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Hydrogen peroxide is currently themostwidely used apoptosis inducer due to its broad cytotoxic efficacy against nearly all cell types.
However, equivalent cytotoxicity is achieved over a wide range of doses, although the reasons for this differential sensitivity are not
always clear. In this study, three kinds of cells, the 293T cell line, primary fibroblasts, and terminally differentiated myocardial cells,
were treated with a wide range of H

2
O
2
doses. Times to apoptosis initiation and endweremeasured cytochemically and the changes

in expression of caspase-9, P53, NF-𝜅B, and RIP were determined by RT-PCR. The 293T cell line was the most sensitive to H
2
O
2
,

undergoing necroptosis and/or apoptosis at all concentrations from 0.1 to 1.6mM. At > 0.4mM, H
2
O
2
also caused necroptosis in

primary cells. At < 0.4mM, however, primary cells exhibited classic signs of apoptosis, although they tended to survive for 36 hours
in < 0.2mM H

2
O
2
. Thus, H

2
O
2
is a broadly effective apoptosis inducer, but the dose range differs by cell type. For cell lines, a low

dose is required and the exposure time must be reduced compared to primary cells to avoid cell death primarily by necroptosis or
necrosis.

1. Introduction

Cell apoptosis was first described as a cell death pathway
unique from necrosis in 1972 [1]. Thereafter, a plethora
of apoptosis inducers were identified, such as hydrogen
peroxide (H

2
O
2
), dithiothreitol (DTT), and oxidized LDL [2–

4]. Among these agents, H
2
O
2
has been the most widely used

and studied at the mechanistic level. In many cases, transient
exposure to H

2
O
2
triggers apoptosis through the mitochon-

drial pathway involving sequential loss of mitochondrial
membrane potential, cytochrome c release, and effector
caspase-3 activation [5–7]. Several factors that can antagonize
apoptosis induced by H

2
O
2
have also been identified, such

as nerve growth factor (NGF) and chlorogenic acid [8, 9].
Hydrogen peroxide is used as an apoptosis inducer for many
types of cells, including cell lines, tumor cells, primary cells,
and highly differentiated cells [10–15], although the doses
used vary widely, from 0.05 to 10mM [12–14, 16, 17]. As
there are several interacting but mechanistically distinct cell

death pathways that may be activated by H
2
O
2
, it is critical to

identify the ranges over which these pathways are primarily
activated. Moreover, such information could yield valuable
information on the interactions among these pathways under
cell stress. To date, however, there is still no study that sys-
tematically studied different susceptibility to H

2
O
2
-induced

apoptosis among cell types, which is critical for determining
if H
2
O
2
is a suitable apoptosis inducer in a specific context.

Indeed, whether apoptosis or necroptosis is induced under
different dosages of H

2
O
2
is often unconfirmed [18] and

apoptosis is only assumed.
Certain indices can reveal specific aspects of the cell death

process. For example, caspase-9 can be used to monitor the
initiation of apoptosis [19], activation of NF-𝜅B is usually
caused by oxidative stress and may indicate DNA damage
[20], and P53 can indicate dysregulation of the cell cycle
and proliferation [21]. RIP is a key mediator of necroptosis
signaling pathways; therefore RIP can be used to distinguish
apoptosis from necroptosis [22].
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Table 1: Primers for quantitative real-time PCR.

Gene Forward Reverse Thermocycle

F/C

Caspase-9 5TCAGACATCGTATCCTCCA 5AGTCACAGCAGCACA

98∘C/3min + 40 × [98∘/15 s; 61∘C/40 s]
P53 5ACCTGCACTTACTCCCCGGT 5TCTTATAGACGGCCACGGCG

NF-𝜅B 5AGGACTTAAAATGGCAGGAGAG 5GCTGTTCGTAGTGGTAAGTCTG
RIP1 5GAACTAGGCTTCAGCAACTCCG 5GCAGCCAAAGAGGGCTTTGG
𝛽-actin 5GGCACCCAGCACAATGAAG 5CCGATCCACACGGAGTACTTG

293T

Caspase-9 5TGCTGAGCAGCGAGCTGTT 5AGCCTGCCCGCTGGAT

98∘C/3min + 40 × [98∘/15 s; 61∘C/40 s]
P53 5CCACCATCCACTACAACTACAT 5CAAACACGGACAGGACCC

NF-𝜅B 5TCTCCCTGGTCACCAAGGAC 5TCATAGAAGCCATCCCGGC
RIP1 5CATGGAAAAGGCGTGATACAC 5ACTTCCCTCAGCTCATTGTG
𝛽-actin 5GGCACCCAGCACAATGAAG 5CCGATCCACACGGAGTACTTG

F/C: fibroblasts/cardiomyocytes.

To determine if H
2
O
2
is a suitable apoptosis inducer for

a given cell type, we measured cytochemical and genetic
indices of apoptosis and necroptosis under a range of
H
2
O
2
doses in three cell types, an immortalized cell line,

primary fibroblasts, and terminally differentiated cardiomy-
ocytes. These cells were chosen for their distinct proliferative
features. The 293T immortalized cell line is characterized
by unlimited proliferation and passages, while fibroblasts
show limited proliferation and passages, and terminally
differentiated cardiomyocytes show no further proliferation.
For convenience, both fibroblasts and myocardial cells were
derived from chicken embryos.

2. Materials and Methods

2.1. Cell Culture. Isolation and culture of chicken embryo
fibroblasts and myocardial cells followed methods previously
described [23, 24] with some modifications. Briefly, White
Leghorn eggs were obtained from Beijing Merial Vital Lab-
oratory Animal Technology (Beijing, China). At embryonic
day 11 (E11), embryos were removed and decapitated in a Petri
dish filled with Medium 199/EBSS (HyClone, Logan, Utah,
USA) supplemented with 3% fetal bovine serum (FBS, Gibco,
Grand Island, New York, USA). Ventricular tissues and torso
of chicken embryo were isolated for the preparations of
myocardial cells and CEF and treated with 0.05% trypsin-
EDTA to obtain a cell suspension as described [14, 25, 26],
respectively. Specifically, the cells of CEF andmyocardial cells
were, respectively, incubated at 8 × 105 per well in 24-well
plates in growth medium (Medium 199/EBSS containing 10%
FBS) at 37∘C under a 5% CO

2
atmosphere. Cultures were

washed three times at 8, 24, and 48 h to remove dead and
dying cells.The serum concentration in themediumwas then
changed from growth (10%) to maintenance (2%) conditions.

293T cells at low passage were incubated at 1 × 105
cells/well in 24-well plates with Dulbecco’s modified Eagle
medium (DMEM) (HyClone, Logan, Utah, USA) containing
10% FBS at 37∘C under a 5% CO

2
atmosphere. After plating,

the serum concentrationwas decreased from growth (10%) to
maintenance (2%) conditions.

2.2. Apoptosis Induction and Assessment. Each cell type was
divided into three groups, H

2
O
2
treatment, positive control

(DTT treatment), and negative control. H
2
O
2
groups were

incubated in 0.1, 0.2, 0.4, 0.8, or 1.6mM H
2
O
2
, the positive

control groups were incubated in 2mM DTT, and the
negative control groups received no treatment. After the start
of exposure, cells were examined every 0.5 h by staining with
AO/EB to monitor the initiation of apoptosis. DAPI staining
was used to determine the time to substantial apoptosis.
Then, apoptosis times and cell survival rates were determined
by AO/EB staining and DAPI staining. Finally, total RNA
was extracted from cells using Trizol reagent (Invitrogen,
Carlsbad, CA, USA) to assess expression levels of apoptosis-
and necroptosis-associated genes. Reverse transcription was
performed using a PrimeScript II 1st Strand cDNA synthesis
kit (TaKaRa, Otsu, Shiga, Japan). Quantitative real-time PCR
was conducted to evaluate changes in caspase-9, P53, NF-𝜅B,
and RIP expression levels using the primers and thermocycle
conditions shown in Table 1. Groupmeans were compared by
ANOVA using SPSS17.0 software. All bar figures were created
by Graphpad Prism 5 software.

3. Results

3.1. Initiation Time of Apoptosis. Apoptosis initiation times at
different H

2
O
2
doses are shown in Figure 1 for all three cell

types. The time to initiation was estimated by AO/EB double
staining every 0.5 h under an inverted epifluorescencemicro-
scope. The 293T cells were very sensitive to both DTT- and
H
2
O
2
-induced apoptosis as indicated by the shorter delays

until initiation compared to the other cell types. Alternatively,
apoptosis initiation times did not differ significantly between
myocardial cells and fibroblasts in response to DTT or H

2
O
2
.

3.2. Significant Differences in Times to Substantial Apoptosis
and the End of Apoptosis among Cell Types. After apoptosis
started, DAPI staining was used to determine the time at
which significant apoptosis occurred (Figure 2). At > 0.4mM
H
2
O
2
, apoptosis developed rapidly with little difference

between cell types. At ≤ 0.4mM, however, the time to
substantial apoptosis was much more sensitive to H

2
O
2
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Figure 1: Time to apoptosis initiation. 293T cells (T), myocardial
cells (M), and fibroblasts (F) were treated with a range of hydrogen
peroxide concentrations (0.1–1.6mM) or DTT (2mM, positive
control).
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Figure 2: Time to significant apoptosis induction for each cell type
in response to DTT or hydrogen peroxide. Hydrogen peroxide, 0.1–
1.6mM;DTT, 2mM; T, 293T cells;M,myocardial cells; F, fibroblasts.

dose and cell type, with markedly faster times for 293T
cells, particularly at 0.4mM, compared to fibroblasts and
cardiomyocytes. For the apoptosis ending test, the medium
(both control and medium containing H

2
O
2
) was replaced

every 12 hours to prevent a decrease in inducer concentration.
Apoptosis ending was observed for up to 36 hours (Figure 3)
and indicated that primary cells (fibroblasts and cardiomy-
ocytes) can survive at 0.2mM for 36 h.

3.3. Changes in Expression of Apoptosis Indicators. After
apoptosis became significant, the RNA of each cell group
was extracted and reverse-transcribed for real-time PCR
analysis of caspase-9, P53, NF-𝜅B, and RIP expression levels.
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Figure 3: Time to end of apoptosis in response to hydrogen peroxide
and DTT. Hydrogen peroxide, 0.1–1.6mM; DTT, 2mM; T, 293T
cells; M, myocardial cells; F, fibroblasts.
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Figure 4: Expression of apoptosis and necroptosis indices in
293T cells. Hydrogen peroxide, 0.1–1.6mM; DTT, 2mM. Each bar
represents the means ± SD (n = 3). ∗∗𝑝 < 0.01; ∗𝑝 < 0.05 compared
with control.

In 293T cells (Figure 4) caspase-9, P53, and NF-𝜅B increased
at all H

2
O
2
concentrations. In general, expression rose with

increasing concentration but the peak differed for caspase-
9, P53, and NK-𝜅B (0.6 or 0.8mM). The trend for RIP was
distinct; RIP was induced at all H

2
O
2
concentrations, in

contrast to the expression pattern in fibroblasts (Figure 5) and
cardiomyocytes (Figure 6).

Hydrogen peroxide- andDTT-induced changes in fibrob-
last expression of apoptosis- and necroptosis-associated
genes are shown in Figure 5. Compared to 293T cells, there
were differences in themagnitude of the expression increases,
but the general trends were similar. A notable exception was
the higher threshold concentration for upregulation of the
necroptosis indicator RIP.

Changes in expression also followed similar trends in
myocardial cells (Figure 6) although NF-𝜅B expression was
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Figure 5: Expression of apoptosis and necroptosis indices in
fibroblasts. Hydrogen peroxide, 0.1–1.6mM; DTT, 2mM. Each bar
represents the means ± SD (n = 3). ∗∗𝑝 < 0.01 compared with
control.
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Figure 6: Expression of apoptosis and necroptosis indices in
myocardial cells. Hydrogen peroxide, 0.1–1.6mM;DTT, 2mM. Each
bar represents the means ± SD (n = 3). ∗∗𝑝 < 0.01; ∗𝑝 < 0.05
compared with control.

lower with no trend for dose-dependence. Moreover, similar
to fibroblasts and in contrast to 293T cells, RIP expressionwas
not upregulated by the lowest H

2
O
2
concentrations.

4. Discussion

The three cell types examined showed clear differences in
sensitivity to apoptosis induction by hydrogen peroxide and
DTT. We speculated that highly proliferative cells would
show the strongest apoptosis resistance, followed by primary
cells and then highly differentiated cells. However, the exact
opposite proved to be the case, with 293T cells showing
the fastest apoptosis induction across H

2
O
2
concentrations,

as well as the shortest time to substantial induction, and
the earliest end of induction compared to fibroblasts and
cardiomyocytes.Moreover, the induction of apoptosis indices
was accompanied by upregulation of RIP, a gene associated
with necroptosis, at all H

2
O
2
concentrations. Alternatively,

terminally differentiated myocytes with no proliferative
capacity showed minimal induction of apoptosis at concen-
trations inducing substantial apoptosis/necroptosis in 293T
cells. In addition, internal ROS production may be different
from one cell type to another and H

2
O
2
produced during

normal cell metabolism and production must be higher
in rapidly proliferative cells. Therefore, H

2
O
2
concentration

used should be chosen carefully according to cell model in
studies of apoptosis as the induction range differs markedly
among cell types.

The necroptosis index RIP was induced by low concen-
trations of H

2
O
2
(0.1 and 0.2mM) only in 293T cells, while

RIP induction required 0.4mM or higher in fibroblasts and
cardiomyocytes. Thus, H

2
O
2
concentrations of 0.2–0.4mM

are appropriate for studying “pure” apoptosis in fibroblasts
and cardiomyocytes. In contrast, very low doses may be
required to study “pure” apoptosis in 293T cells. Therefore,
if an inadequate dosage was used for specific cell types, the
apoptosis inducing effect of H

2
O
2
would not be observed and

the appropriate dosage for inducing the apoptosis of specific
cell types should be determined firstly.The series of measure-
ments conducted here constitute a template for determining
the optimal H

2
O
2
concentration range for specific analysis of

apoptosis (i.e., in the absence of necrosis or necroptosis) for
a given cell type.

4.1. Efficiency of Hydrogen Peroxide. In our experiments, a
hydrogen peroxide dosage was > 0.4mM evoked rapid and
relatively uniform cell death, while the extent of cell death
was highly dose-sensitive ≤ 0.4mM. At 0.1 and 0.2mM,
fibroblasts and cardiomyocytes survived for 36 hours, while
substantial death of 293T cells was observed. Cell lines
have a higher cell death efficiency induced by hydrogen
peroxide. For all the cells, the starting time of apoptosis
was dose-dependent; the higher dosage inducer had a faster
cell death. In this experiment, we first wanted to use flow
cytometry for assessment, but there were some interferences,
especially in primary cells, for dregs can be easily stained
and thus interfere with the assessment. Therefore, we used a
fluorescence inversion microscope system.

4.2. Factors Controlling Susceptibility to Hydrogen Peroxide.
It was found that cell density in a 24-well plate and the
generation number of 293T cells has a significant impact
on the beginning and ending times of apoptosis. If the cell
line has a high generation or density, it would be more
sensitive to the induction by hydrogen peroxide. So we
decreased the number of the three kinds of cells per well
during the incubation. The beginning and ending times
of apoptosis were used to determine cell susceptibility to
hydrogen peroxide. Unexpectedly, it was found that cell lines
are themost sensitive to hydrogen peroxide. Even at the lower
dosage, hydrogen peroxide may cause the apoptosis of 293T
cells, and apoptosis can occur earlier and faster than the other
2 kinds of cells.

4.3. Cell Death Type after Induction with Hydrogen Peroxide.
In the experiments, 4 indices were used to monitor the
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changes in cells after induction with hydrogen peroxide. As
judged by RIP, it was found that 293T cells may be involved
in necroptosis, even at a low dosage. Thus, if we want to
induce cell lines into apoptosis, we must reduce the action
time or use DTT to induce apoptosis. For myocardial cells
and fibroblasts, they tend to be involved in necroptosis only at
a higher dosage. From the other 3 indices, it can be concluded
that 3 kinds of cells have different responses to the induction
by hydrogen peroxide, which showed that fibroblasts are not
inclined to necroptosis after induction from the expression
of RIP. For other indices, fibroblasts have a higher expression
of NF-𝜅B, which may indicate that it has had more DNA
corrosion and handicap of transcription. 293T cells have
a higher expression of P53, indicating a disorder in cell
cycle and proliferation. The myocardial cells have a higher
expression of all indices, which may be a comprehensive
effect.

In the experiments it was found that the cells underwent
morphologic changes after induction by hydrogen peroxide
and it is dose-dependent. After the comparison of DTT
and hydrogen peroxide, there are many differences in the 4
indices; however, the trend is basically consistent. It was also
found that the hydrogen peroxide can greatly influence cell
motor ability, but after the induction of DTT for 6 hours,
the impulse of some myocardial cells still exists and the
apoptosis effect is less than hydrogen peroxide. The existing
question is whether or not hydrogen peroxide has a selectivity
in different cell lines or if hydrogen peroxide has a species
selectivity, such as cells from rats.

5. Conclusion

Hydrogen peroxide has a high efficiency leading to cell death.
Hydrogen peroxide causes necroptosis in 293T cells at a
concentration ranging from 0.1 to 1.6mM.The cell lines used
in this study were sensitive to hydrogen peroxide. In primary
cells, a concentration > 0.4mM may also cause necroptosis.
A concentration < 0.4mM had a tendency to apoptosis.
Primary cells can survive in hydrogen peroxide for 36 hours
at a concentration ≤ 0.2mM. Different cells have a different
response to induction by hydrogen peroxide.Thus, hydrogen
peroxide qualifies as an apoptosis inducer at a specific dosage
corresponding to the specific cell types, but researchers donot
pay attention to these findings.
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