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Abstract 

Since the end of 2019, coronavirus disease 2019 (COVID‑19) caused by severe acute respiratory syndrome coronavirus 
2 (SARS‑CoV‑2) has spread worldwide. The RNA genome of SARS‑CoV‑2, which is highly infectious and prone to rapid 
mutation, encodes both structural and nonstructural proteins. Vaccination is currently the only effective method to 
prevent COVID‑19, and structural proteins are critical targets for vaccine development. Currently, many vaccines are 
in clinical trials or are already on the market. This review highlights ongoing advances in the design of prophylactic or 
therapeutic vaccines against COVID‑19, including viral vector vaccines, DNA vaccines, RNA vaccines, live‑attenuated 
vaccines, inactivated virus vaccines, recombinant protein vaccines and bionic nanoparticle vaccines. In addition to 
traditional inactivated virus vaccines, some novel vaccines based on viral vectors, nanoscience and synthetic biology 
also play important roles in combating COVID‑19. However, many challenges persist in ongoing clinical trials.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic 
caused by the new severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is an ongoing crisis of 
grave global concern. More than 4.92 million peo-
ple had died of COVID-19 by October 20, 2021. The 
World Health Organization (WHO) announced that 
the new coronavirus pneumonia epidemic is listed 
as a Public Health Emergency of International Con-
cern (PHEIC). The infectivity of the original emer-
gent SARS-CoV-2 strain was close to or slightly higher 
than that of severe acute respiratory syndrome coro-
navirus 1 (SARS-CoV-1), and it is highly antigenically 

and genetically similar to SARS-CoV-1 [1]. The whole 
world must quickly cut the transmission route and 
adopt effective prevention and control measures to 
prevent the further spread of SARS-CoV-2. The law 
of the People’s Republic of China on the prevention 
and control of infectious diseases states, “The state 
implements a policy of prevention primarily for the 
prevention and control of infectious diseases.” Since 
the outbreak of the virus at the end of 2019, it has 
exerted severe negative effects on human health and 
the economy [2]. In December 2019, many cases of 
pneumonia with an unknown etiology were recorded 
[3]. Scientists announced preliminary data on the 
identified pathogen on January 8, 2020 and published 
the whole sequence of the virus genome [4]. The 
National Pathogen Microbiological Resource Bank at 
the Chinese Center for Disease Control and Preven-
tion announced the information and electron micro-
graphs of the first virus strains on January 24, 2020. 
On February 11, 2020, the International Committee on 
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Taxonomy of Viruses (ICTV) named the new corona-
virus SARS-CoV-2. On the same day, the World Health 
Organization named the disease caused by the virus 
COVID-19 [5]. As of 12:14 Beijing time on October 20, 
2021, health authorities worldwide had reported more 
than 242.38 million confirmed cases and more than 
4.92 million deaths, and these numbers are expected to 
increase further.

Although coronaviruses are often associated with 
acute respiratory infections in humans, their ability to 
infect multiple host species makes them complex path-
ogens. Due to the high prevalence and wide circulation 
of coronaviruses, the genetic diversity and frequent 
recombination of their genomes, and frequent interac-
tions between humans and animals, new coronaviruses 
are likely to emerge periodically in the human popula-
tion via zoonotic sources [6]. A quick understanding 
of the structure and characteristics of SARS-CoV-2, 
as well as the clinical features of COVID-19, is neces-
sary to expedite vaccine research and drug develop-
ment. In terms of treatment and prevention, scientists 
are facing great challenges in the process of developing 
vaccines and drugs because of the variability of SARS-
CoV-2, which will necessitate long-term research and 
development of specific vaccines and drugs against 
the virus. In addition, SARS-CoV-2 has intermediate 
to high infectivity. As a result, scientists not only must 
consider the safety and efficacy of the vaccine but also 
protective measures for personnel during the research 
and development process, increasing the challenges 
associated with the whole enterprise. To date, a global 
vaccine development strategy based on inactivated 
virus vaccines, recombinant protein vaccines, recom-
binant viral vector vaccines, nucleic acid vaccines (e.g., 
mRNA vaccines and DNA vaccines) and live attenuated 
vaccines has been launched, and some vaccines have 
already completed phase III clinical trials and are on 
the market.

In this paper, various types of vaccines are reviewed, 
based on which the concept of a bionic simulated virus 
vaccine is proposed and a new strategy of vaccine 
development is considered. Bionic technology has been 
widely used in biology and medicine [7, 8]. Studies have 
revealed that bionic nanoparticles potentially represent 
promising mucosal adjuvants for “universal” influenza 
vaccines, which has made biomimetic technology more 
mature and provided broad application prospects. In 
vaccine development, biomedical nanomaterials have 
been used to simulate the whole virus structure, includ-
ing its infection process, and efficiently trigger antibody 
production. Additionally, biomedical nanomaterials 
have desirable biocompatibility [9, 10]. Thus, the use of 
this strategy to develop vaccines may be a good choice.

SARS‑CoV‑2
Overview of SARS‑CoV‑2
SARS-CoV-2 is the seventh known coronavirus that 
infects humans and causes disease [11]. According to a 
genomic analysis, SARS-CoV-2 falls within the B sub-
group of the Betacoronavirus genus, which causes lower 
respiratory tract infections and pneumonia in humans 
and has a high mutation rate, alternative splicing, and 
overall diversity [12]. Extracellular virus particles and 
inclusion bodies formed by SARS-CoV-2 components 
were identified in ultrathin sections of airway epithe-
lial cells from patients with COVID-19 [6]. Notably, 
sequence alignments revealed that SARS-CoV-2 is closely 
related (86.9% identity) to the bat-derived SARS-like cor-
onavirus bat-SL-CoVZC45, which was collected in China 
in 2003, while it is more distantly related to the first 
emergent SARS-CoV and Middle East Respiratory Syn-
drome Coronavirus (MERS-CoV).

Host range of SARS‑CoV‑2
Most scientists view bats as the most likely reservoir of 
SARS-CoV-2 [13]. Studies comparing the total genome 
sequences indicate that SARS-CoV-2 may have evolved 
from a Betacoronavirus species found in Chinese horse-
shoe bats (Rhinolophus sinicus), since it shares up to 
96.2% identity with some strains detected in bats [4]. 
Accordingly, bats are presumed to be the natural res-
ervoir from which SARS-CoV-2 originated and spread 
to humans via an intermediary host [14]. However, 
researchers have not determined which animal is respon-
sible for the final transmission to humans. Bats are the 
natural hosts for some of the most dangerous viruses, 
including Ebola, Marburg, rabies, Hendra, and Nipah 
[15]. Due to their special immunological features, bats 
are naturally infected but do not exhibit clinical signs of 
these diseases [16].

SARS‑CoV‑2 transmission routes
SARS-CoV-2 is highly infectious and has become a threat 
worldwide. SARS-CoV-2 is mainly transmitted by direct 
contact and respiratory droplets [17–19]. However, it 
can also be transmitted via the fecal–oral route, mother-
to-child route and aerosol route [20, 21]. Moreover, if 
people who are susceptible to disease touch freshly con-
taminated fomites on surfaces such as door handles and 
phones and then touch their own oral mucosa, nasal cav-
ity or conjunctiva, indirect contact transmission might 
occur. Transmission via the aerosol route mainly occurs 
in confined and nonventilated spaces.

Structure of SARS‑CoV‑2
The SARS-CoV-2 genome is composed of a single posi-
tive-strand RNA, which is replicated with the assistance 
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of nonstructural proteins (NSPs) [22]. As an RNA virus, 
SARS-CoV-2 requires an RNA polymerase to replicate 
its genome, and this polymerase lacks a proofreading 
function. As a result, the inherent mutation rate dur-
ing replication in the host or intermediate host is high. 
Additionally, the high gene recombination rate between 
different coronaviruses is one of the reasons for their 
high diversity [23]. As shown in Fig. 1, the SARS-CoV-2 
genome encompasses 29,903 nt, with multiple genes 
that encode 29 proteins. The coding sequence is flanked 
by two untranslated terminal regions (UTRs) and con-
tains 14 annotated open reading frames (ORFs). The first 
two 5′-ORFs, ORF1ab and ORF1a, account for approxi-
mately two-thirds of the genome and encode 16 NSPs 
that are responsible for viral replication [23, 24]. The 
SARS-CoV-2 genome has a GC content of 38% [24]. 
The encoded sequences include the 5′ UTR, replicase 
complex (orf1ab), 4 structural proteins (spike protein, 
membrane protein, envelope protein and nucleocapsid 
protein), 8 accessory proteins [25], 3′ UTR and some 
unstructured open reading frames [3-chymotrypsin-
like protease (3CLpro)], also called the main protease 
(Mpro), papain-like protease (PLpro), helicase and RNA-
dependent RNA polymerase (RdRp)). These proteins are 
presumed to play a role in virus replication and patho-
genesis [26]. The SARS-CoV-2 virus particles have obvi-
ous spinous processes that are 9–12  nm long such that 
the viral particle resembles the sun’s corona, from which 
its name was derived. SARS-CoV-2 virions appear poly-
morphic and mostly spherical under an electron micro-
scope. All virus particles have core–shell structures with 
a diameter ranging from 60 to 140 nm [6]. Similar to the 
original emergent SARS-CoV, the four structural proteins 
of SARS-CoV-2 play important roles in viral infection 
(Fig.  2). These proteins may help us develop prophylac-
tic vaccines that prevent viral cell entry, which is very 
important.

The spike protein is one of the 4 structural proteins 
that play important roles in forming the exterior of 
SARS-CoV-2 particles and protecting the internal RNA. 
The spike protein is a typical type I transmembrane gly-
coprotein constituting a unique spike-like structure on 
the surface of the virus. Spike protein is composed of S1 
and S2 subunits [27]. S1 constitutes the globular head 
of the spike protein, providing the N-terminal domain 
(NTD) and the receptor-binding domain (RBD), which is 
responsible for recognizing the host cell receptor [28]. S1 
is crucial for determining the spike orientation and host 
range. S2 forms the stem of the spike protein and par-
ticipates in membrane fusion. The S2 subunit contains 3 
functional groups, including a fusion peptide (FP) and a 
peptide repeat sequence (HR1 and HR2). After the RBD 
located in the tip of S1 binds to the receptor, the FP in S2 
is inserted into the host cell membrane and changes the 
conformation, inducing the formation of a six-helix bun-
dle (6HB) by HR1 and HR2, resulting in the fusion of the 
viral membrane with the cell membrane. The spike pro-
tein [29] forms obvious spikes on the surface of the virus. 
Some of the spikes extend and attach to angiotensin-con-
verting enzyme 2 (ACE2), after which the virus invades 

Fig. 1 Organization of the SARS‑CoV‑2 genome. S spike protein; E envelope protein; M membrane protein; N nucleocapsid protein

Fig. 2 Structure of SARS‑CoV‑2
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the cell [30]. A special 12-base sequence (ccucggcgggca) 
in the spike protein gene has been identified that may 
help the spike protein bind more tightly to human cells. 
In  vitro experiments also showed that if the host cell 
lacks the ACE2 protein, then it cannot be infected [31]. 
Several teams are currently researching and developing 
drugs to prevent this protein from attaching to human 
cells. Similar to SARS-CoV and MERS-CoV, the spike 
protein of SARS-CoV-2 and its RBD contained are still 
the main targets of vaccine development [32]. The struc-
ture of the SARS-CoV-2 spike protein has been solved 
and understood in some detail.

The membrane protein and E protein are structural 
proteins that form the outer shell of the virion. Addition-
ally, the E protein binds other proteins inside the cell, 
further facilitating infection. The membrane protein is 
the most abundant structural protein of the virus, which 
determines the shape of the virion [33]. It has a larger 
C-terminal inner domain and a small N-terminal glyco-
sylated extracellular domain. Moreover, the membrane 
protein is a dimer in the virion and adopts two different 
conformations to promote membrane bending and bind 
to the nucleocapsid together. A few transmembrane E 
proteins existed in the virion. E protein is composed of 
a C-terminal internal domain and an N-terminal extra-
cellular, and possesses ion channel activity, which is help-
ful for the assembly and release of virions. Recombinant 
viruses lacking the E protein may not be viable.

In addition, nucleocapsid proteins are connected in 
the form of a long helix, wrapping the internal RNA. 
Their main function is to maintain the stability of the 
RNA inside the virion. Nucleocapsid protein is the only 
protein that forms the nucleocapsid. It consists of inde-
pendent N- and C-terminal domains (NTD and CTD, 
respectively). These domains use different mechanisms 
to bind RNA in vitro, indicating that optimal RNA bind-
ing requires the participation of these two domains. The 
nucleocapsid protein also binds to the key components 
of the replicase complex, nsp3 and membrane protein, 
and these protein interactions may help package the 
protein-coated genome into viral particles [34]. Previous 
studies have also shown that the nucleocapsid protein 
plays a role in the invasion of SARS-CoV-2 and elicits an 
immune response.

Pathogenic mechanism of SARS‑CoV‑2
The pathogenic mechanism of SARS-CoV-2 has not been 
fully clarified. The process of SARS-CoV-2 infection is 
the same as other coronaviruses. First, the spike protein 
binds to a specific receptor on the human cell mem-
brane. Second, the virus enters the cell through recep-
tor-mediated endocytosis and begins to replicate. Then, 
newly formed virions leave the host cell and infect other 

host cells [12]. Pre-studies have found that the recep-
tor used by SARS-CoV-2 during invasion is the same as 
that of SARS-CoV, ACE2, suggesting that the host range 
and tissue tropism of the two viruses may be similar [29, 
35]. Researchers have identified that the mechanism 
through which SARS-CoV-2 enters the cell is related to 
ACE2, the proprotein convertase furin, transmembrane 
serine protease 2 (TMPRSS2) and the lysosomal pro-
tease cathepsin. In the virion, the spike protein exists as 
a trimer; the S1 head is located at the top of the trim-
eric membrane-fused S2 stalk, which contains the RBD 
and specifically recognizes ACE2. Additionally, the virus 
uses the cell surface protease TMPRSS2 or the lysosomal 
protease cathepsin to dissociate S1 and activate the S1/
S2 boundary through proteolysis. The mechanism SARS-
CoV-2 uses to enter the cell reduces its dependence on 
the surface protease of the target cell. At the same time, 
pre-activation by furin and the high affinity of the RBD 
for ACE2 enable SARS-CoV-2 to effectively enter the 
cell while evading immune surveillance. These charac-
teristics enable the rapid spread of the virus, aggravat-
ing the symptoms of patients and even causing death 
[36]. Some scientists have found that the spike protein 
of SARS-CoV-2 has a much higher affinity for binding 
to human ACE2 than that of SARS-CoV [29], which may 
be the main reason why SARS-CoV-2 is more infectious 
than SARS [37, 38]. Based on current research results, 
the interaction between the spike protein and ACE2 is 
an important premise for SARS-CoV-2 to invade cells 
[29]. At present, pathological research on the long-term 
existence of COVID-19 is mainly focused on the length 
of time the virus persists in the body and the long-
term existence of viral RNA. An analysis of 26 patients 
revealed no critically ill patients, but SARS-CoV-2 and 
IgG antibodies coexisted for up to 50 days in two patients 
[39]. Additionally, the long-term existence of syncytia in 
infected cells and the continued existence of viral RNA 
in lung cells and endothelial cells may cause the virus to 
exist in the body for a long time [40].

Variants of SARS‑CoV‑2
All viruses, including SARS-CoV-2, change over time. 
Most of the changes have little effect on virus proper-
ties (Table  1). However, some changes may affect the 
characteristics of the virus, such as the ease with which 
it spreads, the severity of the associated disease, and the 
efficacy of vaccines, therapeutic drugs, diagnostic tools 
or other public health and social measures. A number of 
variants have become variants of concern (VOC) or vari-
ants of interest (VOI), reclassifying VOI/VOC for scien-
tists, health workers and the general public. VOC and 
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Table 1 SARS‑CoV‑2 variants (the data are from the WHO website, as of October 12, 2021)

a Significant monitored spike (S) amino acid changes have been reported in a small number of sequencing samples
b Former VOIs Epsilon (B.1.427/B.1.429), Zeta (P.2), Theta (P.3). VUM variants under monitoring

WHO label Pango lineages Additional amino acid 
changes  monitoreda

Earliest documented samples Date of designation

Variants of Concern (VOC)

Alpha B.1.1.7 + S: 484K
+ S: 452R

United Kingdom, Sep‑2020 [41, 42] 18‑Dec‑2020

Beta B.1.351
B.1.351.2
B.1.351.3

+ S: L18F South Africa, May‑2020 [43–45] 18‑Dec‑2020

Gamma P.1
P.1.1
P.1.2

+ S: 681H Brazil, Nov‑2020 [46] 11‑Jan‑2021

Delta B.1.617.2
AY.1
AY.2

+ S: 417N India, Oct‑2020 [47] VOI: 4‑Apr‑2021
VOC: 11‑May‑2021

Variants of Interest (VOI)

Eta B.1.525 Multiple countries, Dec‑2020 17‑Mar‑2021

Iota B.1.526 United States of America, Nov‑2020 24‑Mar‑2021

Kappa B.1.617.1 India, Oct‑2020 [48] 4‑Apr‑2021

Lambda C.37 Peru, Dec‑2020 14‑Jun‑2021

Mu B.1.621 Colombia, Jan‑2021 30‑Aug‑2021

Reclassifying VOIs/VOCs

B.1.427
B.1.429b

United States of America, Mar‑2020 VOI: 5‑Mar‑2021
Alert: 6‑Jul‑2021

P.2b Brazil, Apr‑2020 VOI: 17‑Mar‑2021
Alert: 6‑Jul‑2021

P.3b Philippines, Jan‑2021 VOI: 24‑Mar‑2021
Alert: 6‑Jul‑2021

R.1
R.2

Multiple countries, Jan‑2021 07‑Apr‑2021

B.1.466.2 Indonesia, Nov‑2020 28‑Apr‑2021

B.1.621 Colombia, Jan‑2021 26‑May‑2021

AV.1 United Kingdom, Mar‑2021 26‑May‑2021

B.1.1.318 Multiple countries, Jan‑2021 02‑Jun‑2021

B.1.1.519 Multiple countries, Nov‑2021 02‑Jun‑2021

AT.1 Russian Federation, Jan‑2021 09‑Jun‑2021

C.36.3
C.36.3.1

Multiple countries, Jan‑2021 16‑Jun‑2021

B.1.214.2 Multiple countries, Nov‑2020 30‑Jun‑2021

B.1.1.523 Multiple countries, May‑2020 14‑Jul‑2021

B.1.620 Multiple countries, November 2020 14‑Jul‑2021

C.1.2 South Africa, May 2021 01‑Sep‑2021

B.1.617.1b India, Oct‑2020 VOI: 4‑Apr‑2021
VUM: 20‑Sep‑2021

B.1.526b United States of America, Nov‑2020 VOI: 24‑Mar‑2021
VUM: 20‑Sep‑2021

B.1.525b Multiple countries, Dec‑2020 VOI:17‑Mar‑2021
VUM: 20‑Sep‑2021

B.1.630 Dominican Republic, Mar‑2021 12‑Oct‑2021
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VOI are the main focuses because they may significantly 
change the nature of the virus.

VOC have been shown through a comparative evalu-
ation to be associated with one or more of the follow-
ing changes of global public health significance: (1) to 
increase the prevalence of communicable or harmful 
changes in COVID-19 epidemiology; (2) increased toxic-
ity or altered clinical manifestations; and (3) a decrease in 
the effectiveness of public health and social measures or 
existing diagnostics, vaccines and therapies.

VOI: (1) Predicted or known genetic changes that affect 
viral characteristics, such as transmissibility, disease 
severity, immune escape, and diagnostic or therapeutic 
escape; (2) identified causes of significant community 
transmission or clusters of COVID-19 cases, or other 
significant epidemiological effects, in multiple countries 
with increasing relative prevalence and increasing num-
ber of cases over time, suggest emerging risks to global 
public health.

Given the evolution of SARS-CoV-2 and our under-
standing of the effects of mutations, these working defi-
nitions may be adjusted periodically. Where necessary, 
variants that do not meet all the criteria listed in these 
definitions may be designated VOI/VOC, and those 
variants that have a reduced risk relative to other popu-
lar variants may be reclassified. Previously designated 
VOIs or VOCs, which have been conclusively shown to 
no longer pose a significantly increased risk to global 
public health compared to other prevalent SARS-CoV-2 
variants, can be reclassified. The SARS-CoV-2 variant 
with genetic changes is suspected to affect viral char-
acteristics, and some studies have indicated that it may 
pose a risk in the future, but evidence of phenotypic or 
epidemiological effects is currently unclear, requiring 
enhanced surveillance and repeated evaluation pending 
new evidence.

Since 2020, several variants of SARS-CoV-2 have 
appeared. Researchers have identified hundreds of 
mutations in the residues of the spike protein, but more 
mutation sites are located in the RBD. Chen et  al. [49] 
conducted research on the six SARS-CoV-2 subtypes 
that appeared before; among them, clusters IV, V, and VI 
exhibited significantly greater infectivity. In addition, the 
author also predicted some residues (452, 489, 500, 501, 
and 505) that may be mutated in the future, and these 
residues have a high probability of producing more conta-
gious SARS-CoV-2. Similarly, Daniloski et al. [50] studied 
the transduction rate of a SARS-CoV-2 variant (D614G); 
compared with wild-type SARS-CoV-2, D614G exhib-
ited significantly increased transduction of  A549ACE2 and 
Huh7.5ACE2 cells, indicating increased infectivity. Li et al. 
[51] studied the infectivity of 80 variants and 26 glyco-
sylation modification sites, and the variant containing 

D614G and another amino acid was more infectious. 
Most of the variants caused by amino acid changes in 
the receptor binding region are less infectious, but some 
variants are resistant to partially neutralizing antibodies, 
such as A475V, L452R, V483A and F490L. In addition, 
the lack of glycosylation of N331 and N343 significantly 
reduces the infectivity of the virus. Among the four 
SARS-CoV-2 substrains discovered in the United States, 
studies have shown that Clusters A and D increase con-
tagiosity, while Clusters B and C reduce contagiosity. 
Most importantly, when infected with SARS-CoV-2, the 
immune systems of women are more sensitive than those 
of men [52]. These results have reference value for the 
development of vaccines.

Clinical presentations of COVID‑19
Based on the current epidemiological data, the average 
incubation period of COVID-19 is 14  days. The most 
common symptoms at the onset of COVID-19 are fever, 
dry cough and fatigue. However, a few patients also pre-
sent with nasal congestion, rhinorrhea, pharyngeal pain, 
myalgia or diarrhea. Asymptomatic infections have also 
been identified. In addition, patients admitted to the ICU 
were more likely to report dyspnea and/or hypoxemia, 
with some of them rapidly developing acute respiratory 
distress syndrome (ARDS), septic shock, metabolic aci-
dosis, coagulopathy and multiple organ failure. Addi-
tionally, leukopenia and thrombocytopenia may occur 
in these severe cases [53]. Notably, severe cases are char-
acterized by moderate to low fever or even no obvious 
fever. In contrast, mild cases are only characterized by a 
low fever, slight fatigue and usually no pneumonia [13]. 
Moreover, manifestations in some children and neonates 
may be atypical, including gastrointestinal symptoms 
such as vomiting and diarrhea, or only with mental weak-
ness and shortness of breath.

Recently, relevant documents of the Chinese govern-
ment clearly state that imaging results should be included 
as one of the criteria for a diagnosis of COVID-19. From 
the perspective of imaging, patients with COVID-19 of 
different severities have different presentations. Usu-
ally, no abnormal findings on chest CT are observed in 
patients with mild cases, but many patients show patchy 
ground-glass opacity, which is mainly focal and scattered 
bilaterally in the lungs. However, unilateral involvement 
is also observed. Lesions are commonly detected in the 
lower lobes, while the upper lobes may also be partially 
involved.

In severely and critically ill patients with COVID-19 
pneumonia, bilateral multiple opacities of mixed den-
sity or ground-glass appearance with clear or ambigu-
ous boundaries are common findings in chest CT 
images. The central and peripheral zones of the lungs 
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are usually involved, with subpleural regions most com-
monly involved, and consolidation of different extents 
are observed within the opacities. Moderately ill patients 
have a much lower volume fraction of the lesions in 
the lungs than severely and critically ill patients, and 
severely ill patients have a lower value than critically ill 
patients. According to the evolution of imaging findings 
on chest CT, the disease is subclassified into four peri-
ods: early period, progression period, peak period and 
absorption period. Most patients with COVID-19 can be 
cured, but some patients with severe cases may develop 
acute respiratory distress syndrome, and many die [53]. 
Clinical studies have shown that deceased patients with 
COVID-19 exhibited typical pathological changes in 
the lung parenchyma that eventually led to progressive 
hypoxemia, lactic acidemia, ARDS and acute respiratory 
failure [54]. Autopsy of patients who died of COVID-19 
revealed that the blood vessels of the human body exhibit 
some altered features after COVID-19, such as pulmo-
nary vascular endotheliitis, vascular thrombosis, micro-
vascular disease and alveolar capillary occlusion, which 
have caused harm to the human body [55]. COVID-19 
is generally more severe in older or immunocompro-
mised patients [13]. Additionally, women are less likely to 
develop severe COVID-19 than men [54].

Concepts and methods of vaccine development
Prior to the successful development of a vaccine, no 
drugs specifically targeting SARS-CoV-2 were available 
in clinical practice, and the main measure to control the 
epidemic is still quarantine. At the same time, wearing 
masks, using liquid disinfectants and other measures 
effectively reduce the spread of SARS-CoV-2. The best 
approach to control epidemics is an effective vaccine. 
Teams all over the world are focusing on vaccine research 
and development during the epidemic. Fortunately, they 
have achieved some gratifying results. To date, some 
types of vaccines have been developed and put on the 
market, making them the most effective measures to 
combat the epidemic.

After confirming the epidemic situation, the Minis-
try of Science and Technology of the People’s Republic 
of China promoted research through several technical 
routes, including inactivated virus vaccines, recombinant 
protein vaccines, viral vector vaccines, and nucleic acid 
vaccines [56–58] (Table  2), to guarantee the success of 
vaccine research and development. At present, more than 
400 teams worldwide have launched vaccine research 
based on these five technical routes. We have summa-
rized the research and progress on these vaccines, hoping 
to identify safer and more effective new paradigms for 
vaccine development.

Because of the SARS-CoV-2 pandemic, vaccine devel-
opment suddenly became a focus of global research. 
However, the time needed to develop a vaccine is very 
long. Years to more than a decade is often required from 
preclinical research to the final marketed vaccine (Fig. 3). 
The shortest development period before SARS-CoV-2 
was that of the mumps vaccine, which took 5  years to 
market. In contrast, after several months of research and 
development of SARS-CoV-2 vaccines, several candi-
dates have entered the clinic worldwide (Tables 3, 4, 5). 
This unprecedented speed also required governments to 
adopt a different approval process to ensure the safety, 
efficiency and controllable quality of these new vaccines. 
According to the WHO, vaccine development must 
undergo preclinical research, clinical application, clinical 
trial agency application, registered clinical trial, phase I 
clinical trial, phase II clinical trial, phase III clinical trial, 
vaccine marketing and vaccine production. The process 
is generally divided into five stages and 22 steps: (1) early 
design; (2) animal experiments; (3) Phase I clinical trial 
to understand the preliminary safety of the vaccine; (4) 
Phase II clinical trial to determine the immunization pro-
cedure and dose; and (5) Phase III clinical trials for more 
extensive vaccination trials and evaluation of side effects. 
More than 1000 volunteers are required in Phase III, and 
the shortest period is 3–5  months. Therefore, the rapid 
development of SARS-CoV-2 vaccines is a challenge. 
A change in research and development concepts and 
approval methods is also imperative to ensure that peo-
ple are vaccinated as soon as possible.

Viral vector vaccines
Vector-based vaccines are divided into replicative and 
nonreplicative vector-based vaccines. This type of vac-
cine is generated by integrating exogenous protective 
antigen-encoding genes into the genomes of viruses or 
bacteria whose harmful genes have been removed. A 
recombinant viral vector vaccine uses a virus as a carrier 
and effectively induces the organism to produce high-
titer neutralizing antibodies. The mechanism involves the 
transcription of engineered genes in the nucleus and the 
production of SARS-CoV-2 surface proteins to elicit an 
immune response (Fig. 3a). Viral vectors commonly used 
as antigen delivery systems include DNA viruses such as 
vaccinia virus (VACV) [162–164], herpes simples virus 
(HSV) [165], and adenovirus [166–168], as well as RNA 
viruses such as influenza virus, vesicular stomatitis virus 
(VSV) [169–171] and yellow fever virus 17D (YF17D) 
[172].

Recombinant viral vector vaccines are generally live 
virus vaccines, and their vector functions as an adjuvant 
to induce humoral and cellular immunity at the same 
time. These vectors have become a research hotspot of 
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Fig. 3 Schematic diagram showing the principles of various vaccines. a Viral vector vaccines are produced by integrating the SARS‑CoV‑2 antigenic 
gene fragment into viruses with very low pathogenicity. The gene is then transcribed in the cytoplasm or enters the nucleus for transcription, 
and finally, SARS‑CoV‑2 surface proteins are produced and cause an immune response. b DNA vaccines are produced using technology similar 
to a, but the vector is a plasmid. c mRNA vaccine is based on a synthetic mRNA encoding the SARS‑CoV‑2 antigen that is produced in vitro and 
delivered into the body. Then, it is translated into a protein antigen by cells and causes an immune response in the human body. d Live‑attenuated 
vaccines are prepared by continuous passage to weaken the virulence of live viruses. The attenuated virus then directly induces an immune 
response by entering cells and replicating to induce the production of antibodies against SARS‑CoV‑2 surface proteins. e Inactivated virus vaccines 
are generated from the natural virus, which is inactivated using physical or chemical methods. The killed virus then directly induces an immune 
response. f Recombinant protein vaccines are based on injecting recombinant SARS‑CoV‑2 surface proteins directly into the living body to induce 
an immune response. g Based on f, bionic nanoparticle vaccines use nanoparticles composed of a biodegradable material to replace the nucleic 
acid and proteins of the viral core, while the outer shell contains recombinant viral surface proteins attached using synthetic biology. These two 
parts then form a virus‑like structure through self‑assembly and are injected into the body to induce an immune response
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Table 5 Vaccines entering Phase III/IV clinical trials (as of October 12, 2021)

Vaccine platform description Type of candidate vaccine Developers Phase References

Inactivated virus CoronaVac; inactivated SARS‑CoV‑2 vaccine 
(Vero cell)

Sinovac Research and Development Co., Ltd Phase IV [140–145]

Inactivated virus Inactivated SARS‑CoV‑2 vaccine (Vero cell) Sinopharm + China National Biotec Group 
Co + Wuhan Institute of Biological Products

Phase III [146, 147]

Inactivated virus Inactivated SARS‑CoV‑2 vaccine (Vero cell), 
vaccine name BBIBP‑CorV

Sinopharm + China National Biotec Group 
Co + Beijing Institute of Biological Products

Phase IV [148]

Viral vector (Non‑replicating) ChAdOx1‑S ‑ (AZD1222)
Covishield
Vaxzevria

AstraZeneca + University of Oxford Phase IV [149]

Viral vector (Non‑replicating) Recombinant novel coronavirus vaccine 
(Adenovirus type 5 vector)

CanSino Biological Inc./Beijing Institute of 
Biotechnology

Phase IV [150]

Viral vector (Non‑replicating) Gam‑COVID‑Vac Adeno‑based (rAd26‑
S + rAd5‑S)

Gamaleya Research Institute; Health Ministry 
of the Russian Federation

Phase III

Viral vector (Non‑replicating) Ad26.COV2.S Janssen Pharmaceutical Johnson & Johnson Phase IV [151]

Protein subunit SARS‑CoV‑2 rS/Matrix M1‑Adjuvant (Full 
length recombinant SARS CoV‑2 glycoprotein 
nanoparticle vaccine adjuvanted with Matrix 
M) NVX‑CoV2373

Novavax Phase III [152]

RNA based vaccine mRNA‑1273 Moderna + National Institute of Allergy and 
Infectious Diseases (NIAID)

Phase IV [153]

RNA based vaccine BNT162b2 (3 LNP‑mRNAs), also known as 
"Comirnaty"

Pfizer/BioNTech + Fosun Pharma Phase IV [154]

Protein subunit Recombinant SARS‑CoV‑2 vaccine (CHO Cell) Anhui Zhifei Longcom Biopharmaceuti‑
cal + Institute of Microbiology, Chinese 
Academy of Sciences

Phase III

RNA based vaccine CVnCoV vaccine CureVac AG Phase III [155]

Inactivated virus SARS‑CoV‑2 vaccine (Vero cell) Institute of Medical Biology + Chinese Acad‑
emy of Medical Sciences

Phase III [156]

Inactivated virus QazCovid‑in® ‑ COVID‑19 inactivated vaccine Research Institute for Biological Safety Prob‑
lems, Rep of Kazakhstan

Phase III *1

DNA based vaccine nCov vaccine Zydus Cadila Phase III *2

Inactivated virus Whole‑virion inactivated SARS‑CoV‑2 vaccine 
(BBV152); Covaxin

Bharat Biotech International Limited Phase III

Protein subunit VAT00002: SARS‑CoV‑2 spike protein with 
adjuvant

Sanofi Pasteur + GSK Phase III [157]

Inactivated virus Inactivated SARS‑CoV‑2 vaccine (Vero cell) Shenzhen Kangtai Biological Products Co., Ltd Phase III *3

Protein subunit FINLAY‑FR‑2 anti‑SARS‑CoV‑2 vaccine (RBD 
chemically conjugated to tetanus toxoid plus 
adjuvant)

Instituto Finlay de Vacunas Phase III *4

Protein subunit EpiVacCorona (EpiVacCorona vaccine based 
on peptide antigens for the prevention of 
COVID‑19)

Federal Budgetary Research Institution State 
Research Center of Virology and Biotechnol‑
ogy "Vector"

Phase III [158]

Protein subunit RBD (baculovirus production expressed in 
Sf9 cells) Recombinant SARS‑CoV‑2 vaccine 
(Sf9 Cell)

West China Hospital + Sichuan University Phase III *5

RNA based vaccine SARS‑CoV‑2 mRNA vaccine (ARCoV) Academy of Military Science (AMS), Walvax 
Biotechnology and Suzhou Abogen Bio‑
sciences

Phase III [159]

Protein subunit CIGB‑66 (RBD + aluminium hydroxide) Center for Genetic Engineering and Biotech‑
nology (CIGB)

Phase III *6

Inactivated Virus VLA2001 Valneva, National Institute for Health 
Research, United Kingdom

Phase III *7

Protein subunit Recombinant Sars‑CoV‑2 Spike protein, Alu‑
minum adjuvanted (Nanocovax)

Nanogen Pharmaceutical Biotechnology Phase III [160]

Inactivated Virus ERUCOV‑VAC, inactivated virus Erciyes University, Turkey Phase III *8
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novel genetically engineered vaccines because of their 
good safety, multiple inoculation routes and easy prep-
aration. However, it is a relatively long process. Due 
to the infection of immune cells stimulates a humoral 
immune response, vaccines based on viral vectors pro-
duce a very strong cellular immune response because 
of their inherent adjuvant properties. By comparison 
with traditional vaccines (e.g., inactivated or attenuated 
virus), viral vector vaccines can be modified by spe-
cific targets to provide prolonged antigen presentation. 
The potential applications of viral vectors for humans 
ranged from infectious diseases to cancer treatments. 
Viral vectors also achieve high-levels of recombinant 
protein expression for the basis in modern vaccine 
development [157, 173, 174].

Currently, adenovirus vectors targeting COVID-19 
mainly use first-generation Ad, which only provides 
short-term transgene expression in  vivo. However, if 
prolongation of transgene expression is required with-
out sacrificing the natural adjuvant properties of the 
virus, then enteric adenovirus vectors may be pre-
ferred because vector-mediated cells express only the 
vaccine antigen (spike) and not the Ad antigen. How-
ever, researchers have not clearly determined whether 
the pre-existing components of the vaccine are safe 
for humans. In addition, the recombinant adenovirus 
type-5 vector-based Ebola vaccine (AD5-EBOV) was 
approved by the National Medical Products Admin-
istration in 2017 [166, 175], while the recombinant 
vesicular stomatitis virus vector-based Ebola vaccine 
[ERVEBO (MSD)] was approved by the US Food and 
Drug Administration (FDA) in 2019. Moreover, recom-
binant viral vector vaccines against MERS-CoV [162, 
176], influenza virus [163, 167], HIV [164, 168], Ebola 
[166, 177], Zika [170, 178] and Norwalk virus [171] are 
also undergoing active development.

Recombinant viral vector vaccines against COVID-19 
are mostly generated by inserting the spike protein gene 
[37] and nucleocapsid protein gene of SARS-CoV-2 into 
the host virus genome to express the corresponding pro-
teins in the body. Researchers have embedded the RBD 
of the spike protein into an influenza virus vector lack-
ing pathogenic genes to construct a chimeric COVID-19 
vaccine.

Currently, Chen and colleagues have emerged as the 
leader in the development of an adenovirus (Ad) type-5 
vector-based vaccine against COVID-19. The results of 
the Phase I clinical trial of their vaccine showed that the 
Ad5 vector-based COVID-19 vaccine is tolerable and 
immunogenic in healthy adults. However, the vaccine 
still has deficiencies [68]. On the one hand, Ad5 may be 
rejected due to pre-existing immunity. Ad5 is a human-
derived virus, and most people have been infected with 
Ad5 in their lives. Therefore, the anti-Ad5 antibodies 
that are generally present in humans may attack the Ad5 
vector, thereby reducing the effectiveness of the vaccine 
[175]. On the other hand, the Ad5 vector vaccine cannot 
replicate in humans. As a result, the immunization dose 
of this vaccine must be increased to enhance its efficacy. 
However, high-dose immunization is not well tolerated. 
According to the official report of a Phase III trial con-
ducted in September 2020, the interim analysis of a Phase 
III clinical trial of adenovirus vector type 5 (Ad5-nCoV) 
in Pakistan showed that the vaccine was 100% protective 
against severe COVID-19 after the administration of a 
single dose, with an overall protective efficacy of 74.8%.

In conclusion, pre-existing immunity should be con-
sidered when designing this type of vaccine. Viral vector 
vaccines also carry a certain biological risk. Addition-
ally, the body’s response to the carrier may interfere with 
the immune response to the target antigen. However, 
evidence for either problem has not been obtained in 
humans. Therefore, the identification of more effective 

Table 5 (continued)

Vaccine platform description Type of candidate vaccine Developers Phase References

RNA based vaccine mRNA‑1273.351. A lipid nanoparticle (LNP)‑
encapsulated mRNA‑based vaccine that 
encodes for a full‑length, prefusion stabilized 
spike protein of the SARS‑CoV‑2 B.1.351 
variant

Moderna + National Institute of Allergy and 
Infectious Diseases (NIAID)

Phase IV [161]

* 1: https:// clini caltr ials. gov/ ct2/ show/ NCT04 530357
* 2: http:// www. ctri. nic. in/ Clini caltr ials/ pmain det2. php? trial id= 49858
* 3: https:// clini caltr ials. gov/ ct2/ show/ NCT04 852705
* 4: https:// search. bvsal ud. org/ global- liter ature- on- novel- coron avirus- 2019- ncov/ resou rce/ en/ ictrp- RPCEC 00000 347
* 5: https:// pactr. samrc. ac. za/ Trial Displ ay. aspx? Trial ID= 15727
* 6: https:// search. bvsal ud. org/ global- liter ature- on- novel- coron avirus- 2019- ncov/ resou rce/ en/ ictrp- RPCEC 00000 359
* 7: https:// search. bvsal ud. org/ global- liter ature- on- novel- coron avirus- 2019- ncov/ resou rce/ en/ ictrp- ISRCT N8241 1169
* 8: https:// clini caltr ials. gov/ ct2/ show/ NCT04 824391

https://clinicaltrials.gov/ct2/show/NCT04530357
http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=49858
https://clinicaltrials.gov/ct2/show/NCT04852705
https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-RPCEC00000347
https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=15727
https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-RPCEC00000359
https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/ictrp-ISRCTN82411169
https://clinicaltrials.gov/ct2/show/NCT04824391
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antigens and targets, comprehensive use rare human 
adenovirus serotypes or adenoviruses from nonhuman 
primates, and combination with other types of vaccines 
for immunization will be more promising directions for 
the development of recombinant viral vector vaccines 
against COVID-19. On February 25, 2021, the recom-
binant novel coronavirus vaccine (Ad5-nCoV) Kevesa™ 
was approved by the State Medical Products Adminis-
tration for conditional marketing in China. This vaccine 
is also the only vaccine that can be administered with a 
single injection program. The clinical Phase I/II data 
for this vaccine suggest that in addition to its high pro-
tective efficacy, a certain degree of side effects is also 
induced [150]. Research suggests that the AstraZeneca 
vaccine may cause an unusual reaction that causes clots 
to appear throughout the body, accompanied by low lev-
els of platelets. However, vaccine regulators have argued 
that, in most settings, the benefits of the COVID-19 vac-
cines developed by AstraZeneca and Johnson & Johnson 
(J&J) far outweigh the small risk that they will cause an 
unusual and sometimes deadly clotting disorder. In addi-
tion, after being vaccinated with the Janssen COVID-
19 vaccine, people aged 18–59  years are more likely to 
have reactogenicity symptoms than people aged more 
than 60  years. However, the symptoms are mostly mild 
to moderate and subside within 1–2  days. In addition, 
the probability of severe local or systemic reactogenic-
ity symptoms (≥ grade 3) in vaccine recipients was 2.2%, 
which was higher than that in placebo recipients (0.7%). 
Early Phase I/II data from the Sputnik V COVID-19 vac-
cine were released in September 2020, showing that the 
immune response is induced at a level consistent with 
protection. A subsequent interim report of phase 3 data 
showed that 75% of the more than 20,000 participants 
were assigned to receive the vaccine, and approximately 
one-quarter of them had comorbidities.

DNA vaccines
Nucleic acid vaccines are based on either DNA or mRNA. 
DNA vaccines are based on a recombinant eukaryotic 
expression vector encoding a certain protein antigen 
that is directly injected into animals such that the for-
eign gene is expressed in vivo, and the antigen activates 
the immune system, thereby inducing specific humoral 
and cellular immune responses (Fig.  3b). This approach 
delivers plasmids (e.g. pGX9501 in the case of INO-4800) 
containing the gene encoding the spike protein via intra-
muscular injection. An electrical pulse is employed to 
create transient pores in the cell membrane (namely elec-
troporation) and then allowed these plasmids to enter the 
host cell smoothly. In cells, the plasmids begin to mul-
tiply, translate spike proteins, and activate the immune 
system of host. Inovio Pharmaceuticals has reported the 

results of a Phase I/II clinical trial of its INO-4800 vac-
cine [179], which is currently in Phase III trials. Notably, 
INO-4800 can be stored for more than 1  year at room 
temperature. Additionally, GLS-5310 (GeneOne Life 
Science, ClinicalTrials.gov Identifier: NCT04673149) 
and GX-19N (Genexine, ClinicalTrials.gov Identifier: 
NCT04715997) entered a Phase I clinical trial in Korea 
in 2021 [180]. Some DNA vaccines have been marketed, 
including animal flu vaccines and West Nile virus vac-
cines [181, 182].

Research on DNA vaccines began in the 1990s, when 
the most common route of administration was intramus-
cular (IM) or intradermal (ID) injections using conven-
tional needles. Scientists have developed different DNA 
preparations, which are encapsulated in lipid nanopar-
ticles containing cationic lipids and cholesterol. These 
DNA preparations are adsorbed onto polymers (such 
as polyethyleneimine) and adsorbed or encapsulated in 
biodegradable nanoparticles to increase the uptake of 
DNA molecules by cells [183]. Furthermore, "molecular 
adjuvants" have also been developed to enhance the pro-
phylactic and treatment effects of DNA vaccines [184]. 
However, DNA vaccines also have many disadvantages. 
First, the DNA injected into the body is quickly degraded. 
Moreover, DNA vaccines pose a risk of autoimmunity, 
which has not been observed in nonprimates [185]. To 
date, DNA vaccines have not been approved for use in 
humans.

On May 6, 2020, The Innovation and Value Initiative 
(IVI), Inovio and the Korean National Institutes of Health 
(KNIH) announced a collaboration with the Coalition 
for Epidemic Preparedness Innovations (CEPI). They are 
testing the safety and immunogenicity of a DNA vaccine 
named INO-4800 in the first stage. Data released on May 
20, 2020, suggested that the INO-4800 DNA vaccine was 
effective. According to Phase I data published in Decem-
ber 2020, INO-4800 exhibited excellent safety and tol-
erability and was immunogenic in 100% (38/38) of the 
vaccinated volunteers by eliciting humoral and/or cel-
lular immune responses [186]. Phase II/III efficacy trials 
were scheduled to begin in July/August 2020 and are still 
subject to regulatory approval [187]. Moreover, an Indian 
company named Zydus Cadila announced that they had 
started a research project in cooperation with multiple 
teams in India and Europe on February 15, 2020, which 
aimed to develop a DNA vaccine against SARS-CoV-2. 
However, the potential safety problems of DNA vaccines 
cannot be ignored, mainly because the expression vec-
tor carrying the antigen-encoding gene can be integrated 
into the genome. DNA vaccines also have some advan-
tages: no risk of infection [188], ease of development and 
production [188], long-term persistence of immunogens 
[189], and in vivo expression ensuring that proteins more 
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closely resemble normal eukaryotic structures, with 
accompanying posttranslational modifications [189]. 
However, its disadvantages cannot be ignored, such as 
the potential for atypical processing of bacterial and par-
asite proteins [188] and potential to transfect nontarget 
cells, such as brain cells, when using nasal spray adminis-
tration of plasmid DNA nanoparticles [190].

RNA vaccines
In addition to delivering a DNA vector that must enter 
the nucleus to be transcribed, the mRNA encoding the 
target antigen can be synthesized in  vitro and delivered 
into the body. In vivo, the mRNA is translated into anti-
gen protein by cells and elicits both humoral and cellular 
immune responses in the human body (Fig. 3c). Over the 
past two decades, scientists have shown increased inter-
est in the development of mRNA vaccines. Two main 
types of prophylactic mRNA vaccines have been devel-
oped: nonreplicating and self-amplifying mRNA vac-
cines. The nonreplicating mRNA vaccine contains 5′ and 
3′ UTRs. Compared with the self-amplifying mRNA vac-
cine, the nonreplicating mRNA vaccine has the advan-
tages of a simple structure, short RNA sequence and lack 
of requirement for additional proteins except for the anti-
gen [191]. However, the injected naked mRNA may be 
degraded by ubiquitous extracellular ribonucleases. DNA 
vaccines must enter the nucleus to work, while mRNA 
vaccines only need to enter the cytoplasm to achieve the 
expression of the target antigen, and thus mRNA vac-
cines are theoretically safer than DNA vaccines. Moreo-
ver, mRNA is produced in vitro and does not need to be 
amplified in bacteria or cell culture; therefore, the process 
of producing mRNA vaccines is short and comparatively 
easy to monitor [192].

Based on the latest data, the National Institutes of 
Allergy and Infectious Diseases and Moderna Inc. (both 
from the USA) are in the leading position in mRNA vac-
cine research [193–196]. They are developing an mRNA 
vaccine named mRNA-1273. On March 27, 2020, the 
National Institutes of Health announced that Emory 
University in Atlanta began recruiting healthy adult 
volunteers aged 18 to 55 years to participate in a Phase 
I study of mRNA-1273 led by the National Institutes of 
Health [104]. On April 27, 2020, Moderna submitted an 
IND to the US FDA for a Phase I study of mRNA-1273. 
On May 12, 2020, Moderna received the FDA fast track 
certification for mRNA-1273. On May 18, 2020, Mod-
erna announced favorable mid-term data from the Phase 
I trial of mRNA-1273, indicating that the vaccine is 
safe. On July 27, 2020, the mRNA-1273 vaccine entered 
Phase III clinical trials, and studies showed that the effi-
cacy of the vaccine was 94.5%, indicating that the overall 

tolerance of the mRNA-1273 vaccine was good and that 
it had satisfactory safety and effectiveness [83].

In mid-May 2020, CureVac also announced that its can-
didate vaccine against SARS-CoV-2 produced high-level 
virus-neutralizing antibody titers after the administra-
tion of two preclinical 2 mg doses. In June 2020, CureVac 
started a Phase I/II clinical trial. On April 20, 2020, Arc-
turus Therapeutics and Duke-NUS Medical School con-
ducted preclinical testing and then conducted the first 
human clinical trial. On April 27, 2020, those companies 
announced positive preclinical test data, which proved 
that the candidate mRNA vaccine LUNAR-COV19 had 
strong immunogenicity. On June 30, 2021, CureVac also 
announced results from the final analysis of its 40,000 
subject international pivotal Phase IIb/III study (the 
HERALD study) of the first-generation COVID-19 vac-
cine candidate, CVnCoV. In the unprecedented context 
of 15 strains circulating within the study population at 
the time of final analysis, CVnCoV documented an over-
all vaccine efficacy of 48% (83 treated with the vaccine 
vs. 145 treated with the placebo) against COVID-19 dis-
ease of any severity, including single nonrespiratory mild 
symptoms. Significant protection was observed among 
participants in the age group of 18 to 60  years, with 
an efficacy of 53% (71 treated with the vaccine vs. 136 
treated with the placebo) against disease of any sever-
ity and across all 15 identified strains; protection against 
moderate to severe disease was calculated to be 77% (9 
treated with the vaccine vs. 36 treated with the placebo). 
In the same age group, CVnCoV provided 100% protec-
tion (0 treated with the vaccine vs. 6 treated with the 
placebo) against hospitalization or death. In participants 
aged greater than 60  years, who represented 9% of the 
analyzed participants, the available data did not enable a 
statistically significant determination of efficacy. In addi-
tion, several teams are also conducting relevant research 
(Table 3) [197]. BNT162b2 is a nucleoside-modified RNA 
vaccine. Studies have shown that the vaccine efficacy is 
89–91% 15–28  days after the administration of the first 
dose of the BNT162b2 vaccine. In addition, the incidence 
of SARS-CoV-2 infection and symptomatic COVID-19 
is significantly reduced in the early stages. In the case of 
vaccine shortages and scarce resources, a single dose of 
BNT162b2 vaccine may be administered to increase pop-
ulation coverage and reduce infection or morbidity rates 
[198, 199].

Live‑attenuated vaccines
Live-attenuated vaccines are based on originally patho-
genic microorganisms that have been engineered for 
reduced virulence but still have the ability to replicate 
and elicit an immune response. The mechanism is based 
on a weakened or engineered version of the virus, which 
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directly induces an immune response by entering cells 
and replicating, leading to the production of antibodies 
and cytotoxic T cells in response to SARS-CoV-2 pro-
teins (Fig.  3d). This type of vaccine induces persistent 
systemic and mucosal immune responses due to its excel-
lent immunogenicity. Existing live-attenuated vaccines 
include yellow fever vaccine, smallpox vaccine, measles 
vaccine, poliomyelitis vaccine, mumps vaccine, rubella 
vaccine, and varicella vaccine. In contrast with inacti-
vated virus vaccines, which require at least one additional 
booster shot, live-attenuated vaccines only need to be 
administered once. They simulate the infection process 
of natural viruses and induce both humoral and cellular 
immunity, which exerts a stable and long-term protective 
effect on the body.

To date, four institutions are developing live-attenuated 
vaccines against COVID-19, including the Serum Insti-
tute of India, the largest vaccine company in the world. 
Live-attenuated vaccines take many years to develop, 
depending on the virus itself and the cells that are used 
to cultivate the attenuated strain. Generally, attenu-
ated strains may appear when the cells are cultured to 
the 60th generation, and another 10–20 generations are 
usually needed to observe changes in the virus. In addi-
tion, very strict restrictions are in place for the culture 
of cells infected with live-attenuated vaccines. If cells are 
passaged too many times, the virus may cause certain 
changes in these cells. Finally, a subset of the viruses may 
develop atavistic mutations, reverting to pathogenicity. 
Previous studies have shown that live-attenuated vac-
cines against SARS revert to virulence after continuous 
passaging in cultured cells or mice [200].

As a result, live-attenuated vaccines pose a greater 
biosecurity risk. The application of a live-attenuated vac-
cine against COVID-19 is not recommended without suf-
ficient evidence to ensure that the vaccine will not revert 
to virulence.

Inactivated virus vaccines
An inactivated virus vaccine is prepared by culturing 
wild-type viruses or bacteria and then inactivating them 
physically or chemically. It may be composed of entire 
virions or bacterial cells or only their fragments. Inacti-
vated virus vaccines that are currently used include the 
inactivated polio vaccine [201], inactivated Japanese 
encephalitis vaccine [202], inactivated hepatitis A vac-
cine [203], inactivated rabies vaccine [204], hand-foot-
and-mouth disease vaccine [205], cholera vaccine [206], 
leptospirosis vaccine, bleeding heat vaccine, and forest 
encephalitis vaccines. For obvious reasons, inactivated 
vaccines are intrinsically much safer than live vac-
cines, and they generally have a more complete molecu-
lar spatial structure. However, the immunogenicity of 

inactivated virus vaccines is not as good as that of live 
vaccines, requiring increases in the dose and the number 
of inoculations to compensate.

Inactivated vaccines are generated from all bacteria 
or virions that are inactivated using physical or chemi-
cal methods, and this dead material directly induces an 
immune response (Fig.  3e). Therefore, the composition 
of the inactivated vaccine is relatively complex, includ-
ing multiple immunogens that potentially cause adverse 
reactions in the inoculated person. However, when the 
antigen to choose is unclear, inactivated vaccines pro-
mote immunization possibilities. Similar to the first 
emergent SARS coronavirus, SARS-CoV-2 is a highly 
virulent infectious virus, and its inactivation process also 
must be performed in a laboratory with a biosafety level 3 
or above. The high associated cost and risk also limit the 
development of inactivated vaccines. In addition, a series 
of problems have been noted, such as the staffing and 
financial means needed to develop vaccines, as well as the 
long development timeline. Moreover, human trials take 
a long time and are mired with unpredictable variables. 
By the time conventional vaccines enter clinical trials, 
the epidemic situation might be controlled or disap-
pear. During this period, the virus will mutate frequently 
[207]. For SARS-CoV-2, if scientists solve the problems 
of effectiveness, durability, lack of cellular immunity and 
the short lifespan of its neutralizing antibody produced 
by inactivated vaccines, this type of vaccine is a feasible 
and stable development strategy. Results from CoronaVac 
trials show that a third dose of CoronaVac administered 
6 or more months after a second dose effectively recalled 
a specific immune response to SARS-CoV-2, resulting 
in a remarkable increase in antibody levels and indicat-
ing that a two-dose schedule generates good immune 
memory. However, in the 3  μg group, neutralizing anti-
body titers induced by the first two doses decreased after 
6–8 months to below the seropositive cutoff [208].

Inactivated virus vaccines have a long and successful 
history. They are the most immunogenic of the vaccine 
formulations. Moreover, inactivated vaccines are gener-
ally a safe, well-tolerated and effective treatment; how-
ever, this efficacy comes at a price in terms of potential 
safety issues. Based on available data, these vaccines may 
lead to immunopathology and adverse drug events, and 
the safety of vaccines must be carefully reviewed during 
animal studies and clinical trials [209]. The main disad-
vantages of inactivated vaccines are listed below. First, 
booster vaccines and adjuvants are often necessary when 
inactivated vaccines are administered [210]. For example, 
the dengue vaccine only contains dengue virus (DENV) 
structural proteins, hence fails to induce any immunity 
to nonstructural proteins. For optimal immunogenic-
ity, the adjuvants are added to enhance reactogenicity. 
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Multiple booster doses are required to provide long-term 
immunity, and they can be expensive to manufacture, 
as DENV does not grow to high titers in tissue culture 
cells. Above challenges make an inactivated DENV vac-
cine a less attractive vaccine candidate for use in DENV-
endemic areas; however, they might be useful as travelers 
vaccine or as a part of a prime boost strategy with live or 
replicating vaccines [107, 108]. Second, inactivated virus 
vaccines may induce harmful immune and/or inflam-
matory responses. Currently, most of influenza vaccines 
are inactivated vaccines, which play an important role in 
protecting people from influenza virus infection.  Inac-
tivated vaccines against SARS-CoV have been prepared 
for in vivo experiments via some inactivated approaches, 
including formaldehyde, UV light, and β-propiolactone. 
He et al. [211] described that high-titer antibodies caused 
by inactivated SARS-CoV in immunized animals rec-
ognize the spike protein, especially the RBD in the S1 
subunit, and potently block SARS-CoV entry. The safety 
of these inactivated vaccine for SARS-CoV have been 
evaluated, suggesting all vaccines can successfully induce 
serum neutralizing antibody production and significant 
reductions in the SARS-CoV titer after viral challenge. 
Even if few inactivated SARS-CoV-2 vaccines does not 
elicit a serious harmful immune response, it may enhance 
the infection of the mutated and/or another novel coro-
navirus through adverse drug events [212]. Finally, the 
immune response to other coronaviruses suggests that 
both cell-mediated and humoral immunity contribute to 
long-term protection. Inactivated vaccines usually induce 
weak cell-mediated immunity [213]. Compared to live 
attenuated vaccines, inactivated flu vaccines are more 
suitable for adults and the elderly [214].

Companies that are developing inactivated COVID-19 
vaccines include CNBG in Beijing and Wuhan, Sinovac 
Biotech Co., Ltd., and the Institute of Medical Biology 
Chinese Academy of Medical Sciences. On February 22, 
2020, Zhejiang Provincial Centers for Disease Control 
and Prevention, The First Hospital of Zhejiang Province, 
Hangzhou Medical Association and other teams work-
ing with enterprises selected the fourth-generation vac-
cine strain. On April 24, 2020, the inactivated COVID-19 
vaccine developed by the Sinopharm China Wuhan 
Bioproducts Research Institute was the first inactivated 
COVID-19 vaccine to enter Phase II clinical trials world-
wide. On April 27, 2020, the National Vaccine and Serum 
Institute was approved by the National Medical Products 
Administration to conduct combined clinical Phase I/II 
trials, and on April 29, the clinical Phase I healthy sub-
ject vaccination program was launched in Shangqiu City, 
Henan Province. On May 6, 2020, the inactivated vaccine 
BBIBP-CORV developed by Sinovac Biotech Co., Ltd., 
Key Laboratory of Comparative Medicine for Human 

Diseases, Ministry of Health, China and the Chinese 
Center for Disease Control and Prevention was proven to 
completely protect rhesus macaques against a lethal chal-
lenge with SARS-CoV-2 at a dose of 6  μg. At this time, 
BBIBP-CORV and other SARS-CoV-2 vaccine candidates 
were subsequently expected to begin Phase I, II, and III 
clinical trials [215]. On April 13, 2020, Sinovac Biotech 
received approval from governmental authorities to con-
duct both Phase I and Phase II human clinical trials of the 
BBIBP-CORV vaccine in China. On October 15, 2020, 
Phase I/II clinical data from the BBIBP-CORV inacti-
vated vaccine were published in The Lancet, showing that 
the vaccine has satisfactory safety and tolerability [148]. 
Recently, Sinovac Biotech Co., Ltd. released preliminary 
data from a Phase III clinical study, which showed that 
the protective effect of a BBIBP-CORV inactivated vac-
cine exceeded 50% in Brazil and Turkey, with the highest 
protection reaching 91.25%. The BBIBP-CORV inacti-
vated virus vaccine is administered to people aged 18 to 
59  years and over 60  years, in whom researchers have 
found it to be safe and well tolerated [216]. The research-
ers also observed similar results in children and ado-
lescents aged 3–17  years. The side effects and reactions 
from the vaccine were mild to moderate in severity and 
were temporary [140].

Recombinant protein vaccines
Recombinant protein vaccines, also known as genetically 
engineered subunit vaccines, are generated by integrating 
the target genes of pathogenic microorganisms into a vec-
tor that is used to efficiently express antigen proteins in 
an unrelated industrial organism. The recombinant viral 
surface proteins are then injected directly into the body 
to induce an immune response (Fig. 3f ). The antigenicity 
of these vaccines is closely related to their expression sys-
tems. Currently, the expression systems used to produce 
this type of vaccine mainly include bacteria, yeasts, insect 
cells and mammalian cells. This type of vaccine, such as 
the SARS-CoV Nucleocapsid protein subunit vaccine, is 
directly taken up by antigen-presenting cells with strong 
inherent adjuvant activity. Thus, they efficiently induce 
adaptive immune responses mediated by T and B cells 
[59]. Since the first recombinant vaccine produced in 
yeast was marketed in the 1980s, recombinant protein 
vaccines have become popular and have been developed 
rapidly. The most representative recombinant protein 
vaccines include hepatitis B virus vaccine [217], hepatitis 
E virus vaccine [218] and human papilloma virus vaccine 
[219]. In addition, recombinant protein vaccines against 
herpes zoster virus [220], foot-and-mouth disease virus, 
influenza virus and MERS coronavirus [221] are also 
under extensive development.
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Recombinant protein vaccines have high intrinsic 
safety and excellent stability. Moreover, they can be pro-
duced on a very large scale, making them suitable for 
population-based vaccination campaigns. However, the 
shortcomings of recombinant protein vaccines, such 
as poor immunogenicity, limited immunization time, 
dependence on the time of immunization and adjuvant 
type, also result in challenges. At present, four main 
methods have been used to enhance the immunogenicity 
of recombinant protein vaccines: (1) agglomerating the 
vaccine in  vitro and encapsulating it into liposomes or 
microspheres; (2) use of an adjuvant [222]; (3) fusing the 
virus epitope and immunoglobulin genes and expressing 
them as a single chimeric protein [223]; and (4) engineer-
ing the recombinant protein to self-assemble into a virus-
like particle (VLP) [218].

At present, recombinant protein vaccines against 
COVID-19 are based on the spike protein from the sur-
face of SARS-CoV-2 as the target antigen [37], which 
is expressed heterologously, purified, and formulated 
with an adjuvant. However, the nucleocapsid protein 
is also immunogenic and has been reported to be used 
for the development of recombinant protein vaccines 
against COVID-19. Several institutions are developing 
COVID-19 vaccines using this technical route (Table 3). 
Although recombinant protein vaccines are safe, some 
problems still exist. On the one hand, antibody-depend-
ent enhancement (ADE) may develop and even aggra-
vate the infection [224]. It is the risk of exacerbating 
COVID-19 severity via ADE, which is a potential hurdle 
for antibody-based vaccines and therapeutics. Because 
ADE can increase the severity of multiple viral infec-
tions, such as respiratory syncytial virus (RSV) [225, 
226] and measles [227, 228]. Two distinct mechanisms 
of ADEs for viral infections. 1) ADEs can enhance 
antibody-mediated virus uptake into Fc gamma recep-
tor IIa (FcγRIIa)-expressing phagocytic cells, leading to 
increased viral infection and replication; 2) excessive 
antibody Fc-mediated effector functions or immune 
complex formation that induced enhanced inflamma-
tion and immunopathology. ADEs has been generally 
observed in SARS, MERS and other human respiratory 
virus infections, such as RSV and measles, suggesting it 
is a real risk of ADEs as vaccines for SARS-CoV-2 [229]. 
However, clinical data have not yet fully established 
to explain ADEs in human pathology for COVID-19. 
Nevertheless, as an inevitable theoretical concern for 
COVID-19 vaccine development, this type of vaccine 
has attracted wide attention from researchers [230–
234]. On the other hand, an appropriate adjuvant is 
essential. A study has suggested that MF59, AS03 and 
AF03 can not only induce balanced humoral and cel-
lular immune responses but also induce a wide range 

of cross-reactions [89]. Thus, these three adjuvants 
may play roles in recombinant protein vaccines against 
COVID-19.

Cellular immunity plays a crucial role in clearing 
coronavirus infection. Notably, recombinant protein 
vaccines can induce humoral and mucosal immunity. 
The combined use of DNA vaccines and recombinant 
protein vaccines has been shown to effectively enhance 
the immunization efficacy [235]. Thus, the combined 
usage of recombinant protein vaccines and other 
COVID-19 vaccines may effectively stimulate systemic 
immune responses to SARS-CoV-2. Moreover, certain 
viral proteins expressed in bacteria with simple modi-
fications naturally form multimeric subviral particles 
with good immunogenicity, suggesting that the devel-
opment of COVID-19 vaccines through prokaryotic 
expression of subviral particle particles may become a 
research hotspot.

Nevertheless, highly efficient and safe recombinant 
protein vaccines against COVID-19 are difficult to 
obtain. If SARS-CoV-2 does not disappear quickly in 
the short term, recombinant protein vaccines may be 
used as a safer routine vaccine rather than an emer-
gency vaccine. As of April 26, 2021, the novel corona-
virus recombinant subunit protein vaccine was jointly 
developed by Gao Fu and colleagues at the Institute 
of Microbiology, Chinese Academy of Sciences and 
Anhui Zhifei Longkoma Biopharmaceutical Co., Ltd. 
The vaccine was generally well tolerated in adults 
and produced antibodies against the wild-type SARS-
CoV-2 strain in  vitro. However, the vaccine did not 
cause a strong neutralizing response to the virus in the 
elderly [236].

Bionic nanoparticle vaccines
Bionic nanoparticle vaccines use biodegradable nanopar-
ticles to replace the nucleic acid and proteins of the viral 
core, while their outer shell is decorated with recombi-
nant viral surface proteins to form a virus-like struc-
ture through self-assembly. The surface of this virus-like 
spherical structure carries a large number of antigen 
molecules, which readily activates the immune response. 
Additionally, biomaterials stabilize the spherical struc-
ture, enabling it to remain intact inside the body while 
avoiding the degradation of surface proteins by related 
enzymes. Bionic nanoparticle vaccines are not infectious 
and have a defined composition with no viral nucleic 
acids, which provides excellent intrinsic safety and stabil-
ity. In addition, the vaccine can concentrate viral antigen 
molecules and increase the protein content. Moreover, 
nanoparticles are more easily engulfed by immune cells, 
improving the efficiency of antigen presentation and 
resulting in rapid production of antibodies to neutralize 
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the virus (Fig. 3f ). Our team is in the process developing 
of this type of vaccine and we have obtained encouraging 
preliminary results (Fig. 4).

Many types of biomaterials can be used in this type of 
vaccine, including hydrophobic polymer materials rep-
resented by polylactic acid (PLA), poly (lactic-coglycolic 
acid) (PLGA), polycaprolactone (PCL), polyhydroxyal-
kanoates (PHAs, e.g., PHB, PBHV, PHBHHx, PHBVHHx, 
P34HB, etc.) and their derivatives [237–239]. Various 
biomaterials have different properties, but those used 
to prepare vaccine nanoparticles must be biocompat-
ible and nontoxic. The most common material is PHA, 
which is a natural polyester stored inside cells as a source 
of energy and carbon. PHAs are produced by and accu-
mulate in many bacteria and archaea under conditions 
of imbalanced nutrition (i.e., limited supply of nitrogen, 
oxygen or phosphorus, and excess carbon source) [240]. 
PHA monomers are characterized by diverse side chains 
and sequences, as well as chemical modifications. They 
have been used to synthesize polyesters with a variety of 
material properties. According to different requirements, 
the methods for producing and processing PHA in bac-
teria are different. However, inclusions that are purified 
are usually produced in bacteria. These inclusions are 
biocompatible and biodegradable and can be used in the 
fields of synthetic biology and biomedicine [241–243]. 
In addition, different ways to decorate biomaterials with 

viral proteins have been reported. Self-assembly of nano-
particles prepared by recombinant viral surface proteins 
containing a PhaP (binding protein of PHA or Phasing) 
tag and the hydrophobic polymer material PHA is one of 
the important approaches.

PhaP is a binding protein on the surface of PHA gran-
ules with good biocompatibility that is nontoxic. PhaP is 
an amphiphilic protein composed of four monomers with 
two conformations. It binds to the hydrophobic polymer 
material PHA through its hydrophobic binding site [244]. 
In addition, PhaP adheres to the surface of hydrophobic 
oil beads as a surfactant. Due to its widespread presence 
on the surface of PHA particles [245], PhaP is also the 
most widely applied protein among the four proteins on 
the surface of PHA [246].

The new COVID-19 vaccine strategy uses synthetic 
biology techniques combined with medical material-
based nanoscience of previous vaccines. The focus of 
this strategy is to simulate the core–shell structure of 
the new coronavirus, which has unique advantages in 
activating the immune system. The whole structure is 
stable as a sphere and contains a large number of anti-
gen molecules on the surface that enable it to efficiently 
activate the immune system and be easily recognized by 
antibodies in vivo, and thus it is engulfed by phagocytes. 
Scientists are using this strategy in the fields of immu-
nity and tumors, and biomimetic simulation based on 

Fig. 4 Schematic diagram of the preparation of the bionic nanoparticle vaccine
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biomaterials is finding increasingly broad applications. 
However, its potential currently remains relatively under-
utilized in vaccine development.

Compared with inactivated natural viruses, biomimetic 
simulated self-assembled pseudovirus particles are safer, 
more efficient and more convenient. They are harmless to 
humans and do not require the operation of a biosafety 
level 3 or 4 laboratory. Therefore, biomimetic nanopar-
ticles are more conducive to cytology research and ani-
mal model construction, as well as broad-based scientific 
research in general. Biomimetic pseudoviruses can be 
used for the development of bionic vaccines and thera-
peutic antigens, as well as for clinical treatment, which 
is very important for controlling viral epidemics. For 
COVID-19, this approach offers a rapid and efficient vac-
cine development strategy due to its high safety. At pre-
sent, some teams have also conducted research on bionic 
nanoparticle vaccines [102, 247, 248].

Vaccines are the ultimate tools for the prevention and 
control of the COVID-19 pandemic. In the future, it will 
remain a hotspot of global attention.

Conclusions
The World Health Organization (WHO) warns that 
SARS-CoV-2 may become a recurrent epidemic virus, 
and vaccines play a decisive role in overcoming epidem-
ics. As of July 2021, the official website of the World 
Health Organization has listed more than 210 COVID-19 
vaccines under development, more than 100 of which are 
in clinical development.

Although many teams worldwide are expending great 
efforts in the development of SARS-CoV-2 vaccines, 
risks and drawbacks are associated with the several vac-
cine types illustrated above. Potential biological safety 
problems have even been noted. A common problem 
is an insufficient ability to activate the immune system 
and poor immune effects. Reducing the risk of vaccines 
and improving their safety, efficiency and stability have 
become problems that urgently need to be solved. First, 
based on the functional mechanism of the COVID-19 
vaccine inside the body, the viral protein acts as an anti-
gen molecule, stimulating the human immune system 
and thereby inducing the production of antibodies to 
neutralize the virus. Therefore, scientists experience dif-
ficulties in delivering antigen molecules effectively and 
reducing the degradation of exogenous antigen mole-
cules in the enzyme-rich environment of the body. Sec-
ond, antigenic proteins can be obtained both directly 
from microorganisms and formulated in vitro or by deliv-
ering antigen-encoding genes into the body using vari-
ous methods. Then, the host cells are used to synthesize 
antigen molecules, thereby activating the immune system 

and producing antibodies to neutralize viruses. In this 
case, scientists are faced with risks of integration into 
the host genome, producing in the worst case a trans-
formed cell population that might replicate inside the 
body. As a result of various difficulties, the research and 
development of vaccines usually takes a long time. How-
ever, as countries around the world focus on tackling the 
problem, several vaccines are already on the market for 
human use (Tables 4 and 5).

Immunogenicity and duration of action are two impor-
tant indices in the investigation of vaccines. At present, 
a variety of COVID-19 vaccines have entered clinical 
studies, and some vaccines have already completed Phase 
III/IV clinical trials (Table 5). Notably, the vaccines that 
have entered clinical trials will protect against newly 
emerged mutants of SARS-CoV-2. Recently, some studies 
showed, after the administration of one dose of vaccines 
(BNT162b2 or ChAdOx1 nCoV-19), noticeably lower 
effectiveness among persons infected with the delta vari-
ant [30.7% confidence interval (CI) and 95% CI 25.2–
35.7] than among those with the alpha variant (48.7% CI; 
and 95% CI 45.5–51.7). For the BNT162b2 vaccine, the 
effectiveness of two doses was 93.7% (95% CI 91.6–95.3) 
among persons with the alpha variant and 88.0% (95% CI 
85.3–90.1) among those with the delta variant. Similarly, 
for the ChAdOx1 nCoV-19 vaccine, the effectiveness of 
two doses was 74.5% (95% CI 68.4–79.4) among persons 
with the alpha variant and 67.0% (95% CI 61.3–71.8) 
among those with the delta variant [249]. In addition, the 
observed differences in the effectiveness of mRNA-1273 
and BNT162b2 show that mRNA-1273 is almost twice 
as effective as BNT162b2 at protecting against the delta 
variant [250].

Currently, the hot topic of discussion also involves 
the patent of SARS-CoV-2 vaccines. Although we have 
applied for patent protection of the bionic nanoparticle 
vaccine in China, it is aimed at protecting this new vac-
cine strategy, not for commercial interests. Vaccine rolls 
out will take a long time. In other words, the bionic nano-
particle vaccine will not become economically viable for 
many years.

SARS-CoV-2 is prone to mutation, which imposes 
substantial challenges in the development of COVID-
19 vaccines. Solving the problem of SARS-CoV-2 
variants under the premise of ensuring safety poses a 
serious challenge to scientists. In the new bionic nan-
oparticle vaccine, all materials and their degradation 
products are presently found in the human body. Com-
pared with the traditional types of vaccines, the main 
advantage of this biomimetic simulated virus vaccine is 
that the composition is clear and stable, and no poten-
tial biological safety problems exist. However, vaccines 
are not perfect, and different individuals experience 
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different levels of side effects after vaccination. Some 
individuals experience no side effects, while others 
report some side effects. Bionic nanoparticle vaccines 
are also not immune to side effects. Of course, we are 
still concerned that an increased dose of bionic nano-
particle vaccines will also be needed to achieve the 
goal of improving immune protection, but this hypoth-
esis has not been fully proven, and we will provide evi-
dence in future studies. Among the characteristics of 
the biomimetic simulated virus vaccine, we focused on 
its structure to ensure that it is similar to the real virus 
with high efficiency and low risks. The slow degrada-
tion of the material may reduce the enzymatic damage 
to the antigen protein and achieve a lasting protective 
effect. Microspherical nanoparticles may serve as adju-
vants to enhance their immunogenicity. This strategy 
might also shorten the development cycle and improve 
immune efficiency. Finally, its application prospects are 
also worth noting. Bionic simulation and nanoscience 
are brand new concepts, and thus a simulated virus 
vaccine is not currently on the market. We propose that 
this approach will have broad application prospects in 
vaccine development and research, antibody produc-
tion, drug delivery and other aspects.
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