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Numerous chemical compounds are distributed around the world and may affect the

homeostasis of the endocrine system by disrupting the normal functions of hormone

receptors. Although the risks associated with these compounds have been evaluated

by acute toxicity testing in mammalian models, the chronic toxicity of many chemicals

remains due to high cost of the compounds and the testing, etc. However, computational

approaches may be promising alternatives and reduce these evaluations. Recently, deep

learning (DL) has been shown to be promising prediction models with high accuracy

for recognition of images, speech, signals, and videos since it greatly benefits from

large datasets. Recently, a novel DL-based technique called DeepSnap was developed

to conduct QSAR analysis using three-dimensional images of chemical structures. It

can be used to predict the potential toxicity of many different chemicals to various

receptors without extraction of descriptors. DeepSnap has been shown to have a very

high capacity in tests using Tox21 quantitative qHTP datasets. Numerous parameters

must be adjusted to use the DeepSnap method but they have not been optimized. In

this study, the effects of these parameters on the performance of the DL prediction

model were evaluated in terms of the loss in validation as an indicator for evaluating

the performance of the DL using the toxicity information in the Tox21 qHTP database.

The relations of the parameters of DeepSnap such as (1) number of molecules per SDF

split into (2) zoom factor percentage, (3) atom size for van der waals percentage, (4)

bond radius, (5) minimum bond distance, and (6) bond tolerance, with the validation loss

following quadratic function curves, which suggests that optimal thresholds exist to attain

the best performance with these prediction models. Using the parameter values set with
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the best performance, the prediction model of chemical compounds for CAR agonist

was built using 64 images, at 105◦ angle, with AUC of 0.791. Thus, based on these

parameters, the proposed DeepSnap-DL approach will be highly reliable and beneficial

to establish models to assess the risk associated with various chemicals.

Keywords: chemical structure, constitutive androgen receptor, Deep Snap, Tox21, deep learning, QSAR,molecular
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INTRODUCTION

The traditional human-safety assessment of chemical compounds
involves repetitive-dosage subacute toxicity testing in vivo
using animal models. However, the risk remains that such
compounds could pose major public health concerns to humans
by potentially disrupting normal endocrine functions with
various hormone receptors upon long-term exposure (Genuis
and Kyrillos, 2017; Heindel et al., 2017; Manibusan and Touart,
2017; Sifakis et al., 2017; Tapia-Orozco et al., 2017; Heindel, 2018;
Marty et al., 2018). However, since some molecular mechanisms
differ between species and depend on environmental factors,
it is often difficult to apply the outcomes of animal testing to
predict the effects on human health (Brockmeier et al., 2017;
Leist et al., 2017; Fay et al., 2018). Moreover, a large number of
chemical substances need to be studied to identify the adverse
effects on development, metabolic homeostasis, reproduction,
cytotoxicity, etc. (Zhu et al., 2014; Bell et al., 2017; Insel et al.,
2017; Juberg et al., 2017; Clark and Steger-Hartmann, 2018;
Mortensen et al., 2018). Thus, high-throughput (HTP) assays
and economical methods are required (Tollefsen et al., 2014;
Chen et al., 2015; Wang et al., 2015; Richard et al., 2016).
Alternative computational prediction methods based on in-silico
experiments are essential for conducting safety evaluations of
high-risk chemical substances (Malloy et al., 2017; Lo et al.,
2018; Luechtefeld et al., 2018; Zhang et al., 2018). Among these,
quantitative structure–activity relationship (QSAR) analysis can
predict physiological activity, toxicity, enzymatic reactions,
receptor agonist/antagonist activity, environmental fate, etc.
(Bloomingdale et al., 2017; Polishchuk, 2017; Halder et al.,
2018; Khan and Roy, 2018; Simões et al., 2018). This analysis
is conducted based on a formulation of established rules for
the relationship between the chemical structure of a compound
and its activity and relies on the structural, quantum chemical,
and physicochemical features, which are represented as various
numerical molecular descriptors (Dougall, 2001; Fang et al.,
2003; Roy and Das, 2014; Silva and Trossini, 2014). However,
there are limited programs that can precisely evaluate the
response patterns of cellular signaling molecules due to various
chemical compounds.

These days, machine learning has been applied in extensive
toxicological fields, and it is highly effective for risk assessment
(Ambe et al., 2018; Banerjee et al., 2018; Luechtefeld et al.,
2018; Cipullo et al., 2019). More recently, deep learning (DL),
a machine-learning method designed to extract and recognize
discriminative information patterns and rules, has been proposed
to identify features by several flexible fully-connected layers of
a neural network (NN) (Li S. et al., 2017; Qiu et al., 2017;

Hu et al., 2018; Li H. et al., 2018; Luechtefeld et al., 2018;
Mayr et al., 2018). Until today, support vector machine, random
forest, and artificial NN were needed to select a reasonable
combination of features (corresponding to chemical structure
descriptors in QSAR analysis) manually when learning (feature
selection techniques). In many cases, it is extremely difficult
to find the optimal solutions, since myriad (Manallack et al.,
2010; Talevi et al., 2012; Guimarães et al., 2016; Fang et al.,
2017). Therefore, various approximation methods have been
developed to obtain an optimal combination for an approximate
solution (Yap et al., 2007; Kulkarni et al., 2009). However,
since there is no completely trustworthy approximation method,
complicated craftsmanship procedures are required to extract
effective features in conventional machine learning.

On the other hand, a convolutional neural network (CNN)
that constitutes DL has a function of feature expression learning
that makes it automatically extract features and unnecessary
to manually extract features (Fernandez et al., 2018; Lumini
and Nanni, 2018). Unlike the conventional method, which is
essential for extraction of a molecular structure descriptor,
it is able to identify the most informative features required
automatically, which is useful for prediction from the input
information of the entire molecule “without supervision” by
hierarchically decomposing an image so that the CNN learns to
recognize higher-quality features while maintaining their spatial
relationships (Ma et al., 2015; Ragoza et al., 2017; Xu et al.,
2017; Ghasemi et al., 2018; Liu R. et al., 2018; Peng et al.,
2018). These layer structures of the DL consist of input, hidden
intermediate, and output layers of a NN, which is an algorithm
designed for pattern recognition where information flows and
is referred to as a deep neural network (DNN) (LeCun et al.,
2015; Mallat, 2016; Suárez-Paniagua and Segura-Bedmar, 2018;
Voulodimos et al., 2018). In this DNN, it is possible to directly
learn feature quantity contained in a large amount of input
data without human intervention at each layer (Azimi et al.,
2018). Moreover, it poses a capacity to improve the prediction
accuracy for very complicated image recognition by increasing
the information transmission and processing ability using a
large number of hidden layers and some techniques such as
dropout, data augmentation, Rectified Linear Units (ReLUs), and
multiple graphics processing units (GPUs) (Rawat and Wang,
2017; Gawehn et al., 2018; Ha et al., 2018; Hussain et al., 2018;
Poernomo and Kang, 2018; Qiao et al., 2018; Saha et al., 2018;
Sato et al., 2018; Shen et al., 2018; Steven and Han, 2018; Tustison
et al., 2018; Vakli et al., 2018;Wang S. H. et al., 2018). Therefore, it
is also possible to cope with the deviation and the deformation of
the position of input image data for detecting on the edge region
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(Krizhevsky et al., 2012). However, since the result depends on
the size of the filter, the moving width, and settings such as
padding (the process of filling that allocates the end of region
with 0 to pad out the number of convolutions of the edge
region of the image) (Szegedy et al., 2014; Johnson and Zhang,
2015). In addition, CNNs appropriate combinations of extracted
constituent elements and data orderly to the next layer, so it is
possible to efficiently learn feature quantities (Szegedy et al., 2014;
Cagli et al., 2017).

Studies have reported very high prediction accuracy DL with
highly non-linear hierarchical patterns based on large-scale data,
especially in the fields of imaging and toxicology (LeCun et al.,
2015; Ma et al., 2015; Mayr et al., 2016; Pastur-Romay et al., 2016;
Zhang et al., 2017). In addition, some studies have demonstrated
the use of DL in QSAR analysis to calculate feature values
from molecular structures without human intervention that
three steps: (1) model building from labeled data inputs, (2)
evaluation and tuning of the model, and (3) training the final
model to perform prediction (Bengio et al., 2013; LeCun et al.,
2015; Ma et al., 2015; Mayr et al., 2016; Pastur-Romay et al.,
2016; Pham et al., 2017; Zhang et al., 2017). However, since
for delivering information on the whole molecule sufficiently
established most of the cases where DL is applied to QSAR on
conventional descriptor calculation at present. Therefore, further
work is required to increase prediction accuracy for applications
DL for QSAR analysis. First, a systematic and suitable input is
required for complicated data such as the three-dimensional (3D)
structures of chemical compounds. Moreover, as a result of the
insufficient amount of chemical compounds, there is a lack of
training data. To address these issues, a novel QSARmodel using
DL based on 3D molecular images of chemical compounds was
previously developed (Uesawa, 2018).

Deep Snap is a procedure of generating an omnidirectional
snapshot portraying 3D structures of chemical compounds using
a drawing software (Jmol; Hanson, 2016) based on the Structure
Data File (SDF) format (Figure 1). The 3D information is input
into the DL model without calculating structural descriptors.
For example, when the 3D molecular structure is rotated in
45◦ increments on the x-, y-, and z-axes and photographed, a
total of 512 images are captured for each molecule and saved
in the portable network graphics (PNG) format. This allows for
combining digital information regarding the 2D plane location
of the atoms with pixel-level data representing the three primary
colors (RGB) (Figure 1; Uesawa, 2018). Then, these images are
used in inputs of the DL model after a resolution of 256 × 256
pixels images of the 3D molecular structure are represented as a
ball-and-stick model for each atomic composition with different
colors representing different atoms (Uesawa, 2018). We refer
to this omnidirectional snapshot capturing procedure for 3D
structures of compounds as “Deep Snap.”

In the Tox21 data challenge in 2014, a crowd-sourced QSAR
competition for chemical risk assessment held by the National
Institutes of Health (NIH) in the United States (Tox21 Data
Challenge., 2014), approximately 7,000–9,000 different chemical
structures depending on the target type. This data was split
evenly into training and validation datasets (a 50% of training
and a 50% of validation) that were created for the purpose of

developing high-performance prediction models for various
adverse-outcome pathways (Attene-Ramos et al., 2013; Tox21
Data Challenge., 2014. Recently, using a set of these chemicals
(containing a total of 7,320 different molecules with 3,660
reserved for training and 3,660 reserved for validation), the
Deep Snap procedure was applied to successfully predict which
chemical compounds disrupt the potential of the mitochondrial
membrane (MMP), which play pivotal roles in apoptosis,
oxidative phosphorylation, calcium homeostasis, and cellular
metabolism such as heme, fatty acid, and steroid synthesis
(Midzak et al., 2011; Hua et al., 2012; Bolisetty et al., 2013;
Shaughnessy et al., 2014; Li A. X. et al., 2017; Liu et al., 2017;
Yun et al., 2017; Wang C. et al., 2018). Individual compounds
well-known inhibitors for complex between uncouplers (e.g.,
Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone: FCCP)
and particular protein/complex in the transporter chain
(rotenone and antimycin A) have been detected in 76 structurally
related clusters from the Tox21 10K library (Attene-Ramos et al.,
2015; Xia et al., 2018). As potential mitochondrial toxicants,
these compounds were found to cause significant reduction
of the MMP using an MMP assay in HepG2 cells and rat
hepatocytes (Attene-Ramos et al., 2015; Xia et al., 2018). Using
transfer learning techniques and an unmodified version of the
AlexNet network, the prediction model developed by the Deep
Snap-DL method showed area under the ROC curve (AUC)
value of 0.921 in the external validation, which included only
647 of the chemical structures employed previously by the Tox
21 Data Challenge 2014 (Uesawa, 2018). At the Tox 21 Data
Challenge 2014 competition, the best AUC = 0.95 (Abdelaziz
et al., 2016). The prediction performance (AUC = 0.921) by
the Deep Snap-DL method is equal to top 10th in the Tox 21
Data Challenge 2014 competition (Tox21 Data Challenge., 2014;
Uesawa, 2018. The result suggests that the DL approach based
on Deep Snap is suitable for modeling to support toxicological
assessments. However, further improvements are required for
speed, automation, optimization, and efficiency. Despite the
requirement for these improvements, herein, we examine the
parameters for Deep Snap and DL to characterize how they affect
the DNNs.

MATERIALS AND METHODS

Data
Chemical substance profiles for cellular toxicity were collected
from the publicly available Tox21 10K chemical library, 12,500
chemical substances, including pesticides, industrial, food-use,
and drugs, procured from commercial sources screened by the
Toxicology in the 21st Century (Tox21) program, a multi-
agency collaboration between the U.S. Environmental Protection
Agency, the National Institute of Environmental Health Sciences,
National Toxicology Program, NIH Chemical Genomics Center,
National Center for Advancing Translational Sciences, and
the US Food and Drug Administration (1) incorporate
advances in molecular systems by identifying patterns of
chemical compounds-induced biological response, (2) prioritize
compounds for more extensive toxicological evaluation, and (3)
develop predictive models for biological response in human
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FIGURE 1 | Schematic of the Deep Snap procedure. 9,523 SMILES 3D structures by CORINA Classic software after washing by MOE application, and into SDF file

format, and then photograph an arbitrary angle on the x-, y-, and z-axes by Jmol-Deep Snap. The resulted images are saved as PNG files in three datasets (training,

validation, and test) in order to input DL.

(NRC., 2007 Collins et al., 2008; Kavlock et al., 2009; Huang
et al., 2011, 2014, 2016; Attene-Ramos et al., 2013; Tice et al.,
2013; Chen et al., 2015; Hsieh et al., 2015, 2017; Merrick et al.,
2015; Huang and Xia, 2017; Sipes et al., 2017). Their structures
and the corresponding activities were used to determine agonist
of a constitutive androstane receptor (CAR; NR1l3), which is a
member of the ligand-activated superfamily of nuclear receptors
transcriptionally activated genes predominantly expressed in
the liver such as CYP2B6 and CYP3A4 involved in not only
all phases of drug metabolism, transport, detoxification, and
disposition about 50% of the drug metabolization potential in the
body but also energy metabolism, tumor progression, cholesterol
homeostasis, and glucose metabolism (Qatanani and Moore,
2005; Kobayashi et al., 2015; McMahon et al., 2018).

Deep Snap Procedure: Creation of
Molecular Image Files
A total of 9,667 of the chemical structures and the corresponding
labeled activity scores were downloaded in the SMILES
(Simplified molecular input line entry system) format
(Weininger, 1988; Putz and Dudaş, 2013; Achary, 2014;
Kumar and Chauhan, 2018) from the PubChem database
(AID 1224892) derived from Tox21 10k library, the activity
scores defined as the Pubchem_activity_scores (zero and scores
between 1 and 100 were represented as inactive and active
compounds, respectively, by cell viability and agonist activity
screenings of the CAR signaling pathway). Then, by eliminating
non-organic compounds, a total of 9,523 of the chemical
compounds were selected (Table 1; Supplementary Table 1).
After structure cleaning and standardization (removing salts,
counterions, and fragments) by conformational import that
is a high-throughput conformer generation method for large
numbers of molecules using the MOE application software
program (but no treatment of protonation states) (Chen and
Foloppe, 2008; Molecular Operating Environment, Chemical

Computing Group, Canada) (Supplementary Table 1), one
3D chemical structure per compound which have “rotatable
torsions” was curated and optimized to generate a single
low energy conformation using CORINA Classic software
(Molecular Networks GmbH, Nürnberg, Germany, https://www.
mn-am.com/products/corina) has been licensed in the past to
predict 3D structures for some of the molecules in the main
large public databases of small molecules such as PubChem
a data-based commercial 3D molecular model builder with
high accuracy and high speed for the 3D-structures of organic
and metal-organic (also known as organometallic) molecules
high coverage for nearly all organics but approximately half
of the organometallics (Sadowski et al., 1994; Reitz et al.,
2004; Tetko et al., 2005; Renner et al., 2006; Wang et al., 2009;
Schwab, 2010; Andronico et al., 2011; Sayers et al., 2018; 3D
Structure Generator CORINA Classic., 2019). Finally, these
chemical structures were converted to the SDF file format.
During the Deep Snap process, when the number of molecules
described in the SDF file is large, the power required for the
describing. Therefore, in order to improve the depiction speed, it
is possible to multiple processes to be executed simultaneously
by partitioning of the input data. The size of PNG file is different
depending on the number of per SDF file. Moreover, the csv
file including annotation data numbers, activity score, and
dataset types that was divided randomly into training (4,761
chemicals), validation (2,381 chemicals), and testing (2,381
chemicals) datasets (Table 1; Supplementary Table 1) was used
as the source for labeling each sample. Since the 3D-chemical
structures can rotate 360◦ on each snapshots were captured at a
range of fixed increments based on the SDF molecular structure
file and the using a novel technique to capture generated images
by their description function without human intervention saved
as 256 × 256 (pixels resolution) PNG files (RGB) organized by
their annotation data numbers (Figure 1). In this study, the
3D structure data was preliminarily portrayed as ball-and-stick
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TABLE 1 | Number of chemical compounds in train, validation, and test datasets

used in optimization of parameter of Deep Snap.

Activity score Training Validation Test Sum

0: Non-toxic 3,651 1,858 1,878 7,387

1: Toxic 1,110 523 503 2,136

Sum 4,761 2,381 2,381 9,523

structures in four types of increments on the x-, y-, and z-axes:
first was (0,0,0), second was (0,0,0), (0,90,0), and (0,0,90),
third was (0,0,0), (180,0,0), (0,180,0), and (0,0,180), fourth was
(0,0,0), (180,0,0), (0,180,0), (0,0,180), (0,180,180), (180,0,180),
(180,180,0), and (180,180,180) included 4 overlapped images
automatically and manually obtained from the Deep Snap
process, respectively to assess the systematic and suitable input
of the 3D structures of chemical compounds and optimization
Deep Snap (Figures 2A–H). The 3D ball-and-stick model with
different colors to different atoms represented by which uses
a unique algorithm to calculate surfaces (Jmol, Herráez, 2006;
Cammer, 2007; Hanson, 2016; Scalfani et al., 2016; Hanson and
Lu, 2017). More detailed technical information is available at the
Jmol website1 As for the depiction process in Deep Snap, it is
possible to design a setting cfg file that can specify arbitrary of
the Jmol script such as image pixel size, image format (png or
jpg), number of molecules per sdf file to split into (MPS), zoom
factor (ZF, %), atom size for van der waals (AT, %), bond radius
(BR) (mÅ), minimum bond distance (MBD), bond tolerance
(BT), etc. Finally, using 64 pictures 105◦ angle and (MPS:100,
ZF:100, AT:23, MBD:0.4, BT:0.8) as permutation test to assess
non-specific activity score, they were randomly reassigned based
on the activity scores without changing training, validation, and
test datasets. Using a total of 10 different datasets, the prediction
models were constructed by Deep Snap-DL method with the
parameter values for the best performance optimized in this
study eight pictures at 180◦ angle.

Machine-Learning Models Based on DL
All the two-dimensional (2D) images contained digitized
information data about plane configuration and the
corresponded to the type of atom for the chemical structure
produced by Deep Snap were resized by DIGITS version 4.0.0
software to a fixed resolution of 256 × 256 pixels and input
into DL model to build the prediction models, which were
trained based on the activity scores of chemical compounds
and the corresponding 2D chemical-structure images. In this
study, the total number of training epochs was 30, snapshot
interval in epochs 1, validation interval in epochs 1, random
seed 1, solver type stochastic gradient descent, base learning rate
0.01. Training, testing, and validation were performed using the
dataset described in Table 1 and Supplementary Table 2. Finally,
the performance of the prediction model was evaluated using
one test dataset not used for validation. For the DL, a pre-trained
implemented the open-source DL framework was used to build

1Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Available
online at: http://www.jmol.org/

and train the DL models transfer learning (Jia et al., 2014).
AlexNet is a convolutional neural network constructed by the
University of Toronto (Krizhevsky et al., 2012). The fundamental
architecture of this CNN constituted eight pre-trained layers,
including five convolutional/pooling that convolution of feature
volume and reduces layers by compressing images using max
pooling compresses by selecting the maximum value in each
region as a representative value convolutional/pooling layer I
converts the previous volume (224 × 224 × 3) to (11 × 11 × 3)
convolutional/pooling layer II converts the result of layer I to (5
× 5 × 48) convolutional/pooling layer III converts the result of
layer II to (3× 3× 256) convolutional/pooling layer IV converts
the result of layer III to (3 × 3 × 192) convolutional/pooling
layer V converts the result of layer IV to (3 × 3 × 192) fully-
connected layers that make final connections between feature
values and force to zero to suppress overfitting (dropout)
total 4,096 neurons. Since AlexNet has 60 million parameters,
their optimization was essential to avoid overfitting (Figure 3;
Krizhevsky et al., 2012; Szegedy et al., 2014; Cagli et al., 2017;
Rawat and Wang, 2017; Aggarwal et al., 2018; Ha et al., 2018;
Vakli et al., 2018). The non-saturating nonlinearity f (x) = max
(0, x) as the function instead of such as sigmoid function f (x)
= (1+e−x)−1 or f (x) = tanh (x) because the training time with
gradient descent ReLUs much faster than that associated with
if the input is negative, there is no contribution to other units
(Nair and Hinton, 2010; Krizhevsky et al., 2012; Elfwing et al.,
2018; Saha et al., 2018; Wang S. H. et al., 2018). Furthermore,
adding a layer of local response normalization (LRN) between
the pooling layer and the convolutional layer increases accuracy.
The LRN is capable of handling a large number of CNNs with
a large learning capacity that can be controlled by varying their
assumptions about the nature of images that (1) the locality of
pixel dependencies and (2) the stationarity of statistics.

The loss, which is a summation (not a percentage) of the errors
in each dataset as shown below cross entropy error (CEE) with
respect to the model’s parameters by changing the weight vector
values, in construction of the prediction models is calculated on
training and validation datasets, where pi and yi correspond to
the accuracy label (ground truth vector) and output of softmax
(estimate values taken direct from the last layer output) for class
i, respectively.

CEE = −6 (pi) log(yi)

The loss value implies how well or poorly a certain model
behaves after each iteration of optimization. Loss is indicative
of unless the model has over-fitted with respect to the
training data. The accuracy of the model is usually determined
after the validation samples are fed to the model and the
number of mistakes (zero-one loss) that the model makes
recorded. The percentage of misclassification is calculated
(Martinez and Stiefelhagen, 2018; Nguyen et al., 2018;
Zhang and Sabuncu, 2018; Khened et al., 2019).

Evaluation of the Predictive Models
In this method, it is possible to calculate the prediction result
for each of a plurality of images prepared from the x-, y-, and
z-axis directions with respect to one molecule. Therefore, the
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FIGURE 2 | (A–H) are representative images captured by rotating the 3D structure in 180◦ increments on Deep Snap. The numbers below the images are the

substance identification numbers (SID) provided in the PubChem database and increments of the viewing direction on the x-, y-, and z-axes. Red, yellow, blue, white,

and gray colors in the molecular structures indicate the oxygen, sulfur, nitrogen, hydrogen, and carbon atoms, respectively.

FIGURE 3 | Schematic representation of the architecture of the convolutional

neural network (CNN) model. AlexNet was used as transfer learning. The CNN

contains total eight pre-learned layers five convolutional and pooling layers

automatically extracted features from input pixel data and three

fully-connected layers. The two juxtaposed convolutional and pooling layers

are finally combined to the third fully-connected layers.

median of all these predicted values generated per molecule
was used as a representative predicted value for each molecule.
The metric was calculated on the basis of the predicted and

the experimentally determined (true) labels, and the auroc (area
under receiver operating characteristic) was calculated using JMP
pro 14, statistical discovery software (SAS Institute Inc. NC)
to evaluate the predictive models using 3D chemical structures
including training (38,088 pictures), validation (19,048 pictures),
and testing (19,048 pictures) datasets captured from eight
increments on the x-, y-, and z-axes: (0,0,0), (180,0,0), (0,180,0),
(0,0,180), (0,180,180), (180,0,180), (180,180,0), and (180,180,180)
(Supplementary Table 2) (Linden, 2006). Sensitivity describes
the true positive rate i.e., the proportion of actual positive samples
that were correctly identified as positive for all positive samples
including true and false positives.

Sensitivity = 6 True Positives/(6 True Positives

+ 6 False Positives)

Specificity is the true negative rate i.e., the proportion of actual
negative samples that were correctly identified as negative for all
negative samples including true and false negatives.

Specificity = 6 TrueNegatives/(6 TrueNegatives

+ 6 False Positives)

Random Forest
The file, including chemical structures as indicated by SMILES,
chemical annotation numbers, activity scores, dataset classes
divided into training and validation. Based on this information,
the 3D chemical structures were built, descriptors were
calculated using the MOE chemical calculation system. Using
these descriptors, the prediction model was constructed using
JMP pro 14.

RESULTS AND DISCUSSION

The predictive models for the presence or absence of activity
as a CAR agonist and cell viability were built using the open-
source Caffe in combination with the Deep Snap approach

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 March 2019 | Volume 7 | Article 65

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Matsuzaka and Uesawa Optimized Deep Snap for QSAR

were applied to the training (38,088 pictures) and validation
(19,048 pictures) datasets 180◦ angle (Supplementary Table 2).
The testing dataset (19,048 pictures) was used to measure the
performance of each predictionmodel (Supplementary Table 2).
The AUCwas calculated. The correlations (R2 values) of the AUC
with each epoch were 0.95 (Figure 4A). The correlations (R2

values) were calculated from the testing datasets with validation
loss (VL), training loss (TL), and validation accuracy (VA). VL is
an error summation not a percentage obtained from how well
the model is doing for. TL is an error summation which by
attempting to determine good values for all the weights and biases
(an empirical risk minimization). VA is the percentage of correct
answers based on the results obtained from. As results, these
R2 values with AUCs were 0.86 (VL), 0.62 (TL), and 0.57 (VA),
respectively (Figures 4B–D). Moreover, the R2 values of the VL,
TL, and VA each epochs were 0.90, 0.65, and 0.61, respectively
(Figures 4E–G). These findings suggest that VL is the most
important parameter of those considered here for evaluating the
performance of a DL model.

Next, the parameters for capturing Jmol-generated images
on Deep Snap were optimized by assessing the DL models
using the same procedure based on the VL using four pictures
on the x-, y-, and z-axes: (0,0,0), (180,0,0), (0,180,0), and
(0,0,180) in the training (19,044 pictures), validation (9,524
pictures), and test (9,524 pictures) datasets (Figures 2A–D
and Supplementary Table 2). The following parameters were
considered: (1) the number of molecules per SDF file: MPS,
(2) the zoom factor: ZF, (3) the atom size for Van der Waals
interactions: AT, (4) the bond radius: BR, (5) the minimum bond
distance: MBD, and (6) the bond tolerance: BT. The parameter
values (and corresponding minimum VL values) for the best
model are as follows: (1) MPS: 150 (0.430), (2) ZF: 80% (0.431),
(3) AT: 22% (0.435), (4) BR: 20 mÃ (0.425), (5) MBD: 0.4 Ã
(0.430), and (6) BT: 0.8 Ã (0.436) (Figures 5A–F). In addition,
the R2 values between these parameters and VLs were more than
0.90, and each of these relations followed quadratic function
curves. Also, the R2 values of the running time (RT) in DL with
the above six parameters showed that the RTs were moderately
associated with AT (R2 = 0.48), BR (R2 = 0.47), and BT (R2 =

0.43) (Supplementary Figures 1C,D,F). However, MPS, ZF, and
MBD showed no associations (Supplementary Figures 1A,B,E).
Similarly, the image pixel size (IPS) was examined in the same
way as the VL and RT in DL using three pictures on the x-, y-,
and z-axes: (0,0,0), (0,90,0), and (0,0,90) in the training (14,283
pictures, 4,761 compounds), validation (7,143 pictures, 2,381
compounds), and test (7,143 pictures, 2,381 compounds) datasets
(Supplementary Table 2). The IPSs (256×256) and (64×64)
exhibited minimum VL (0.440) (Figure 6A) and minimum RT
(10min) (Figure 6B), respectively. Moreover, the number of
cores in the multi-core CPU architecture showed the minimum
RT (8min) in the Jmol-generated images with 70 (Figure 6C).
Also, we explored the effects of the minimum VL with space-
filling, where the atoms are represented by spheres whose radii
and center-to-center distances are proportional to the radii
of the atoms and the distances between the atomic nuclei
using one (0,0,0) or four (0,0,0), (180,0,0), (0,180,0), (0,0,180)
image angles (Figures 2A–D) on the optimized parameters.

When using one image, space-filling chemical structures into
the image slightly increased the minimum VL (0.456) compared
with that of normal spacing (0.452) (Figure 6D, left). However,
there were no minimum VL changes between space-filling and
normal spacing when using four image angles (Figure 6D, right).
Furthermore, we compared the influence of the image color
types of chemical structures with the minimum VL by using
one or four image angles the optimized parameters, similarly.
When the atomic colors of all the structures were changed to
monotone (gray or white), these minimum VLs (0.468 or 0.467
for gray and white, respectively) increased to more than that of
normal multi-color structures (0.442) using four image angles
(Figure 6E, right). However, in the structures where the color
of all atoms was changed to gray except for hydrogen (two-
color: gray + white), the minimum VL (0.437) was decreased
slightly compared with that of normal multi-color structures
(0.442) using the four images (Figure 6E, right). When one
angle image was used similarly, increased minimum VL of gray
(0.499), white (0.468), or gray + white (0.460) was observed
compared with that of normal multi-color (0.455) (Figure 6E,
left). These findings suggest that optimal thresholds exist to
attain the best performance with the prediction model. Finally,
using the parameter values for the best performance model,
AUCs were calculated using eight images of chemical structures
captured at 180◦ increments on the x-, y-, and z-axes. As a
result of optimization, the AUC exhibited 0.764 with minimum
VL of 0.432. Furthermore, using 64 images at 105◦ angle and
with default parameter values other than BR 15mÃ, the AUC
increased into 0.791.

To assess (1) the suitableness of input as supervised data,
(2) sufficient amount of images for training, and (3) adequate
training for input dataset of pictures of chemical structure
into the DL, the activity scores of the datasets, including
training, validation, and test, were randomly assigned keeping
the numbers of the three datasets unchanged as permutation
test. The calculation of the performed each parameterized values
of Deep Snap with each best performance model to capture
chemical structures eight pictures at 180◦ angle using a total of
ten different datasets with assignments of various activity scores.
As result, the average AUCs were 0.553 (±0.007) with the average
minimum VL of 0.522 (±0.014), indicated almost random
guessing. These results suggest that the prediction models in
this study extracted the CAR agonist activity-specific structural
features from chemical compounds. Also, we calculated the AUC
random forest as another method the same datasets for the above
Deep Snap for CAR agonist and 206 of descriptors to build the
predictionmodel in ROC-AUC value 0.749. Previously, we found
that the prediction for the performance of compounds inducing
MMP disruption was better 45◦ angles using 512 pictures for one
molecule, with AUCs of 0.921 (Uesawa, 2018). Moreover, using
90◦ angle which 64 pictures for each, the performance of the
prediction model indicated that the ROC-AUC value was 0.898
(Uesawa, 2018). In this study, we have used only 64 pictures based
on 105◦ angle to avoid high computational cost. These results
suggested that the prediction performance in the Deep Snap-
DL method could be improved by input images due to more
information about chemical structures. Also, as for the score
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FIGURE 4 | Correlations of the epochs (A), validation loss (B), training loss (C), and validation accuracy (D) with the AUCs and the validation loss (E), training loss

(F), and validation accuracy (G) with the epochs. The R2 values represent the correlation coefficients with two-dimensional equation representing the approximate

fitted curve.

FIGURE 5 | (A–F) displays parameterization of performance on Deep Snap. Correlation between the minimum VL of each epoch and the parameter values (A): MPS,

(B): ZF, (C): AS, (D): BR, (E): MBD, and (F): BT for four images based on the 180◦ angle.

activity of the CAR, the chemicals with scores other than 0 were
defined as positive in order to secure enough input data in this
study. However, in Tox21 program, the obvious activity for the
CAR agonist is defined for chemicals with score of more than 40

(PubChem; https://pubchem.ncbi.nlm.nih.gov/#, AID 1224892).
Therefore, it is necessary to optimize various types of assignments
for the activity scores and/or other datasets in detail to further
increase the prediction performance. In addition, a comparison
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FIGURE 6 | Relationship between the IPS and the minimum VL of each epochs (A) or RT in DL (B) using three pictures on the angle of 90◦ with R2 values between

the IPS and the minimum VL or RT. (C) Influence of RT in three images with the number (D) The minimum VLs of space-filling (on; blue bar) and normal spacing (off;

white bar) using one or four angles images. (E) The minimum VLs of multi-color, monotone-color (gray and white), and two-color (gray + white) using one or four

angles images.

of the performances between this state-of-the-art Deep Snap and
1,024 of extended-connectivity fingerprint (ECFG) of descriptors
calculated from Dragon 7.0 (Kode srl., Pisa, Italy, Rogers and
Hahn, 2010; Nikolic et al., 2012; Concu and Cordeiro, 2018;
Uesawa, 2018). The prediction model constructed by DL in an
H2O 3.2 package, where hidden layers, epochs, and best epochs
were 200, 10, and 5, respectively (H20 ai, CA, USA, Chow,
2014) with ECFP showed that the ROC-AUC was 0.888 (Uesawa,
2018). In addition, the random forest in JMP pro 14, in which
number of terms and maximum splits per tree were 500 and 256
for fingerprint, and 500 and 29 for 3D descriptors, respectively,
predicted the models using the above ECFP descriptors or 3D
descriptors with AUC of 0.901 or 0.907 (Uesawa, 2018). Until
today, to improve the performance of prediction model, the
selection of structural descriptors carried out using the skills and
knowledge. Because it is difficult to perfectly preserve the original
data, many of these descriptors are irreversible conversions.
However, in the DL method using task-specific automatically
extracted image information for molecular structures that do not
require such high craftsmanship input data, it may demonstrate
equal to or better than the above method using descriptors
hand-engineered without prior knowledge or assumptions about
the features.

When considering applying DL to a compound, whose
molecular structure is a variable data format that can have

branches and loops, there are problems with how to handle
that input or output. To address this issue, graphic-based
convolution, which has the ability to handle graph structures,
simple encoding of the molecules (atoms, bonds, distances, etc.)
represented by edge-connected nodes introducing convolution
operations on each nodes non-Euclidean structure was proposed
as modifications of DL architectures specialized for molecular
fingerprints and models in the terms of structural features,
physical properties, and activity (Duvenaud et al., 2015; Gilmer
et al., 2017; Zhou and Li, 2017; Fernandez et al., 2018; Li C.
et al., 2018). Since a chemical compound can also be represented
as an undirected graphs of atoms when an atom is defined as a
vertex (node) and a bond is defined as a side (edge), it is possible
to construct a highly accurate prediction model by applying
a convolution operation to the graph including their physical
and chemical properties and extracting meaningful features
from the large scale datasets of graph structure (Defferrard
et al., 2016; Kipf and Welling, 2016). However, unlike image
data, there drawback that a connection relation of peripheral
nodes around the attention node of the graph is indefinite for
each target node. To solve this difficulty with a heuristic or
theoretical approach, graph convolution can be applied to graph
Fourier transformation considering the adjacency of nodes by
parameterizing weighted and undirected graphs without loops
and multiple edges. Fourier conversion decomposes a waveform
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signal component by frequency component, but graph Fourier
conversion decomposed a signal defined on a graph into “gentle
signal” or “steep signal.” As for chemical structure, the graph
signal converts into a graph spectral region assigning feature
vectors to each atom in a chemical substance and their interaction
between atoms. Thus, it is very well-adapted to prediction of
local molecular structure-dependent physiological activity. In the
case of definitions derived from the graph Fourier transform,
for technical reasons, it needs to undirected and weighted graph
without loops and multiple edges. On the other hand, by defining
graph convolution more directly from only the connection
relationship of nodes and edges, it is possible to introduce a more
complicated structure such as a directed graph, multiple edges,
and loops to graph convolution (Schlichtkrull et al., 2017). That
is, for each node, its adjacent nodes are classified according to
how they are connected, and then the sum (or average) of the
signals of the neighboring nodes is taken for each neighborhood
according to the manner of connection and according to how
it is connected. However, since this method relied on edge
and/or node information, the graph structures from the 3D
conformational flexibility and the diversity of many features on
the edge and/or node, such as shape, electrostatics, quantum
effects, and other properties emerged from the molecular graph
essential to clearly represent the biological systems and their
relationship for the molecular activity and to consistently
outperform other models (Kearnes et al., 2016). Additionally,
since this graph structured format is heterogeneous among
molecules, many learning algorithms how to process the complex
graph effectively, except homogeneous input features. Therefore,
to resolve issues, data transformings for the graph structure of
the molecules to fix data size and format (Duvenaud et al.,
2015; Liu K. et al., 2018). In addition, representations by the
SMILES (Weininger, 1988; Putz and Dudaş, 2013; Achary, 2014;
Jastrzebski et al., 2018; Kumar and Chauhan, 2018) do not encode
bond lengths and mutual orientation of atom in space, meaning
that they lack information for the molecular conformations, such
as 3D atomic arrangements and some molecule stereoisomers.

Also, 3D-CNN, convolutional layers extended to 3D filter
that move 3-directions (x, y, z) extract spatiotemporal features
from moving objects proposed as a method applied to motion
image recognition (Ji et al., 2013; Blendowski and Heinrich,
2018; Lu et al., 2018). It has been successfully used to extract
against the temporal change of the spatial structure data as a
feature expression of 3D volume space such as cuboid output
using the node locally connected to all the images within a
certain time width (Ji et al., 2013; Maturana and Scherer,
2015). In this method, although the temporal change such as
event detection in videos, 3D images etc. is considered in the
extracted feature, it depends on the size in the time direction
of the filter. Therefore, when recognizing an operation longer
than the filter size, selection and combination processing of
those features must be performed. As for chemical compounds,
the 3D-CNN has been successfully shown to able to handle
the data with spatial structure such as 3D-structures, on the
choice of the data representation (Ji et al., 2013; Maturana
and Scherer, 2015; Blendowski and Heinrich, 2018; Kuzminykh
et al., 2018). If a suitable representation used, the most critical

information efficiently captured. In addition, the chemical
compounds induced conformational changes target interactions
is possible to a number of conformations or orientations (Tuffery
and Derreumaux, 2017; Salmaso and Moro, 2018). Furthermore,
the conformational changes of target proteins by ligands and
protein-ligands interactions have been studied computational
(Yang et al., 2016; Hollingsworth and Dror, 2018; Nusrat and
Khan, 2018). Therefore, the 3D-CNN could be a very useful
method for extracting structural features based on molecular
dynamics, which the dynamic behavior of molecular system as
a function of time. However, since a data in non-euclidean
spaces, such as spherical data is difficult to trivially apply
for direct 3D representation, the suitable conditions such as
scaling and required number of input samples have not been
cleared completely, which leads to poor performance by sparsity
and redundancy in the data and increased complexity in the
convolution process (Ji et al., 2013; Maturana and Scherer,
2015; Blendowski and Heinrich, 2018; Kuzminykh et al., 2018).
In additions, 3D-CNNs requires more 3D matrix and more
calculations than 2D. Thus, the scaling for the CNNs to 3D
representations is not straightforward due to the sparsity in input
data and the complexity in the convolution operations (Ji et al.,
2013; Maturana and Scherer, 2015; Blendowski and Heinrich,
2018; Kuzminykh et al., 2018). Therefore, even now, 3D-CNN
need shape descriptors by hand, such as light field descriptors
(Pu and Ramani, 2006), mesh DOG (Zaharescu et al., 2009),
spin images (Johnson and Hebert, 1999), heat kernel signatures
(Xiang et al., 2014), and spherical harmonics high performance
(Kazhdan et al., 2003). To alleviate this problem, although
Gaussian blur representation was proposed to reduce the sparsity
and the redundancy of input, convolving with the Gaussian
kernel leads to information loss (Kuzminykh et al., 2018).

Previously, it was ascertained that the Deep Snap-DL
method yields the corresponding predicted values for different
physiological activities between optical R/S isomers (Uesawa,
2018). This report indicated that Deep Snap-DL accurately
extract physiological activities depending on molecular
conformation-specificity optimization for various conformations
is necessary to maintain high performance of the prediction
model. In this research, to define the steric conformation of
the molecular structure, CORINA Classic software was used.
However, if more suitable definition of 3D steric structures
of chemical compounds directly or indirectly related to
biological activity, mechanisms, and molecular pathways such
as determination of 3D structure for a protein receptor with
apparent ligand affinity pocket were established based on the
molecular dynamics stimulation, the Deep Snap-DL procedure
would be outperformed.

On the other hand, there are some problems that need to
be improved so far in this Deep Snap-DL method. At first, in
principle, this strategy to capture more detail and greater amount
of information chemical structures using more molecular images
from 3D-rotation (Uesawa, 2018). In supervised learning, output
data corresponding to input data can be obtained, but learning
is performed for the purpose of minimizing the error by
comparing the output to new data. Therefore, the correction
of misclassification for a large amount of labeled input data
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is difficult. If the classification criteria within image data
could be clarified using proposed visual explanations technique
(Simonyan et al., 2013; Mahendran and Vedaldi, 2014; Selvaraju
et al., 2016; Smilkov et al., 2017; Zhen et al., 2017; Philbrick et al.,
2018), it may be useful for estimation of 3D structure important
for physiological activity of the compound and would more
reduction of calculation cost by reducing the number of images
used. Furthermore, by parameters for Deep Snap in this study, the
calculation time was reduced the relatively high performance of
the prediction model for the CAR agonist activity. In agreement
with previous report although DL able to accurately predict for
a molecule with just close neighbors in the training dataset, a
hitherto unexamined chemical was predicted close to the average
of all training molecule activities, which the lack of ability to
learn beyond the training dataset (Liu R. et al., 2018). Deep Snap-
DL method indicated the performances of prediction models
depending on input datasets produced by various conditions
including bonds, spacing, angles, colors, atom size, etc. Moreover,
the AUCs were reduced by random permutation of the activity
scores of datasets consisting training, validations, and test as non-
endpoint activity. These findings suggested that the task-specific
improvement of Deep Snap-DL technique by adjustments of
input data with the representations of chemical structure such
as bonds, space, atom size etc. could be more available approach
than conventional methods. Taken together, by combining the
Deep Snap strategy with parts of graph-CNN or 3D-CNN
functions. Overall, the novel approach Deep Snap not only would
fill a gap between chemical structure and toxicological prediction,
but also may be useful for constructing an in silico prediction
model of appropriate chemical risk assessment replace.

In summary, the relations of the parameters of Deep Snap
such as (1) number of molecules per SDF files split into (2) zoom

factor percentage, (3) atom size for van der waals percentage, (4)
bond radius, (5) minimum bond distance, and (6) bond tolerance
with the VLs as indicator for evaluating the performance of
the DL following quadratic function curves, suggesting that
optimal thresholds exist to attain the best performance with
these prediction models. Using the parameter values the best
performance with the prediction model, the prediction model for
CAR agonist was built using 64 images at 105◦ angle AUCs of
0.791. The results of this study feature the possible power of novel
DL-based QSAR approach for prediction of potential toxicity of
large datasets of any chemical compounds.

AUTHOR CONTRIBUTIONS

YU initiated and supervised the work, designed the experiments,
collected the information about chemical compounds, and edited
the manuscript. YM drafted the manuscript. YU and YM read
and approved the final manuscript.

FUNDING

This study is supported in part by grants from Long-
Range Research Initiative, Japan Chemical Industry Association
(16_PT01-02) andMinistry of Economy, Trade and Industry, AI-
SHIPS (AI-based Substances Hazardous Integrated Prediction
System) project (20180314ZaiSei8).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2019.00065/full#supplementary-material

REFERENCES

3D Structure Generator CORINAClassic. (2019). 3D Structure Generator CORINA

Classic. Nürnberg: Molecular Networks GmbH. Available online at: www.mn-
am.com

Abdelaziz, A., Spahn-Langguth, H., Schramm, K -W., and Tetko, I. V. (2016).
Consensus modeling for HTS assays using in silico descriptors calculates
the best balanced accuracy in Tox21 challenge. Front. Environ. Sci. 4:2.
doi: 10.3389/fenvs.2016.00002

Achary, P. G. (2014). Simplified molecular input line entry system-based optimal
descriptors: QSARmodelling for voltage-gated potassium channel subunit
Kv7.2. SAR QSAR Environ. Res. 25, 73–90. doi: 10.1080/1062936X.2013.842930

Aggarwal, H. K., Mani, M. P., and Jacob, M. (2018). MoDL: model based deep
learning architecture for inverse problems. IEEE Trans. Med. Imaging. 38,
394–405. doi: 10.1109/TMI.2018.2865356

Ambe, K., Ishihara, K., Ochibe, T., Ohya, K., Tamura, S., Inoue, K., et al. (2018).
In silico prediction of chemical-induced hepatocellular hypertrophy using
molecular descriptors. Toxicol. Sci. 162, 667–675. doi: 10.1093/toxsci/kfx287

Andronico, A., Randall, A., Benz, R. W., and Baldi, P. (2011). Data-driven high-
throughput prediction of the 3-D structure of small molecules: review and
progress. J. Chem. Inf. Model. 51, 760–776. doi: 10.1021/ci100223t

Attene-Ramos, M. S., Huang, R., Michael, S., Witt, K. L., Richard, A., Tice, R.
R., et al. (2015). Profiling of the Tox21 chemical collection for mitochondrial
function to identify compounds that acutely decreasemitochondrial membrane
potential. Environ. Health Perspect. 123, 49–56. doi: 10.1289/ehp.1408642

Attene-Ramos, M. S., Miller, N., Huang, R., Michael, S., Itkin, M., Kavlock,
R. J., et al. (2013). The Tox21 robotic platform for the assessment of

environmental chemicals from vision to reality. Drug Discov. Today. 18,
716–723. doi: 10.1016/j.drudis.2013.05.015

Azimi, S. M., Britz, D., Engstler, M., Fritz, M., and Mücklich, F. (2018).
Advanced steel microstructural classification by methods. Sci. Rep. 8:2128.
doi: 10.1038/s41598-018-20037-5

Banerjee, P., Eckert, A. O., Schrey, A. K., and Preissner, R. (2018). ProTox-II: a
webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46,
W257–W263. doi: 10.1093/nar/gky318

Bell, S. M., Phillips, J., Sedykh, A., Tandon, A., Sprankle, C., Morefield, S. Q.,
et al. (2017). An integrated chemical environment to support 21st-century
toxicology. Environ. Health Perspect. 125:054501. doi: 10.1289/EHP1759

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.
doi: 10.1109/TPAMI.2013.50

Blendowski, M., and Heinrich, M. P. (2018). Combining MRF-based deformable
registration and deep binary 3D-CNN descriptors for large lung motion
estimation in COPD patients. Int. J. Comput. Assist. Radiol Surg. 14, 43–52.
doi: 10.1007/s11548-018-1888-2

Bloomingdale, P., Housand, C., Apgar, J. F., Millard, B. L., Mager, D. E., Burke, J.
M., et al. (2017). Quantitative systems toxicology. Curr. Opin. Toxicol. 4, 79–87.
doi: 10.1016/j.cotox.2017.07.003

Bolisetty, S., Traylor, A., Zarjou, A., Johnson, M. S., Benavides, G. A., Ricart,
K., et al. (2013). Mitochondria-targeted heme oxygenase-1 decreases oxidative
stress in renal epithelial cells. Am. J. Physiol. Renal. Physiol. 305, F255–F264.
doi: 10.1152/ajprenal.00160.2013

Brockmeier, E. K., Hodges, G., Hutchinson, T. H., Butler, E., Hecker, M.,
Tollefsen, K. E., et al. (2017). The role of omics in the application of adverse

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 March 2019 | Volume 7 | Article 65

https://www.frontiersin.org/articles/10.3389/fbioe.2019.00065/full#supplementary-material
www.mn-am.com
www.mn-am.com
https://doi.org/10.3389/fenvs.2016.00002
https://doi.org/10.1080/1062936X.2013.842930
https://doi.org/10.1109/TMI.2018.2865356
https://doi.org/10.1093/toxsci/kfx287
https://doi.org/10.1021/ci100223t
https://doi.org/10.1289/ehp.1408642
https://doi.org/10.1016/j.drudis.2013.05.015
https://doi.org/10.1038/s41598-018-20037-5
https://doi.org/10.1093/nar/gky318
https://doi.org/10.1289/EHP1759
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1007/s11548-018-1888-2
https://doi.org/10.1016/j.cotox.2017.07.003
https://doi.org/10.1152/ajprenal.00160.2013
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Matsuzaka and Uesawa Optimized Deep Snap for QSAR

outcome pathways for chemical risk assessment. Toxicol. Sci. 158, 252–262.
doi: 10.1093/toxsci/kfx097

Cagli, E., Dumas, C., and Prouff, E. (2017). Convolutional Neural Networks with
Data Augmentation against Jitter-Based Countermeasures—Profiling Attacks

without Pre-Processing. Cryptology ePrint Archive: Report 2017/740.
Cammer, S. (2007). SChiSM2: creating interactive web page annotations

of molecular structure models using Jmol. Bioinformatics. 23,
383–384. doi: 10.1093/bioinformatics/btl603

Chen, I. J., and Foloppe, N. (2008). Conformational sampling of druglikemolecules
with MOE and catalyst: implications for pharmacophore modeling and virtual
screening. J. Chem. Inf. Model. 48, 1773–1791. doi: 10.1021/ci800130k

Chen, S., Hsieh, J. H., Huang, R., Sakamuru, S., Hsin, L. Y., Xia, M., et al. (2015).
Cell-based high-throughput screening for aromatase inhibitors in the Tox21
10K library. Toxicol. Sci. 147, 446–457. doi: 10.1093/toxsci/kfv141

Chow, J -F. (2014). Things to Try After useR!—Part 1: Deep Learning with H2O.
Available online at: http://www.r-bloggers.com/things-to-try-after-user-part-
1-deeplearning-with-h2o/ (Accessed August 10, 2017).

Cipullo, S., Snapir, B., Prpich, G., Campo, P., and Coulon, F. (2019).
Prediction of bioavailability and toxicity of complex chemical mixtures
through machine learning models. Chemosphere 215, 388–395.
doi: 10.1016/j.chemosphere.2018.10.056

Clark, M., and Steger-Hartmann, T. (2018). A big data approach to the
concordance of the toxicity of pharmaceuticals in animals and humans. Regul.
Toxicol. Pharmacol. 96, 94–105. doi: 10.1016/j.yrtph.2018.04.018

Collins, F. S., Gray, G. M., and Bucher, J. R. (2008). Toxicology.
Transforming environmental health protection. Science 319, 906–907.
doi: 10.1126/science.1154619

Concu, R., and Cordeiro, M. N. D. S. (2018). Looking for new inhibitors for
the epidermal growth factor receptor. Curr. Top. Med. Chem. 18, 219–232.
doi: 10.2174/1568026618666180329123023

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. arXiv:1606.09375v3
[Preprint]. Available online at: https://arxiv.org/pdf/1606.09375.pdf

Dougall, L. G. (2001). Functional methods for quantifying agonists
and antagonists. J. Recept. Signal Transduct. Res. 21, 117–137.
doi: 10.1081/RRS-100107425

Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R.,
Hirzel, T., Aspuru-Guzik, A., et al. (2015). Convolutional networks on graphs
for learning molecular fingerprints. arXiv:1509.09292v2. Available online at:
https://arxiv.org/pdf/1509.09292.pdf

Elfwing, S., Uchibe, E., and Doya, K. (2018). Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning. Neural.
Netw. 107, 3–11. doi: 10.1016/j.neunet.2017.12.012

Fang, H., Tong, W., Welsh, W. J., and Sheehan, D. M. (2003). QSAR models in
receptor mediated effects: the nuclear receptor superfamily. J. Mol. Struct. 622,
113–125. doi: 10.1016/S0166-1280(02)00623-1

Fang, X., Bagui, S., and Bagui, S. (2017). Improving virtual screening predictive
accuracy of Human kallikrein 5 inhibitors using machine learning models.
Comput. Biol. Chem. 69, 110–119. doi: 10.1016/j.compbiolchem.2017.05.007

Fay, K. A., Villeneuve, D. L., Swintek, J., Edwards, S. W., Nelms, M. D.,
Blackwell, B. R., et al. (2018). Differentiating pathway-specific from nonspecific
effects in high-throughput toxicity data: a foundation for prioritizing adverse
outcome pathway development. Toxicol. Sci. 163, 500–515. doi: 10.1093/toxsci/
kfy049

Fernandez, M., Ban, F., Woo, G., Hsing, M., Yamazaki, T., LeBlanc, E., et al. (2018).
Toxic colors: the use of deep learning for predicting toxicity of compounds
merely from their graphic images. J. Chem. Inf. Model. 58, 1533–1543.
doi: 10.1021/acs.jcim.8b00338

Gawehn, E., Hiss, J. A., Brown, J. B., and Schneider, G. (2018). Advancing drug
discovery via GPU-based deep learning. Expert Opin. Drug Discov. 13, 579–582.
doi: 10.1080/17460441.2018.1465407

Genuis, S. J., and Kyrillos, E. (2017). The chemical disruption
of human metabolism. Toxicol. Mech. Methods. 27, 477–500.
doi: 10.1080/15376516.2017.1323986

Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., and Pérez-Sánchez, H.
(2018). Neural network and deep-learning algorithms used in QSAR
studies: merits and drawbacks. Drug Discov. Today. 23, 1784–1790.
doi: 10.1016/j.drudis.2018.06.016

Gilmer, J., Schoenholz, S. S., Riley. P. F., VInyals, O., and Dahl, G. E. (2017).
Neuralmessage passing for quantum chemistry. arXiv:1704.01212v2 [Preprint].
Available online at: https://arxiv.org/pdf/1704.01212.pdf

Guimarães, M. C., Duarte, M. H., Silla, J. M., and Freitas, M. P. (2016). Is
conformation a fundamental descriptor in QSAR? A case for halogenated
anesthetics. Beilstein J. Org. Chem. 12, 760–768. doi: 10.3762/bjoc.12.76

Ha, R., Chang, P., Karcich, J., Mutasa, S., Fardanesh, R., Wynn, R. T., et al. (2018).
Axillary lymph node evaluation utilizing convolutional neural networks using
MRI dataset. J. Digit Imaging. 31, 851–856. doi: 10.1007/s10278-018-0086-7

Halder, A. K., Moura, A. S., and Cordeiro, M. N. D. S. (2018). QSAR modelling:
a therapeutic patent review 2010-present. Expert Opin. Ther. Pat. 28, 467–476.
doi: 10.1080/13543776.2018.1475560

Hanson, R. M. (2016). Jmol SMILES and Jmol SMARTS: specifications and
applications. J. Cheminform. 26:50. doi: 10.1186/s13321-016-0160-4

Hanson, R. M., and Lu, X. J. (2017). DSSR-enhanced visualization of nucleic acid
structures in Jmol.Nucleic Acids Res. 45:W528–W533. doi: 10.1093/nar/gkx365

Heindel, J. J. (2018). The developmental basis of disease: Update on
environmental exposures and animal models. Basic Clin. Pharmacol. Toxicol.

1–9. doi: 10.1111/bcpt.13118
Heindel, J. J., Skalla, L. A., Joubert, B. R., Dilworth, C. H., and Gray,

K. A. (2017). Review of developmental origins of health and disease
publications in environmental epidemiology. Reprod. Toxicol. 68, 34–48.
doi: 10.1016/j.reprotox.2016.11.011

Herráez, A. (2006). Biomolecules in the computer: Jmol to the rescue. Biochem.

Mol. Biol. Educ. 34, 255–261. doi: 10.1002/bmb.2006.494034042644
Hollingsworth, S. A., and Dror, R. O. (2018). Molecular dynamics simulation for

all. Neuron. 99, 1129–1143. doi: 10.1016/j.neuron.2018.08.011
Hsieh, J. H., Huang, R., Lin, J. A., Sedykh, A., Zhao, J., Tice, R. R., et al.

(2017). Real-time cell toxicity profiling of Tox21 10K compounds reveals
cytotoxicity dependent toxicity pathway linkage. PLoS ONE 12:e0177902.
doi: 10.1371/journal.pone.0177902

Hsieh, J. H., Sedykh, A., Huang, R., Xia, M., and Tice, R. R. (2015). A
data analysis pipeline accounting for artifacts in Tox21 quantitative
high-throughput screening assays. J. Biomol. Screen. 20, 887–897.
doi: 10.1177/1087057115581317

Hu, G., Wang, K., Peng, Y., Qiu, M., Shi, J., and Liu, L. (2018). Deep learning
methods for underwater target feature extraction and recognition. Comput.

Intell. Neurosci. 2018:10. doi: 10.1155/2018/1214301
Hua, S., Zhang, H., Song, Y., Li, R., Liu, J., Wang, Y., et al. (2012). High

expression of Mfn1 promotes early development of bovine SCNT embryos:
improvement of mitochondrial membrane potential and oxidative metabolism.
Mitochondrion. 12, 320–327. doi: 10.1016/j.mito.2011.12.002

Huang, R., Sakamuru, S., Martin, M. T., Reif, D. M., Judson, R. S., Houck, K. A.,
et al. (2014). Profiling of the Tox21 10K compound library for agonists and
antagonists of the estrogen receptor alpha signaling pathway. Sci Rep. 4:5664.
doi: 10.1038/srep05664

Huang, R., Southall, N., Wang, Y., Yasgar, A., Shinn, P., Jadhav, A., et al. (2011).
The NCGC pharmaceutical collection: a comprehensive resource of clinically
approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med.

3:80ps16. doi: 10.1126/scitranslmed.3001862
Huang, R., and Xia, M. (2017). Editorial: Tox21 challenge to build predictive

models of nuclear receptor and stress response pathways as mediated by
exposure to environmental toxicants and drugs. Front. Environ. Sci. 5, 1–3.
doi: 10.3389/fenvs.2017.00003

Huang, R., Xia, M., Sakamuru, S., Zhao, J., Shahane, S. A., Attene-Ramos,
M., et al. (2016). Modelling the Tox21 10K chemical profiles for in vivo

toxicity prediction and mechanism characterization. Nat Commun. 7:10425.
doi: 10.1038/ncomms10425

Hussain, Z., Gimenez, F., Yi, D., and Rubin, D. (2018). Differential data
augmentation techniques for medical imaging classification tasks.AMIA Annu.

Symp. Proc. 2017, 979–984.
Insel, P. A., Amara, S. G., Blaschke, T. F., and Meyer, U. A. (2017).

Introduction to the theme “new methods and novel therapeutic approaches
in pharmacology and toxicology”. Annu. Rev. Pharmacol. Toxicol. 57, 13–17.
doi: 10.1146/annurev-pharmtox-091616-023708
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