differentiation Defects in OS

Recent investigations have focused on the therapeutic
potential to overcome differentiation defects associated
with osteosarcoma, and therefore prevent tumorigenesis.
Examples of such therapies have been detailed in previous
studies and include agents such as nuclear receptor agonists,
growth factors, and transcription factors [55, 59, 150–155]
(Table 1). In addition to inducing terminal differentiation,
these therapies can obviate the need for chemotherapy,
thereby avoiding some of the toxicities and chemoresistance
associated with current OS therapeutic regimens.

One example of potential OS differentiation agents
are the nuclear receptor superfamily of proteins, includ-
ing PPARγ, the retinoids, and estrogens. Various PPARγ
agonists have shown the ability to prevent proliferation
and induce osteoblastic differentiation in OS tumor cells
[15, 153] (Table 1). When OS cells are exposed to these

agents, they exhibit an increased susceptibility to apop-
tosis, decreased proliferative capacity, and an increase in
the expression of differentiation markers such as alkaline
phosphatase [59]. Similarly, treatment of OS cells with
other members of the nuclear receptor superfamily, such
as 9 cis-retinoic acid and all-trans retinoic acid, are able
to induce differentiation and growth inhibition in human
OS cell lines [150]. When these retinoic acid ligands are
combined with troglitazone, a potent PPARγ agonist, there
is a strong synergistic effect in inducing cellular apoptosis
and differentiation [153]. Another nuclear receptor that
has potential in OS therapies is the estrogen receptor. In
previous studies, estrogen receptor antagonists, such as
tamoxifen, Raloxifene, 17-beta estradiol, and SERMS, are
able to inhibit proliferation and induce apoptosis in U2OS
cell lines through varying mechanisms [156]. These studies
also demonstrated that the decreased cell proliferation was
associated with an increase in osteoblast differentiation
markers [156].

Another nuclear receptor agonist that has the potential
to serve as an OS differentiation inducer is 1,25-dihy-
droxyvitamin D3 (1,25(OH)2D3) (Table 1). 1,25(OH)2D3
can induce OS differentiation through a p21-dependent
pathway [152]. The p21 is a downstream effector of p53
that regulates G1 cell cycle arrest [157]. However, since
most OS cells contain absent or nonfunctional p53, this
pathway is often interrupted [1]. Osteogenic differentiation
of OS cells is associated with the expression of p21 [152].
1,25(OH)2D3 has been shown to induce the expression of
p21, and treatment of three different OS cell lines with
exogenous 1,25(OH)2D3 induced cellular differentiation (as
measured by ALP and OCN) and triggered apoptosis [151].
Taken together, these results suggest that 1,25(OH)2D3 may
prevent OS tumorigenesis by inducing differentiation in a
p21-dependent manner.

An interesting possibility for a differentiation agent is
parathyroid hormone (PTH) and parathyroid hormone-
related peptide (PTHrP), as they are both able to induce
osteoblastic differentiation in MG63 OS cells [155] (Table 1).
PTH/PTHrP ligands bind to the G protein family of trans-
membrane receptors, and the signal is transduced via a
MAPK pathway that leads to the eventual phosphoryla-
tion of protein kinase A (PKA) and/or protein kinase C
(PKC) [158]. Carpio et al. demonstrated that treatment
of MG63 cell lines with PTHrP resulted in elevated levels
of ALP and type 1 collagen, suggesting that these tumor
cells underwent osteoblastic differentiation. Furthermore,
transient transfection of the OS cells with inhibitors of this
PTHrP pathway resulted in downregulation of both type
1 collagen and ALP, suggesting that the PTHrP-mediated
cellular differentiation is likely a result of activation of
the MAPK/PKA/PKC pathway [155]. Interestingly, PTH
regulates the oncoprotein c-fos, which is a critical modulator
of osteogenic differentiation and malignant transformation
[159, 160]. Upregulating the expression of this oncoprotein
leads to both malignant transformation and more aggressive
tumors [159–161].

Interestingly, as potent osteogenic differentiation reg-
ulators BMPs are unable to promote OS cell terminal
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Table 1: Summary of some currently used differentiation agents in human osteosarcoma cells. These differentiation agents are in general
nonspecific differentiation-promoting agents, and are able to promote osteogenic differentiation in mesenchymal stem cells. These agents
can inhibit the proliferation and induce apoptosis in OS cells.

Class Target Ligand Possible mechanism References

PPARy
Troglitazone (i) Increased susceptibility to apoptosis Haydon 2007, Logan 2004 [15, 146]

Ciglitazone (ii) Decreased proliferative capacity Scotlandi 1996 [54]

Pioglitazone (iii) Increased differentiation (ALP Activity) Deng 2008 [58]

Nuclear 9 cis-retinoic acid (i) Induced morphologic differentiation Haydon 2002, Logan 2004 [15, 146]

receptor Retinoids (ii) Inhibited anchorage-dependent growth Luu 2004 [143]

ligands All-trans retinoic acid (iii) Decreased proliferative capacity

Estrogens
Tamoxifen (i) Increased apoptosis Hoang 2004 [149]

Raloxifene (ii) Decreased cell proliferation

17-β Estradiol
(iii) Increased osteoblastic differentiation
markers

Vitamin D
1,25-
dihydroxyvitamin
D3

(i) Decreased cell proliferation (increased
p21 expression causing G1 arrest)

Cadigan 1997 [144]

Wodarz 1998 [145]

(ii) Increased differentiation (ALP, OCN)

(iii) Increased apoptosis

Parathyroid Parathyroid Increased differentiation via MAPK Iwaya 2003 [148]

Hormone (s) hormone Hormone-related pathway (ALP, Type 1 Collagen)

peptide (PTHrP)

BMP2 (i) −Runx2: increased cell proliferation,
no differentiation in OS cells

Reya 2001 [63]

Bone BMP4

Growth morphogenetic BMP6 (ii) +Runx2: decreased cell proliferation,
increased OS cell differentiationfactors proteins BMP9

differentiation (Table 1). BMPs play an essential role in
the osteogenic differentiation of MSCs, and exposure of
MSCs to the most osteogenic BMPs (2, 4, 6, and 9) result
in the expression of osteoblast markers such as ALP, OCN,
and OPN [47, 57, 58, 84, 136, 137, 162, 163]. When four
different OS cell lines were exposed to these osteogenic
BMPs, there was an increased expression of early target genes
Id1, Id2, and Id3, but no change in ALP, OCN, and OPN
levels [64]. Furthermore, BMP exposure not only prevented
differentiation, but actually promoted tumor growth and
proliferation [64]. These results suggest that these OS cells
may contain defects in the differentiation pathway that are
regulated by osteogenic BMPs. Therefore, exogenous admin-
istration of BMPs fails to bypass the defects, but instead
promotes tumor cell proliferation. However, when the cells
were treated with adenovirus expressing Runx2 (even in
the presence of osteogenic BMPs), the tumor growth was
significantly inhibited, and these cells underwent terminal
differentiation and apoptosis [64]. Collectively, these results
suggest that Runx2 is able to bypass the differentiation
defects that are downstream in the cascade from the BMPs,
and thus, able to inhibit tumor progression through the
induction of osteogenic differentiation (Table 1).

7. Concluding Remarks and Future Directions

Osteosarcoma is a complex disease whose etiology is likely
from multiple sources, including rapid bone proliferation,

an accumulation of mutations, and possible defects in
differentiation. Recent investigations have focused on the
factors regulating the osteogenic differentiation cascade of
mesenchymal stem cells. Alterations in other differentiation
pathways have already been established as critical etiologies
in the pathogenesis of other cancers, such as breast, prostate,
and the hematologic system. We have had success in over-
coming these differentiation defects in these cancers, leading
to the inhibition of the tumor cells with uncontrolled prolif-
eration. We have recently shown that osteosarcoma, at least
in part, results from defects in the osteogenic differentiation
cascade. OS tumor cells share many cellular and morphologic
features with undifferentiated osteogenic progenitors. As a
result, osteogenic factors such as BMPs, are not able to
bypass these defects, leading to cellular proliferation and
tumor growth. Late osteogenic regulators, such as Runx2
and the retinoids, are able to overcome these defects and
stimulate progression through the differentiation cascade.
Further understanding of the relationship between defects
in differentiation and tumor development holds tremendous
potential in developing novel therapies to treat OS.
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[49] J. Massagué and YE. G. Chen, “Controlling TGF-β signaling,”
Genes and Development, vol. 14, no. 6, pp. 627–644, 2000.
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