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a b s t r a c t

A novel coronavirus (COVID-19) has emerged as a global serious public health issue from
December 2019. People having a weak immune system are more susceptible to corona-
virus infection. It is a double challenge for people of any age with certain underlying
medical conditions including cardiovascular disease, diabetes, high blood pressure and
cancer etc. Co-morbidity increases the probability of COVID-19 complication. In this paper
a deterministic compartmental model is formulated to understand the transmission dy-
namics of COVID-19. Rigorous mathematical analysis of the model shows that it exhibits
backward bifurcation phenomenonwhen the basic reproduction number is less than unity.
For the case of no re-infection it is shown that having the reproduction number less than
one is necessary and sufficient for the effective control of COVID-19, that is, the disease free
equilibrium is globally asymptotically stable when the reproduction threshold is less than
unity. Furthermore, in the absence of reinfection, a unique endemic equilibrium of the
model exists which is globally asymptotically stable whenever the reproduction number is
greater than unity. Numerical simulations of the model, using data relevant to COVID-19
transmission dynamics, show that the use of efficacious face masks publicly could lead
to the elimination of COVID-19 up to a satisfactory level. The study also shows that in the
presence of co-morbidity, the disease increases significantly.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

At this moment the world is confronting an issue that is neither created by any political instability nor created by any
superbug that was considered amajor public health threat worldwide. Rather the problem is created by an outbreak of a novel
coronavirus (COVID-19) which has become a global pandemic Iboi et al. (2020). COVID-19, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), started its outbreak in Wuhan, the capital of Hubei Province in the People's Republic
of China, in December 2019 Ngonghala et al. (2020); WHO; Li et al. (2020). It has developed into a global health issue since its
manifestation Omame et al. (2020). As of November 15, 2021, it has affected 243 countries and territories, causing about
194,337,614 infections and 4,162,590 deaths around the world.

COVID-19 is the third human coronavirus to appear in the twenty-first century, following the transmission of SARS-COV in
2002 and MERS-COV in 2012 Yang and Wang (2020). These two diseases are thought to be the predecessors of COVID-19 Shi
et al. (2020). According to a recent study, coronavirus can survive on inert surfaces like metal, glass, or plastic for up to 9 days
a).
unications Co., Ltd.

by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
ses/by-nc-nd/4.0/).
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and this study provides strong evidence about the survival of the virus in the environment for several days Kampf et al.
(2020). COVID-19, like SARS-COV and MERS-COV, can be transmitted from person-to-person through direct contact with
contaminated surfaces or objects and through the inhalation of respiratory droplets from infected individuals Bai et al. (2020).
The symptoms of COVID-19 ranges from a simple flu-like illness, with other symptoms including fever, fatigue, coughing,
muscle pains, shortness of breath, loss or change of taste or smell, and sore throat tomore severe diseases such as pneumonia,
bronchitis, severe acute respiratory distress syndrome (ARDS) and even death Shi et al. (2020).

COVID-19 is equally transmissible in all age groups however disease-related complexity increases in elderly people and
individuals with certain medical problems (having at least one morbidity) Khan et al. (2020). According to CDC, more than
80% of COVID-19 related fatalities occur in the age group 65 or over, and more than 95% of COVID-19 related fatalities occur in
individuals older than 45 (CDC (a)). A recent study consisting of 27,670 samples states that almost 42.5% of the samples
already had any pre-existing co-morbidities. Among these samples, hypertension (39.5%), diabetes (25.2%), and cardiovas-
cular disease (12.4%) were the most commonly highlighted co-morbidities Khan et al. (2020). Cardiovascular diseases, ce-
rebrovascular disease, respiratory disease, renal diseases, immune and metabolic disorders, hepatic diseases, obesity,
diabetes, hypertension and cancer are the most often reported co-morbidities among COVID-19 Khan et al. (2020); Jain and
Yuan (2020). These co-morbidities accelerate the severity of COVID-19 infection, ICU admission, and increase the risk of
COVID-19-related mortality among people of all ages Yang et al. (2020). A greater neutrophil-lymphocyte ratio, greater C-
reactive protein, and greater D-dimer level are more common in people with these diseases Khan et al. (2020). These result in
multiple organ failure, hypoxia, myocardial damage and severe pneumonia and things get further worse if the individual is
infectedwith COVID-19 as excessive impairment of myocardial cells occur Khan et al. (2020); Guo et al. (2020). It was reported
that the risk of mortality, among the cardiovascular disease-related patients infected with the SARS-CoV and MERS-CoV, was
similar to that of the cardiovascular disease-related patients infected with COVID-19 Khan et al. (2020).

Under these circumstances, mass vaccination is a vital tool for fighting against the pandemic and reducing the spread of
COVID-19 (CDC (b)). Six vaccines (Pfizer BioNTech, Moderna, Oxford/AstraZeneca, Janssen, Sinopharm, and Sinovac) have
been authorized byWHO as of July 2021. Although these vaccines provide away out of the pandemic, success largely depends
on the unique characteristics of the vaccine and community acceptance Moore et al. (2021). Given the recent appearance of
novel SARS-CoV-2 mutants that have been proven to be more transmissible, and may increase the disease severity as
compared to the original strain, early data proposes that vaccines may be efficacious against certain variants however may be
less viable against others (CDC (b)). Thus, it is obvious that vaccination alone will not be sufficient to stop the disease spread
and it is still unclear how long vaccines can keep people safe Giordano et al. (2021). So a well-planned vaccination program
should be integrated with the continuous use of Non-Pharmaceutical Interventions (NPIs) until the mortality rate resembles
seasonal influenza Giordano et al. (2021); Grundel et al. (2021). So in the absence of a safe and effective vaccine, and even if
someone is fully vaccinated but takes drugs that weaken the immune system, prevention measures (such as maintaining
social distance, wearing masks and avoiding crowds) are recommended (CDC (b)).

In this scenario, where there are a lot of uncertainties about vaccine availability, vaccine effectiveness and vaccine expi-
ration period, mathematical models, generally systems of nonlinear differential equations (deterministic or stochastic), have
been a powerful means in understanding and predicting transmission dynamics of infectious diseases, such as HIV, influenza.
Moreover, it helps implement suitable measures and effective methods for controlling the pandemic's spread and mitigating
its effects. Thus, mathematical approaches are useful in studying the behavior of COVID-19 (that is, in estimating its potential
burden). A significant number of modelling studies have already been developed on the transmission dynamics of COVID-19
(some of them are given here Ngonghala et al. (2020); Ivorra et al. (2020); Khan and Atangana (2020); Kucharski et al. (2020);
Mizumoto and Chowell (2020); Ferguson et al. (2020, p. 20); Atangana (2020); Okuonghae and Omame (2020); Mancuso et al.
(2021); Gumel et al. (2021). However, the impact of co-morbidities on the transmission dynamics of COVID-19 was not
considered in all of those studies except Omame et al. (2020). Our study is based on the development of a newmathematical
model to study the impact of co-morbidities and re-infection on the dynamics of COVID-19. In addition, two extra classes,
exposed class and hospitalized class, have been considered in this model. These two classes play important role on the
transmission dynamics of COVID-19. If the exposed individuals can be identified, via contract tracing that will help break the
chain of transmission and prevent the onward spread tomore people, wewill be able to reduce the number of peoplewho are
circulating it and control the spread of COVID-19. Again as the hospitalized individuals are in direct contact with health care
providers (doctors and nurses), they should be monitored carefully to control the disease spread and health care providers
should take precautionary measurements (using personal protective equipment, wearing gloves and face mask) so that they
can avoid infection and can not be the carrier of the virus.

The paper is organized as follows. In section 2, the COVID-19model is formulated and the basic properties of themodel are
described. Themodel is qualitatively analyzed in section 3. In section 4, numerical simulations and corresponding discussions
are presented and global uncertainty & sensitivity analysis are carried out in section 5. Section 6 deals with the conclusions.
2. Model formulation

The total human population at time t, denoted by N(t), has been divided into ten mutually exclusive compartments:
Susceptible individuals (S(t)), co-morbid susceptible individuals (Sc(t)), exposed individuals (E(t)), asymptomatic COVID-19
infected individuals Ia(t), symptomatic COVID-19 infected individuals Is(t), asymptomatic COVID-19 infected individuals
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having co-morbidity Iac(t), symptomatic COVID-19 infected individuals having co-morbidity Isc(t), quarantined individuals
Q(t), Hospitalized individuals H(t) and recovered individuals R(t), so that

N(t) ¼ S(t) þ Sc(t) þ E(t) þ Ia(t) þ Is(t) þ Iac(t) þ Isc(t) þ Q(t) þ H(t) þ R(t).
The following assumptions are considered during the formulation of the model:

C Births rate has not been taken into account.
C Exposed individuals are asymptomatically infected but can not transmit infection.
C Quarantined individuals can not infect others as they are in isolation.
C Recovered individuals may return to exposed class but at a lower rate as they develop some sort of immunity against

COVID-19.

Susceptible individuals get infected with COVID-19 when they contact with infected individuals (i.e., those in the Ia, Is, Iac,
Isc, and H classes), at a rate l, given by

l ¼ ð1� emÞ fb ðha Ia þ Is þ T 1 Iac þ T 2 Isc þ hh HÞg
N

; (1)

where, b is the effective contact rate. 0<m� 1 is the proportion of individuals whowear facemasks properly and consistently
and 0 < e � 1 is the effectiveness of the face masks. T 1; T 2 >1 are modification parameters that indicates the high infec-
tiousness of COVID-19 infected individuals due to the presence of co-morbidity (in the Iac and Isc classes). 0 < ha < 1 is a
modification parameter that indicates the low infectiousness of asymptomatic infected individuals (in the Ia class) in relation
to the symptomatic infected individuals (in the Is class). 0 < hh < 1 is a modification parameter that indicates the low
infectiousness of hospitalized individuals (in the H class) due to isolation. Variables and parameters used in this model have
been described in Tables 1 and 2.

Based on the above assumptions and the diagram (Fig. 1), we have the following system of non-linear differential
equations (where a dot denotes differentiation with respect to time) to model the transmission dynamics of COVID-19.

_S ¼ L� l S� ðxþ mÞS;
_Sc ¼ x S� T 3 l Sc � m Sc;
_E ¼ l Sþ T 3 l Sc þ a lR� ðsi þ sq þ mÞ E;
_Ia ¼ d1 si E þ l1 UQ � ðja þ 4a þ da þ mÞ Ia;
_Is ¼ d2 si E þ l2 UQ � ðjs þ 4s þ ds þ mÞ Is;
_Iac ¼ d3 si E þ l3 UQ � ðjac þ 4ac þ dac þ mÞ Iac;
_Isc ¼ ð1� dÞ si E þ ð1� lÞUQ � ðjsc þ 4sc þ dsc þ mÞ Isc;
_Q ¼ sq E � ðjq þ Uþ dq þ mÞQ ;
_H ¼ 4a Ia þ 4s Is þ 4ac Iac þ 4sc Isc � ðjh þ dh þ mÞH;
_R ¼ ja Ia þ js Is þ jac Iac þ jsc Isc þ jq Q þ jh H � a lR� mR;

(2)

where, d ¼ d1 þ d2 þ d3, and l ¼ l1 þ l2 þ l3.
In the model (2), It is assumed that susceptible humans are recruited into the population at a constant rate L. Among the

susceptible individuals who have co-morbidity move to Sc class at a rate x. The parameter T 3 >1 indicates the increased
susceptibility to COVID-19 infection by co-morbid susceptible individual than susceptible individuals without co-morbidity.
Exposed individuals progress to Ia, Is, Iac, and Isc classes at a rate d1 si, d2 si, d3 si, and (1� d1 � d2 � d3) si, respectively (1si

is the
incubation period of exposed individuals for COVID-19). Exposed individuals move to Q class at a rate sq. Quarantined in-
dividuals progress to Ia, Is, Iac, and Isc classes at a rate l1 U, l2 U, l3 U, and (1 � l1 � l2 � l3) U, respectively. Individuals in the
classes Ia, Is, Iac, and Isc are hospitalized at a rate 4a, 4s, 4sc, and 4ac, respectively. The recovery rate for Ia, Is, Iac, Isc, Q, and H
Table 1
Description of variables for the COVID-19 model (2).

Variable Description

S Population of susceptible individuals
Sc Population of co-morbid susceptible individuals
E Population of exposed individuals (infected but not showing symptoms and can not transmit infection)
Ia Population of asymptomatically-infectious individuals without co-morbidity
Is Population of symptomatically-infectious individuals without co-morbidity
Iac Population of asymptomatically-infectious individuals having co-morbidity
Isc Population of symptomatically-infectious individuals having co-morbidity
Q Population of quarantined individuals
H Population of individuals who are hospitalized
R Population of individuals who have recovered from COVID-19
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Table 2
Description of parameters for the COVID-19 model (2).

Parameter Description

L Recruitment rate of humans
b Effective contact rate for COVID-19 transmission
m Proportion of individuals who wear face masks publicly
e Efficacy of face masks to prevent acquisition of infection by susceptible individuals as well as to reduce the transmission of COVID-

19 by infected individuals
T 1;T 2 Modification parameter for increased infectiousness of COVID-19 infected individuals due to the presence of co-morbidity
T 3 Modification parameter accounting for increased susceptibility to COVID-19 infection by co-morbid susceptibles
ha, hh Modification parameter for the assumed reduced infectiousness of asymptomatic infected individuals and hospitalized individuals
x Proportion of susceptible individuals who developed co-morbidity
a Rate at which recovered individuals become susceptible
m Natural death rate
si Transition from exposed (E) class to infectious classes (Ia, Is, Iac, and Isc)
d1, d2, and d3 Proportion of exposed individuals who progress to the Ia, Is, and Iac classes respectively (d1 þ d2 þ d3 � 1)
1 � (d1 þ d2 þ d3) Proportion of exposed individuals who progress to the Isc class
sq Transition from exposed (E) class to quarantined (Q) class
U Transition from quarantined (Q) class to infectious classes (Ia, Is, Iac, and Isc)
l1, l2, and l3 Proportion of quarantined individuals who progress to the Ia, Is, and Iac classes respectively (l1 þ l2 þ l3 � 1)
1 � (l1 þ l2 þ l3) Proportion of quarantined individuals who progress to the Isc class
4a, 4s, 4ac, and 4sc Transition from Ia, Is, Iac, and Isc classes to H class
ja, js, jac, jsc, jq,

and jh

Recovery rate for individuals from Ia, Is, Iac, Isc, Q, and H classes

da, ds, dac, dsc, dq, and
dh

COVID-19 induced death rate for individuals in the Ia, Is, Iac, Isc, Q, and H classes

Fig. 1. Flowchart of the COVID-19 model (2).
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classes are ja, js, jac, jsc, jq, and jh, respectively. Recovered individuals become exposed at a rate a. The parameter da, ds, dac,
dsc, dq, and dh represents COVID-19 induced death rate for Ia, Is, Iac, Isc, Q, and H classes, respectively. There is a natural death for
all classes at a rate m.

3. Analysis of the model

3.1. Basic properties

Property-1: Positivity and boundedness of solutions.
It is important to show that all the state variables of the model (2) are non-negative for all time t. The following result can

be obtained.

Theorem 1. Solutions of the COVID-19 model (2), with positive initial conditions are positive for all time t > 0.

Proof.Let (S, Sc, E, Ia, Is, Iac, Isc, Q, H, and R) be the solutions of the model (2). Now from the first equation of the system (2) it
can be written as
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d
dt

�
SðtÞ exp

�Zt

0

lðuÞ duþ ðmþ xÞ t
��

¼ L

�
exp

�Zt

0

lðuÞ duþ ðmþ xÞ t
��

:

Hence,

SðtÞ exp
�Zt

0

lðuÞduþ ðmþ xÞ t
�
� Sð0Þ ¼

Zt

0

L

�
exp

�Zx

0

lðuÞ duþ ðmþ xÞ t
��

dx:
From here we can write

SðtÞ ¼ Sð0Þ exp
�
�
Zt

0

lðuÞ duþ ðmþ xÞ t
�

þ exp
�
�
Zt

0

lðuÞ duþ ðmþ xÞ t
� Zt

0

L

�
exp

�Zx

0

lðuÞ du

þ ðmþ xÞ t
��

dx>0:
Similarly, it can be shown that
Sc � 0, E � 0, Ia � 0, Is � 0, Iac � 0, Isc � 0, Q � 0, H � 0, and R � 0 for all t � 0.
To show the boundedness of the solutions we add all the equations of the system (2) and we get

dN
dt

¼ L� mN � da Ia � ds Is � dac Iac � dsc Isc � dq Q � dh H: (3)
It is obvious that 0 < Ia � N, 0 < Is � N, 0 < Iac � N, 0 < Isc � N, 0 < Q � N, 0 < H � N.
It follows that

L� ðmþ da þ ds þ dac þ dsc þ dq þ dhÞ N � dN
dt

< L� mN: (4)
Thus, L
mþdaþdsþdacþdscþdqþdh

� lim inf t/∞ N � lim sup t/∞ N � L
m .

This implies lim sup t/∞ N � L
m . ,

Property-2: Invariant Regions.

Consider the region D ¼
n
ðS; Sc; E; Ia; Is; Iac; Isc; Q ; H; RÞ2R10

þ : N � L
m

o
:

It follows from (3) and (4) that

dN
dt

� L� mN: (5)
Since dN
dt is bounded by L � m N, using a standard comparison theorem in Lakshmikantham et al. (1989) it can be shown

that NðtÞ � Nð0Þ e�m t þ L
m

�
1� e�m t�. In particular, NðtÞ � L

m if Nð0Þ � L
m . Thus, every solution of the model (2) with initial

conditions in D remains in D for t > 0. Hence, D is positive invariant and attracting Hethcote (2000); Sharomi et al. (2008).

3.2. Local stability of disease-free equilibrium (DFE)

The disease-free equilibrium, E 0, of the COVID-19 model (2), is given by

E 0 ¼ �
S*; S*c ; E; I

*
a; I

*
s ; I

*
ac; I

*
sc; Q

*; H*; R*
� ¼

�
L

xþ m
;

xL

m ðxþ mÞ;0; 0; 0; 0; 0; 0; 0; 0
	
: (6)
We investigate the linear stability of this equilibrium using the next generation operator method Diekmann et al. (1990);
Van den Driessche and Watmough (2002) on the system (2). For the system (2), the matrices F and V, for the new infection
terms and the remaining transfer terms Van den Driessche and Watmough (2002) are, respectively, given by
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F ¼

0
BBBBBBBB@

0 ð1� emÞ F b ha ð1� emÞF b ð1� emÞF ba T 1 ð1� emÞ F ba T 2 0 ð1� emÞ F ba hh
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

1
CCCCCCCCA
;

V ¼

0
BBBBBBBB@

k1 0 0 0 0 0 0
�d1 si k2 0 0 0 �l1 U 0
�d2 si 0 k3 0 0 �l2 U 0
�d3 si 0 0 k4 0 �l3 U 0

�ð1� dÞ si 0 0 0 k5 �ð1� lÞU 0
�sq 0 0 0 0 k6 0
0 �4a �4s �4ac �4sc 0 k7

1
CCCCCCCCA
;

where, k1 ¼ si þ sq þ m; k2 ¼ ja þ 4a þ da þ m; k3 ¼ js þ 4s þ ds þ m; k4 ¼ jac þ 4ac þ dac þ m; k5 ¼ jsc þ 4sc þ dsc þ m;k6 ¼
jq þ Uþ dq þ m; k7 ¼ jh þ dh þ m; d ¼ d1 þ d2 þ d3; l ¼ l1 þ l2 þ l3; and F ¼ S*þt3 S*cþa R*

N* :

The basic reproduction number Chavez et al. (2002); Hethcote (2000) denoted by R c, is given by

R c ¼ r ðF V�1Þ ¼ R aþR sþR acþR scþR h; (7)
where, r represents the spectral radius of the next generation matrix F V�1 and

R a ¼ b ð1� emÞF ha Ba; R s ¼ b ð1� emÞF Bs; R ac ¼ b ð1� emÞFT 1 Bac;
R sc ¼ b ð1� emÞ FT 2 Bsc; R h ¼ b ð1� emÞF hh Bh;
with,

Ba ¼ ðU sq l1 þ k6 si d1Þ
k1 k2 k6

; Bs ¼ ðU sq l2 þ k6 si d2Þ
k1 k3 k6

;

Bac ¼ ðU sq l3 þ k6 si d3Þ
k1 k4 k6

; Bsc ¼


U sq ð1� lÞ þ k6 si ð1� dÞ�

k1 k5 k6
;

Bh ¼ 4a ðU sq l1 þ k6 si d1Þ
k1 k2 k6 k7

þ 4s ðU sq l2 þ k6 si d2Þ
k1 k3 k6 k7

þ 4ac ðU sq l3 þ k6 si d3Þ
k1 k4 k6 k7

þ 4sc


U sq ð1� lÞ þ k6 si ð1� dÞ�

k1 k5 k6 k7
:

The following result is established using Theorem 2 of Van den Driessche and Watmough (2002).

Lemma 1. The DFE of the COVID-19 model, given by (2), is locally-asymptotically stable (LAS) if R c < 1, and unstable if R c > 1.
3.3. Existence of endemic equilibrium point (EEP)

Let E 1 ¼ ðS*; S*c ; E*; I*a; I*s ; I*ac; I*sc; Q*; H*; R*Þ be any arbitrary equilibrium of the model (2) and let

l* ¼ b ð1� emÞ ðha I*a þ I*s þ T 1 I*ac þ T 2 I*sc þ hh H
*Þ

N* (8)
be the force of infection at steady-state. Therefore, from the model (2) we have,
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S*c ¼ x S*

T 3 l
* þ m

;

E* ¼ Be

�
mþ al*

mþ al* ð1� BrÞ

��
1þ T 3 x

T 3 l
* þ m

�
l* S*;

I*a ¼ Ba

�
mþ al*

mþ al* ð1� BrÞ

� �
1þ T 3 x

T 3 l
* þ m

�
l* S*;

I*s ¼ Bs

�
mþ al*

mþ al* ð1� BrÞ

� �
1þ T 3 x

T 3 l
* þ m

�
l* S*;

I*ac ¼ Bac

�
mþ al*

mþ al* ð1� BrÞ

� �
1þ T 3 x

T 3 l
* þ m

�
l* S*;

I*sc ¼ Bsc

�
mþ al*

mþ al* ð1� BrÞ

� �
1þ T 3 x

T 3 l
* þ m

�
l* S*;

Q* ¼ Bq

�
mþ al*

mþ al* ð1� BrÞ

� �
1þ T 3 x

T 3 l
* þ m

�
l* S*;

H* ¼ Bh

�
mþ al*

mþ al* ð1� BrÞ

��
1þ T 3 x

T 3 l
* þ m

�
l* S*;

R* ¼ Br
mþ al*

�
mþ al*

mþ al* ð1� BrÞ

��
1þ T 3 x

T 3 l
* þ m

�
l* S*;

(9)

where,
Be ¼ 1
k1
; Bq ¼ sq

k6 k1
; and Br ¼ ja Ba þ js Bs þ jac Bac þ jsc Bsc þ jq Bq þ jh Bh:
Substituting (9) into (8) gives

l* ¼
ð1� emÞ fb ðha Ba þ Bs þ T 1 Bac þ T 2 Bsc þ hh BhÞg

n
mþal

*

mþal
* ð1�BrÞ

on
1þ T 3 x

T 3 l
*þm

o
l* S*h

1þ x

T 3 l
*þm

þ
n
Bc

�
mþal

*

mþal
* ð1�BrÞ



þ Br

�
1

mþal
* ð1�BrÞ


o�
1þ T 3 x

T 3 l
*þm



l*

i
S*

; (10)

where, Bc ¼ Be þ Ba þ Bs þ Bac þ Bsc þ Bq þ Bh.
After a tedious calculation we get the following polynomial equation in terms of l*

l*
n
A1 ðl*Þ3 þ A2 ðl*Þ2 þ A3 l* þ A4

o
¼ 0; (11)

where,
A1 ¼ aT 3 Bc;
A2 ¼ a t3 ð1� BrÞ þ ðmBc þ BrÞT 3 þ aBcðmþ T 3 xÞ � aT 3 b ð1� emÞ ðha Ba þ Bs þ T 1 Bac þ T 2 Bsc þ hh BhÞ;
A3 ¼ t3 mþ a ðmþ xÞ ð1� BrÞ þ ðBc mþ BrÞ ðmþ T 3 xÞ � b ð1� emÞ ðha Ba þ Bs þ T 1 Bac þ T 2 Bsc þ hh BhÞ
fa ðmþ T 3 xÞ þ t3 mg;A4 ¼ m ðmþ xÞ ð1�R cÞ:
From (11), l* ¼ 0 corresponds to the DFE E 0 and the non-zero equilibria satisfy

f ðl*Þ ¼ A1 ðl*Þ3 þ A2 ðl*Þ2 þ A3 l* þ A4 ¼ 0: (12)

Now, we determine the number of endemic equilibria of the system. In (12), A1 is always positive and A4 is positive (negative)
if R c < 1 ðR c > 1Þ. So we have the following two cases Buonomo and Lacitignola (2010):

Case-1: R c > 1

A1 is always positive and A4 < 0 in this case. According to the Descarte's rule of sign, depending on the sign of A2 and A3, we
have either three positive roots or one positive root. To determine the exact number of roots we look at the derivative vf =vl ¼
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3A1 ðl*Þ2 þ 2A2 l* þ A3 and its discriminant D ¼ 4 ðA2
2 � 3A1 A3Þ. When D > 0, the two real roots lþ and l� of vf/vl will

determinewhether there are three real positive roots or one real positive root of f(l*). In the cases l� < 0 < lþ and l� < lþ < 0,
there is one positive real root and when 0 < l� < lþ, there are three positive real roots if f(l�) > 0 or one positive real root if
f(l�) < 0. Thus we have the following table.

Case-2: R c <1

A1 is always positive and A4 > 0 in this case. According to the Descarte's rule of sign, depending on the sign of A2 and A3, we
have either two positive roots or zero positive root. As in the previous case, to determine the exact number of roots we look at
the derivative vf/vl and its discriminant D. When D > 0, the two real roots lþ and l� of vf/vlwill determine whether there are
two real positive roots or zero real positive root of f(l*). In both the cases l� < 0 < lþ and 0 < l� < lþ, there are two positive
real roots of f(l*) if f(lþ) < 0 or zero positive real root of f(l*) if f(lþ) > 0 and when l� < lþ < 0, there is no positive real root of
f(l*). Thus we have the following table.

3.4. Backward bifurcation analysis of the model

From Tables 3 and 4, there is a possibility of having two endemic equilibriumwhenever R c <1. Now in this case with the
parameter values from Table 5, we have A2 < 0 and A3 < 0. This indicates the possibility of having backward bifurcation
phenomena. Using the center manifold theory Carr (2012); Van den Driessche and Watmough (2002) we will explore the
phenomena. Consider S¼ x1, Sc ¼ x2, E¼ x3, Ia¼ x4, Is¼ x5, Iac¼ x6, Isc¼ x7, Q¼ x8, H¼ x9, and R¼ x10, so that in vector form the

model (2) can be written as dX
dt ¼ ðf1; f2; f3; f4; f5; f6; f7; f8; f9; f10ÞT , where X ¼ ðx1; x2; x3; x4; x5; x6; x7; x8; x9; x10ÞT and then we

have

dx1
dt

¼ f1 ¼ L� l x1 � k10 x1;

dx2
dt

¼ f2 ¼ x x1 � T 3 l x2 � m x2;

dx3
dt

¼ f3 ¼ l x1 þ T 3 l x2 þ a lx10 � k1 x3;

dx4
dt

¼ f4 ¼ d1 si x3 þ l1 U x8 � k2 x4;

dx5
dt

¼ f5 ¼ d2 si x3 þ l2 U x8 � k3 x5;

dx6
dt

¼ f6 ¼ d3 si x3 þ l3 U x8 � k4 x6;

dx7
dt

¼ f7 ¼ ð1� dÞsi x3 þ ð1� lÞU x8 � k5 x7;

dx8
dt

¼ f8 ¼ sq x3 � k6 x8;

dx9
dt

¼ f9 ¼ 4a x4 þ 4s x5 þ 4ac x6 þ 4sc x7 � k7 x9;

dx10
dt

¼ f10 ¼ ja x4 þ js x5 þ jac x6 þ jsc x7 þ jq x8 þ jh x9 � a l x10 � k8 x10;

(13)

where,
k1 ¼ si þ sq þ m, k2 ¼ ja þ 4a þ da þ m, k3 ¼ js þ 4s þ ds þ m, k4 ¼ jac þ 4ac þ dac þ m,
k5 ¼ jsc þ 4sc þ dsc þ m, k6 ¼ jq þ U þ dq þ m, k7 ¼ jh þ dh þ m, k8 ¼ m, k10 ¼ m þ x,

and, l ¼ ð1�e mÞ fb ðha x4þx5þT 1 x6þT 2 x7þ hh x9Þg
N :
Table 3
Number of real positive roots for the case R c >1 depending on the sign of D, A2 and A3.

D A2 A3 Number of real positive roots of f(l*)

> 0 > 0 < 0 1
> 0 > 0 > 0 1
> 0 < 0 < 0 1
> 0 < 0 > 0 1 if f ðl*�Þ <0

3 if f ðl*�Þ > 0
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Table 4
Number of real positive roots for the case R c <1 depending on the sign of D, A2 and A3.

D A2 A3 Number of real positive roots of f(l*)

> 0 > 0 > 0 0
> 0 < 0 > 0 0
> 0 < 0 < 0 2
> 0 < 0 > 0 0 if f ðl*þÞ > 0

2 if f ðl*þÞ < 0
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Now consider R c ¼ 1 and b ¼ b* is a bifurcation parameter. Thus we get

b ¼ b* ¼ N*

ð1� emÞ ðS* þ t3 S*c þ a R*Þ ðha Ba þ Bs þ T 1 Bac þ T 2 Bsc þ hh BhÞ
:

The linearization matrix of the system around the DFE with b* evaluated at the DFE is given by calculating the Jacobian of
the system (13):

JðE 0Þ ¼

0
BBBBBBBBBBBBBB@

�k10 0 0 �ha J1 �J1 �T 1 J1 �T 2 J1 0 �hh J1 0
x �m 0 �ha J2 �J2 �T 1 J2 �T 2 J2 0 �hh J2 0
0 0 k1 �ha J3 �J3 �T 1 J3 �T 2 J3 0 �hh J3 0
0 0 d1 si �k2 0 0 0 l1 U 0 0
0 0 d2 si 0 �k3 0 0 l2 U 0 0
0 0 d3 si 0 0 �k4 0 l3 U 0 0
0 0 ð1� dÞsi 0 0 0 �k5 ð1� lÞU 0 0
0 0 sq 0 0 0 0 �k6 0 0
0 0 0 4a 4s 4ac 4sc 0 �k7 0
0 0 0 ja js jac jsc jq jh �k8

1
CCCCCCCCCCCCCCA

;

where, J1 ¼ ð1�e mÞ b m
xþm ; J2 ¼ ð1�e mÞ b T 3 x

xþm ; and J3 ¼ ð1�e mÞ b ðmþT 3 xÞ
xþm : The Jacobian JðE 0Þ of (13) with b ¼ b*, denoted by

J
b
* , has a simple zero eigenvalue (with all other eigenvalues having negative real part). Hence, the center manifold theory Carr

(2012); Castillo-Chavez and Song (2004), can be used to analyze the dynamics of the model (2).
Eigenvectors of J

b
* ¼ JðE 0Þjb¼b

* :

When R c ¼ 1, the jacobian ðJ
b
* Þ of (13) has a right eigenvector corresponding to the zero eigen value which is given by

w ¼ ½w1; w2; w3; w4; w5; w6; w7; w8; w9; w10�T , where,

w1 ¼ �ðha w4 þw5 þ T 1 w6 þ T 2 w7 þ hh w9Þ J1 � aw10

k10
;

w2 ¼ �ðha w4 þw5 þ T 1 w6 þ T 2 w7 þ hh w9Þ J2 � xw1

m
;

w3 ¼ w3; w4 ¼ d1 si w3 þ l1 Uw8

k2
; w5 ¼ d2 si w3 þ l2 Uw8

k3
; w6 ¼ d3 si w3 þ l3 Uw8

k4
;

w7 ¼ ð1� dÞ si w3 þ ð1� lÞUw8

k5
; w8 ¼ sqw3

k6
; w9 ¼ 4a w4 þ 4s w5 þ 4ac w6 þ 4sc w7

k8
;

w10 ¼ ja w4 þ js w5 þ jac w6 þ jsc w7 þ jq w8 þ jh w9

k8
:

Further, J
b
* has a left eigenvector v ¼ [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10] associated with the zero eigenvalue, where,

v1 ¼ 0; v2 ¼ 0; v3 ¼ v3; v4 ¼ ha J3 v3 þ 4a v9
k2

; v5 ¼ J3 v3 þ 4s v9
k3

; v6 ¼ T 1 J3 v3 þ 4ac v9
k4

;

v7 ¼ T 2 J3 v3 þ 4sc v9
k5

; v8 ¼ l1 U v4 þ l2 U v5 þ l3 U v6 þ ð1� lÞU v7
k6

; v9 ¼ hh J3 v3
k7

; v10 ¼ 0:
Computations of a and b:
The expression for a and b from Carr (2012); Castillo-Chavez and Song (2004) can be written as:

a ¼ Pn
k;i;j¼1vkwiwj

v2fk
vxivxj

ð0; b*Þ,
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Table 5
Estimated and fitted parameters for the model (2) using daily COVID-19 cases for U.S.A.

Parameter Baseline Values References

L 5000 Estimated from Omame et al. (2020)
b 0.395 Assumed
m 0.1 Ngonghala et al. (2020)
e 0.5 Ngonghala et al. (2020)
T 1;T 2 1.15, 1.25 Estimated from Omame et al. (2020)
T 3 1.5 Estimated from Omame et al. (2020)
ha, hh 0.6, 0.65 Assumed
x 0.0001 Estimated from Omame et al. (2020)
a 0.0001 Estimated from Omame et al. (2020)
m 0.00004 Estimated from Omame et al. (2020)
si 0.2 Ngonghala et al. (2020)
d1, d2, and d3 0.25, 0.525, 0.075 Assumed
1 � (d1 þ d2 þ d3) 0.15 Shi et al. (2020)
sq 0.116 Ngonghala et al. (2020)
U 0.2 Ngonghala et al. (2020)
l1, l2, and l3 0.25, 0.525, 0.075 Assumed
1 � (l1 þ l2 þ l3) 0.15 Assumed
4a, 4s, 4ac, and 4sc 0.1, 0.15, 0.2, 0.25 Ngonghala et al. (2020)
ja, js, jac, jsc, jq, and jh 0.14, 0.12, 0.13, 0.11, 0.2, 0.09 Ngonghala et al. (2020)
da, ds, dac, dsc, dq, and dh 0.0095, 0.02, 0.025, 0.03, 0.0095, 0.015 Ngonghala et al. (2020)
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and b ¼ Pn
k;i¼1vkwi

v2fk
vxivb

ð0; b*Þ.
After some tedious manipulations it can be shown that

a ¼ 2 ð1� emÞ b m v3 ðha w4 þw5 þ T 1 w6 þ T 2 w7 þ hh w9Þ
L ðmþ xÞ faw10 ðmþ xÞ � ðT 3 � 1Þ ðxw1 � mw2Þ

� ðw3 þw4 þw5 þw6 þw7 þw8 þw9 þw10Þ ðxT 3 þ mÞg;

and b ¼ ð1� emÞ v3 ðxT 3 þ mÞ ðha w4 þw5 þ T 1 w6 þ T 2 w7 þ hh w9Þ
mþ x

>0:
Thus, it follows from Theorem 4.1 of Castillo-Chavez and Song (2004) that the COVID-19 model (2) undergoes backward
bifurcation at R c ¼ 1 whenever a > 0 (Fig. 4).

3.5. Effect of no Re-infection

Setting a ¼ 0 in (10) and performing some calculations we get the following polynomial in terms of l*

l*
n
B1 ðl*Þ2 þ B2 l* þ B3

o
¼ 0; (14)
where,
Fig. 2. Fitting performance of the model for daily symptomatically infected cases in the U.S.A from February 24, 2020 to July 16, 2021.
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Fig. 3. Fitting performance of the model for cumulative symptomatically infected cases in the U.S.A from February 24, 2020 to July 16, 2021.
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B1 ¼ ðmBc þ BrÞT 3;
B2 ¼ t3 mþ ðBc mþ BrÞ ðmþ T 3 xÞ � b ð1� emÞ ðha Ba þ Bs þ T 1 Bac þ T 2 Bsc þ hh BhÞ t3 m;

B3 ¼ m ðmþ xÞ ð1�R cÞ:
From (14), l* ¼ 0 corresponds to the DFE E 0 and the non-zero equilibria satisfy

f ðl*Þ ¼ B1 ðl*Þ2 þ B2 l
* þ B3 ¼ 0: (15)
If multiple non-negative equilibria exists then there is a possibility of having backward bifurcation. From (15), B1 is always
positive and B3 is positive if R c is less than one and B3 is negative if R c is greater than one. Hence, we have the following
result.

Theorem 2. The COVID-19 model (2) with a ¼ 0 has

(i) exactly one unique endemic equilibrium if B3 < 0 (i.e., R c > 1),
(ii) exactly one unique endemic equilibrium if B2 < 0, and B3 ¼ 0 or B22 � 4 B1 B3 ¼ 0,
(iii) no endemic equilibrium if R c < 1 because then B2 > 0, B3 > 0 and B1 is always positive.

This theorem confirms that the model does not have any endemic equilibrium when R c < 1. Thus the model does not
show backward bifurcation when there is no re-infection.

3.5.1. Global asymptotic stability of DFE in the absence of Re-infection

Theorem 3. The DFE of the COVID-19 model (2), given by E 0, is globally asymptotically stable (GAS) whenever R c < 1.

Proof.We consider the following Lypunov function:

L ¼ f1 E þ f2 Ia þ f3 Is þ f4 Iac þ f5 Isc þ f6 Q þ f7 H;

where,
f1 ¼ 1
hh k1 k2 k3 k4 k5 k6

�
ha k3 k4 k5 k7 ðU sq l1 þ k6 si d1Þ þ k2 k4 k5 k7 ðU sq l2 þ k6 si d2Þ

þT 1 k2 k3 k5 k7 ðU sq l3 þ k6 si d3Þ þ T 2 k2 k3 k4 k7


U sq ð1� lÞ þ k6 si ð1� dÞ�

þ hh k3 k4 k5 4a ðU sq l1 þ k6 si d1Þ þ hh k2 k4 k5 4s ðU sq l2 þ k6 si d2Þ þ hh k2 k3 k5 4ac ðU sq l3 þ k6 si d3Þ
þ hh k2 k3 k4 4sc



U sq ð1� lÞ þ k6 si ð1� dÞ� �;

ðhh 4a þ ha k7Þ ðhh 4s þ k7Þ ðhh 4ac þ k7 T 1Þ ðhh 4sc þ k7 T 2Þ
f2 ¼
k2 hh

; f3 ¼
k3 hh

; f4 ¼
k4 hh

; f5 ¼
k5 hh

;

U

f6 ¼

hH k2 k3 k4 k5 k6
fhh k2 k3 k4 4sc ð1� lÞ þ k2 k3 k4 k7 T 2 ð1� lÞ þ hh k3 k4 k5 4a l1

þ hh k2 k4 k5 4s l2 þ hh k2 k3 k5 4ac l3 þ ha k3 k4 k5 k7 l1 þ k2 k3 k5 k7 l3 T 1 þ k2 k4 k5 k7 l2g; f7 ¼ 1:

with Lyapunov derivative
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Fig. 4. Backward Bifurcation Diagram of Model (2) with a ¼ 50 and all other parameters as given in Table 5. In this case a ¼ 0.000253 > 0, b ¼ 1.5267 > 0 and
R c ¼ 0:858.
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_L ¼ f1 _E þ f2 _Ia þ f3 _Is þ f4 _Iac þ f5 _Isc þ f6 _Q þ f7 _H
¼ f1 ðl Sþ T 3 l Sc � k1 EÞ þ f2 ðd1 si E þ l1 UQ � k2 IaÞ þ f3 ðd2 si E þ l2 UQ � k3 IsÞþ

f4 ðd3 si E þ l3 UQ � k4 IacÞ þ f5 fð1� dÞ si E þ ð1� lÞ UQ � k5 Iscg þ f6 ðsq E � k6 QÞþ
f7 ð4a Ia þ 4s Is þ 4ac Iac þ 4sc Isc � k7 HÞ

� 
� f1 k1 þ f2 d1 si þ f3 d2 si þ f4 d3 si þ f5 ð1� dÞ si þ f6 sq
�
Eþ
ff1 b ð1� emÞ ha k9 � f2 k2 þ f7 4ag Ia þ ff1 b ð1� emÞ k9 � f3 k3 þ f7 4sg Is
ff1 b ð1� emÞT 1 k9 � f4 k4 þ f7 4acg Iac þ ff1 b ð1� emÞT 2 k9 � f5 k5 þ f7 4scg Isc
ff2 l1 Uþ f3 l2 Uþ f4 l3 Uþ f5 ð1� lÞU� f6 k6gQ þ ff1 b ð1� emÞ hh k9 � f7 k7gH
After some rigorous calculation it can be shown that

_L � ha k7
hh

ðR c � 1Þ Ia þ k7
hh

ðR c � 1Þ Is þ T 1 k7
hh

ðR c � 1Þ Iac þ T 2 k7
hh

ðR c � 1Þ Isc þ hh k7
hh

ðR c � 1Þ H:

Thus

_L ¼ k7
hh

ðR c �1Þ ðhaIa þ Is þT 1 Iac þT 2 Isc þ hh HÞ ¼ N l k7
hh b ð1� emÞ ðR c �1Þ:

Hence, _L � 0 for R c � 1, and _L ¼ 0 if and only if E ¼ Ia ¼ Is ¼ Iac ¼ Isc ¼ Q ¼ H ¼ 0. Therefore, L is a Lyapunov function on
D .Hence, by the LaSalle's invariance principle LaSalle (1976), every solution to the equations of the model (2), with initial
conditions in D , approaches E 0 as t / ∞, whenever R c < 1. ,

3.5.2. Local asymptotic stability of endemic equilibrium in the absence of Re-infection
Following the same procedure as in subsection 3.4, the expression for a and b can be written as

a ¼ 2 ð1� emÞ b m v3 ðha w4 þw5 þ T 1 w6 þ T 2 w7 þ hh w9Þ
L ðmþ xÞ f � ðT 3 � 1Þ ðxw1 � mw2Þ

� ðw3 þw4 þw5 þw6 þw7 þw8 þw9 þw10Þ ðxT 3 þ mÞg;
ð1� emÞ v3 ðxT 3 þ mÞ ðha w4 þw5 þ T 1 w6 þ T 2 w7 þ hh w9Þ
and b ¼

mþ x
>0:
Now using the parameter value given in Table 5 we get a ¼ �0.00002931723 < 0 and b ¼ 0.9105000590 > 0.
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Using the Center Manifold Theorem Castillo-Chavez and Song (2004) we can say that the unique endemic equilibrium is
locally asymptotically stable when R c > 1. To ensure that elimination of the virus is independent of the initial sizes of the
sub-populations, the globally-asymptotically stability of the DFE is established below using the techniques in Sharomi et al.
(2008).

3.5.3. Global asymptotic stability of EEP in the absence of Re-infection

Theorem 4. The EEP of the COVID-19 model (2) in the absence of re-infection (a ¼ 0), given by E 1, is globally asymptotically
stable (GAS) whenever R c > 1.

To prove this theorem, wewill explore a graph-theoretic approach as described in Shuai and Driessche (2013). Before that
we will briefly discuss some theorems and propositions.

Graph Theoretic Method:
A directed graph, briefly digraph, G consists of a set of vertices connected by directed edges (set of ordered pairs (i, j) of (not

necessarily distinct) vertices); each such pair (i, j) is called an arc from its initial vertex i to its terminal vertex j. For a vertex i,
the number of arcs in Gwhose terminal vertex is i is called the in-degree of i and the in-degree is denoted as d�(i), and the out-
degree, denoted as dþ(i), is the number of arcs whose initial vertex is i. A digraph G is weighted if each arc is assigned a
positive weight and is denoted by G ðAÞ. Given a weighted digraph G ðAÞ with n vertices, the n � nweight matrix A is defined
with aij(aij > 0), equal to theweight of arc (j, i) if it exists, and aij¼ 0 otherwise. Aweighted digraph G ðAÞ is strongly connected
if and only if the weight matrix A is irreducible Shuai and Driessche (2013). The Laplacian matrix L ¼ [lij] of G ðAÞ is defined as

lij ¼
8<
:

�aij if isjX
ksi

aik if i ¼ j
Let ci be the co-factor of lii in L. If G ðAÞ is strongly connected, then ci > 0, for 1� i� n. When the weighted digraph ðG ;AÞ has a
certain structure, we have the following two theorems (Theorem 5 and Theorem 6 Shuai and Driessche (2013)).

Theorem 5. Let ci be given as described above. If aij > 0 and d�(j) ¼ 1 for some i, j, then

ci aij ¼
Xn

k¼i
cj ajk: (16)
Theorem 6. Let ci be given as described above. If aij > 0 and dþ(j) ¼ 1 for some i, j, then

ci aij ¼
Xn

k¼i
ck aki: (17)
The following theorem (Theorem 3.5 in Shuai and Driessche (2013)) provides a graph-theoretic technique to construct a
Lyapunov function L .

Theorem 7. Let O be an open set in Rm and let f be a function from O to Rm. Consider a system of differential equation

d0k ¼ fk ðd1; d2; ……; dmÞ; k ¼ 1; 2; …:; m; (18)

with d ¼ ðd1; d2; ……; dmÞ2O and assume that

(i) There exist functions L i : O /R; Gij : O /R and constants aij � 0 such that for every 1 � i � n,
L 0

i ¼ L 0
i jð18Þ � Pn

j¼iaij GijðdÞ for z2O ,
(ii) For A ¼ [aij], each directed cycle C of G ðAÞ has Pðs;rÞ2 E ðC Þ GrsðdÞ � 0 for d2O , where E ðC Þ denotes the arc set of the

directed cycle C .

Then, the function L ðdÞ ¼ Pn
i¼1 ci L iðdÞwith constants ci � 0 as described above, satisfies L 0 ¼ L 0 jð18Þ � 0; that is, L is a

Lyapunov function for equation (18).

Proof. Consider the following functions:
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L 1 ¼
�
S� S* � S* ln

S

S*

	
þ
�
Sc � S*c � S*c ln

Sc
S*c

	
þ
�
E � E* � E* ln

E

E*

	
;

L 2 ¼ Ia � I*a � I*a ln
Ia
I*a
; L 3 ¼ Is � I*s � I*s ln

Is
I*s
; L 4 ¼ Iac � I*ac � I*ac ln

Iac
I*ac

;

L 5 ¼ Isc � I*sc � I*sc ln
Isc
I*sc
; L 6 ¼ Q � Q* � Q* ln

Q

Q*; L 7 ¼ H � H* � H* ln
H

H*:
Differentiating with respect to t we get

L 0
1 � b ha ð1� emÞ I*a ðS* þ T 3 S

*
cÞ

N*

�
Ia
I*a
� ln

Ia
I*a
� E

E*
þ ln

E

E*

	
¼: a12 G12

þb ð1� emÞ I*s ðS* þ T 3 S
*
cÞ

N*

�
Is
I*s
� ln

Is
I*s
� E

E*
þ ln

E

E*

	
¼: a13 G13

þbT 1 ð1� emÞ I*ac ðS* þ T 3 S
*
cÞ

N*

�
Iac
I*ac

� ln
Iac
I*ac

� E

E*
þ ln

E

E*

	
¼: a14 G14

þbT 2 ð1� emÞ I*sc ðS* þ T 3 S
*
cÞ

N*

�
Isc
I*sc

� ln
Isc
I*sc

� E

E*
þ ln

E

E*

	
¼: a15 G15

þb hh ð1� emÞH* ðS* þ T 3 S
*
cÞ

N*

�
H

H* � ln
H

H* �
E

E*
þ ln

E

E*

	
¼: a17 G17

L 0
2 � d1 si E

*
�
E

E*
� ln

E

E*
� Ia
I*a
þ ln

Ia
I*a

	
¼: a21 G21

þ l1 uQ*
�
Q

Q* � ln
Q

Q* �
Ia
I*a
þ ln

Ia
I*a

	
¼: a26 G26

L 0
3 � d2 si E

*
�
E

E*
� ln

E

E*
� Is
I*s
þ ln

Is
I*s

	
¼: a31 G31

þ l2 uQ*
�
Q

Q* � ln
Q

Q* �
Is
I*s
þ ln

Is
I*s

	
¼: a36 G36

L 0
4 � d3 si E

*
�
E

E*
� ln

E

E*
� Iac
I*ac

þ ln
Iac
I*ac

	
¼: a41 G41

þ l3 uQ*
�
Q

Q* � ln
Q

Q* �
Iac
I*ac

þ ln
Iac
I*ac

	
¼: a46 G46

L 0
5 � ð1� dÞ si E*

�
E

E*
� ln

E

E*
� Isc
I*sc

þ ln
Isc
I*sc

	
¼: a51 G51

þ ð1� lÞuQ*
�
Q

Q* � ln
Q

Q* �
Isc
I*sc

þ ln
Isc
I*sc

	
¼: a56 G56

L 0
6 � sq E*

�
E

E*
� ln

E

E*
� Q

Q*
þ ln

Q

Q*

	
¼: a61 G61
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Fig. 5. Directed graph for the model (2).
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L 0
7 � 4a I

*
a

�
Ia
I*a
� ln

Ia
I*a
� H

H*
þ ln

H

H*

	
¼: a72 G72

þ 4s I
*
s

�
Is
I*s
� ln

Is
I*s
� H

H* þ ln
H

H*

	
¼: a73 G73

þ 4ac I
*
ac

�
Iac
I*ac

� ln
Iac
I*ac

� H

H* þ ln
H

H*

	
¼: a74 G74

þ 4sc I
*
sc

�
Isc
I*sc

� ln
Isc
I*sc

� H

H* þ ln
H

H*

	
¼: a75 G75

where,

a12 ¼ b ha ð1�e mÞ I*a ðS*þT 3 S*cÞ
N* ; a13 ¼ b ð1�e mÞ I*s ðS*þT 3 S*cÞ

N* ; a14 ¼ b T 1 ð1�e mÞ I*ac ðS*þT 3 S*c Þ
N* ;

a15 ¼ b T 2 ð1�e mÞ I*sc ðS*þT 3 S*cÞ
N* ; a17 ¼ b hh ð1�e mÞ H* ðS*þT 3 S*cÞ

N* ; a21 ¼ d1 si E*; a26 ¼ l1 uQ*;

a31 ¼ d2 si E*, a36 ¼ l2 u Q*, a41 ¼ d3 si E*, a46 ¼ l3 u Q*, a51 ¼ (1 � d) si E*, a56 ¼ (1 � l) u Q*,
a61 ¼ sq E*; a72 ¼ 4a I*a; a73 ¼ 4s I*s ; a74 ¼ 4ac I*ac; a75 ¼ 4sc I*sc, and other aij ¼ 0. With the constants aij above and

A ¼ [aij], we construct the strongly connected directed graph G ðAÞ Fig. 5. PGij ¼ 0 along each of the cycles on the graph; for
instances, G46 þ G14 þ G61 ¼0, G61 þ G26 þ G72 þ G17 ¼ 0, and so on. Then by Theorem 7, there exist constants ci, i ¼ 1, 2,….., 7

such that L ¼ P7
i¼1ci L i is a Lyapunov function for (2). To find the constants ci we use theorem 5 and 6. dþ(7) ¼ 1 we have c1
Fig. 6. Simulations of the model (2) showing the solution trajectory tends to the DFE ðE 0Þ when R c <1. Parameter values are used as given in Table 5.
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Fig. 7. Simulations of the model (2) showing the solution trajectory tends to the EEP ðE 1Þ when R c >1. Parameter values are used as given in Table 5.

Fig. 8. Simulations of the model (2) showing the effect of co-morbidity on COVID-19 individuals showing daily infected cases, daily hospitalized cases and
cumulative deaths respectively as a function of time with various values of x. Fig. 8 (a) plots of total active cases, Fig. 8 (b) daily hospitalized cases and Fig. 8 (c)
cumulative deaths. Parameter values are used as given in Table 5.
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a17¼ c7 a72þ c7 a73þ c7 a74þ c7 a75. Hence setting c1¼1we get c7 ¼ b hh ð1�e mÞ ðS*þT 3 S*cÞ
k7 N* . d�(6)¼ 1 implies c6 a61¼ c2 a26þ c3

a36 þ c4 a46 þ c5 a56. Hence setting c2 ¼ c3 ¼ c4 ¼ c5 ¼ 1 we get c6 ¼ 4 u Q *

sq E* :

Therefore with the functions L i and constants ci given above,
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Fig. 9. Simulations of the model (2) showing the effect of T 3 on COVID-19 individuals showing daily infected cases, daily hospitalized cases and cumulative
deaths respectively as a function of time with various values of T 3. Fig. 9 (a) plots of daily infected cases, Fig. 9 (b) daily hospitalized cases and Fig. 9 (c) cu-
mulative deaths. Parameter values are used as given in Table 5.

A.K. Saha, C.N. Podder and A.M. Niger Infectious Disease Modelling 7 (2022) 138e160
L ¼ L 1þL 2þL 3þL 4þL 5 þ 4 u Q *

sq E* L 6 þ b hh ð1�e mÞ ðS*þT 3 S*cÞ
k7 N* L 7 is a Lyapunov function for (2). It can be verified that for

this Lyapunov function, the largest invariant set for model (2) where L 0 ¼ 0 is the singleton set E *. Therefore, by LaSalle's
invariance principle LaSalle (1976), E * is GAS in the interior of D . ,
4. Numerical simulations

In this section numerical simulations of the model (2) are carried out to explain the analytic results using the parameter
values given in Table 5. Figs. 2 and 3 depict the result obtained fromourmodel vs real time data and these figure show that our
model matches well with the real data. Fig. 6 and Fig. 7 show that the solution trajectory tends to the DFE ðE 0Þ and EEP ðE 1Þ,
respectively whenever R c <1 and R c >1.

Fig. 8 (a) - Fig. 8 (c) assess the effect of proportion of susceptible individuals who develop co-morbidity (x) on the daily
infected cases, daily hospitalized cases and cumulative deaths with various proportions. These figures depict proportional
effect of x with the daily infected cases, hospitalized cases and cumulative deaths.

Fig. 9(a) - Fig. 9 (c) illustrate the effect of increased susceptibility to COVID-19 infection by co-morbid susceptible in-
dividuals than susceptible individuals without co-morbidity ðT 3Þ on the daily infected cases, daily hospitalized cases and
cumulative deaths with various values of T 3. These figures illustrate proportional effect of T 3 with the daily infected cases,
hospitalized cases and cumulative deaths.

Fig. 10 assesses the impact of re-infection using various values of a and it demonstrates that number of daily infected cases
increase with the increased rate of re-infection.

The impact of face mask efficacy (e) with various values of mask coverage (m) is demonstrated in Fig. 11. These figures
exhibit a significant decrease in the daily infected cases (Fig. 11 (a) - Fig. 11 (c)), daily hospitalized cases (Fig. 11 (d) - Fig. 11 (f))
and cumulative deaths (Fig. 11 (g) - Fig. 11 (i)) when mask efficacy increased. From Fig. 11 it is obvious that at a fixed per-
centage of mask coverage, if the mask efficacy increases, the number of cases (infected, hospitalized and death) decrease.

We have also monitored the effect of contact rate on the daily infected cases, daily hospitalized cases and cumulative
deaths for various values of contact rate parameter (b) in Fig.12. These figures (considering both situations-individuals having
no co-morbidity and a certain proportion of individuals having co-morbidity) show that daily infected cases (Fig. 12 (a) -
Fig. 12 (c)), daily hospitalized cases (Fig. 12 (d) - Fig. 12 (f)) and cumulative deaths (Fig. 12 (g) - Fig. 12(i)) increase with
increased contact rate from base line b and in all the situations, number of cases in the presence of co-morbidity are greater
than the number of cases without co-morbidity. It is observed that implementing a highly-effective social-distancing strategy
(reduction in contact rate b) can reduce the number of daily infected cases, daily hospitalized cases and total deaths.
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Fig. 10. Simulations of the model (2) showing the effect of re-infection on the number of daily infected cases for various values of a.

Fig. 11. Simulations of the model (2) showing plots of daily infected cases, hospitalized cases and cumulative deaths as a function of time for various face mask
efficacy. Fig. 11 (a) - Fig. 11 (c) shows results for daily infected cases for different mask efficacy. Fig. 11 (d) - Fig. 11 (f) shows results for daily hospitalized cases for
different mask efficacy. Fig. 11 (g) - Fig. 11 (i) shows results for total deaths for different mask efficacy. Parameter values are used as given in Table 5.
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The effect of contact tracing has been shown in Fig. 13 using different values of contact tracing parameter sq. Fig. 13 (a)
depicts theworst case scenariowhen no contact tracing is implemented and Fig.13 (b) - Fig.13(c) indicates if contact tracing is
increased, the number of daily infected cases reduce significantly. The contour plot of the reproduction number ðR cÞ as a
function of face mask efficacy (e) and mask coverage (m) is depicted in Fig. 14 (a). It shows that if the mask efficacy rate is 0.5
or above and the mask coverage rate is 0.5 or above then reproduction number R c is less than one which indicates the
elimination of the disease. The contour plot ofR c with contact tracing rate (sq) and increased susceptibility rate to COVID-19
infection by co-morbid susceptible individuals than susceptible individuals without co-morbidity ðT 3Þ has been presented in
Fig. 14 (b). It illustrates that if the contact tracing rate is 0.2 or above and the increased susceptibility rate to COVID-19
infection by co-morbid susceptible individuals than susceptible individuals without co-morbidity is 0.3 or below then R c

is less than one which indicates the elimination of COVID-19. In summary, we see that the presence of co-morbidity among
the susceptible individuals increase the disease complexity and disease induced death. However, implementation of strict
social distancing has a remarkable impact on the control of COVID-19 infection. The above simulations also show that the use
of efficacious face masks in public offers significant impact in reducing and mitigating the disease burden.
5. Global uncertainty and sensitivity analysis

Sensitivity analysis (SA) is a tool for studying the uncertainty in any type of complex mathematical model or system. The
objective of SA is to study how the uncertainty of inputs (parameters) affects the uncertainty of target variable (output
measure) Sanchez and Blower (1997) and thus to identify those parameters whose uncertainty impacts model outcomes. In
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Fig. 12. Simulations of the model (2) showing the effect of social distancing as a function of time for various values of b. Figure Fig. 12 (a) - Fig. 12 (c) shows daily
infected cases for various b. Fig. 12 (d) - Fig. 12 (f) represents daily hospitalized cases for various b. Fig. 12 (g)- Fig. 12 (i) depicts cumulative deaths for various b.
Parameter values are used as given in Table 5.

Fig. 13. Simulations of the model (2) showing the effect of contact tracing as a function of time for various values of sq. Fig. 13 (a) - Fig. 13 (c) shows daily infected
cases for various sq. Fig. 13 (d) - Fig. 13 (f) represents daily hospitalized cases for various sq. Fig. 13 (g) - Fig. 13 (i) depicts cumulative deaths for various sq.
Parameter values are used as given in Table 5.
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this paper we will discuss the PRCC method to analyze the uncertainty and sensitivity of parameter values for different
response function. Parameters having large PRCC values ðjPRCCj > 0:5Þ and small p-values (p < 0.01) are considered the most
important Taylor (1990). For PRCC analysis, 30 uncertain or Latin Hyperbolic Sapling (LHS) parameters are considered. To
analyze the significance of these parameters in the model predictions, we begin by performing LHS analysis. In our analysis,
509 model simulations are performed and the model is run for 509 days per run. Maximum, minimum and baseline values
(base line value has been set to a value at or near themiddle of the range between theminimum andmaximumvalues for that
parameter) for each of the 30 LHS parameters are given in Table 6. For each LHS parameter, each of the 509 input values are
obtained by the sampling of a uniform probability density distribution.

Considering the basic reproduction number R c as the response function we observe from Fig. 15 that parameters that
mostly influence the dynamics of the model (2) are m; b; T 3; si; sq; ja; js; jh; hh. Again from Fig. 16, we observe that
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Fig. 14. Effect of face-masks use in public. Contour plot of the basic reproduction number ðR cÞ, as a function of face-mask efficacy (e) and mask coverage (m).
Parameter values are used as given in Table 5 with various values of e and m. Combined effect of sq and T 3. Contour plot of the reproduction number ðR cÞ, as a
function of sq and T 3. Parameter values are used as given in Table 5 with various values of sq and T 3.

Table 6
Baseline, maximum and minimum values used in LHS analysis.

parameter Min Baseline Max parameter Min Baseline Max

e 0.6 0.5 0.7 js 0.1 0.12 0.14
m 0.05 0.1 0.15 jac 0.1 0.11 0.12
b 0.39 0.395 0.43 jsc 0.09 0.1 0.11
a 0.000098 0.0001 0.0009 jq 0.18 0.2 0.22
T 1 1.1 1.15 1.2 jh 0.07 0.09 0.11
T 2 1.2 1.25 1.3 da 0.009 0.0095 0.02
T 3 1.45 1.5 1.55 ds 0.018 0.02 0.025
x 0.001 0.003 0.005 dac 0.023 0.025 0.03
si 0.18 0.2 0.22 dsc 0.028 0.03 0.035
sq 0.13 0.15 0.17 dq 0.009 0.0095 0.02
4a 0.09 0.1 0.11 dh 0.013 0.015 0.02
4s 0.13 0.15 0.17 m 0.00003 0.00004 0.0009
4ac 0.18 0.2 0.22 U 0.18 0.2 0.22
4sc 0.22 0.25 0.28 ha 0.6 0.65 0.7
ja 0.12 0.14 0.16 hh 0.65 0.7 0.75

Fig. 15. Sensitivity Analysis of R c as a response function with respect to model parameters.
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parameters e; m; b; T 3; si; sq; ja; js; jh; u; and hh are the important contributors to uncertainty for the response
function Is. Considering the number of asymptomatic infected individuals having co-morbidity (Iac) as the response function
we observe from Fig. 17 that themostly influential parameters affecting the dynamics of the model (2) are e; m; b; T 3; si; sq;

js; jh; u; hh. Using the number of symptomatic infected individuals having co-morbidity (Isc) as the response function we
observe from Fig. 18 that the top ranked parameters that influence the dynamics of the model (2) are e; m; b; T 3; si; sq; 4s;

ja; js; jh; u; hh. Considering the number of quarantined individuals (Q) as the response function we observe from Fig. 19
that the top ranked parameters that influence the dynamics of the model (2) are e; m; b; T 3; si; sq; ja; js; jh; u; hh.
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Fig. 16. Sensitivity Analysis of Symptomatic Infected Individuals having no Co-morbidity (Is) as a response function with respect to model parameters.

Fig. 17. Sensitivity Analysis of Asymptomatic Infected Individuals having Co-morbidity (Iac) as a response function with respect to model parameters.

Fig. 18. Sensitivity Analysis of Symptomatic Infected Individuals having Co-morbidity (Isc) as a response function with respect to model parameters.

Fig. 19. Sensitivity Analysis of Quarantined Individuals (Q) as a response function with respect to model parameters.
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6. Conclusions

In this study we have developed, analyzed and simulated a new mathematical model to understand the transmission
dynamics of COVID-19 and to assess the impact of NPIs. The parameters used in this study to design and simulate the model
are relevant to COVID-19 data collected from the entire USA population.

The main theoretical results of the model are:
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C The solution trajectory tends to DFE when R c <1 and the solution trajectory tends to EEP when R c >1.
C Themodel exhibits the phenomenon of backward bifurcation, whenR c <1. It was caused by the parameter accounting

for re-infection of the individuals who have already recovered from a COVID-19 infection.
C The model with a ¼ 0 has a globally asymptotically stable DFE whenever R c <1 and a unique globally asymptotically

stable EEP when R c >1.

Numerical simulations were carried out meticulously using the parameterizedmodel to assess the impact of co-morbidity
on COVID-19 complications and also to assess the impact of re-infection on the spread of the disease.Numerical results of the
model suggest that:

C COVID-19 can be eliminated significantly if strict social distancing is maintained with the use of highly effective face
mask.

C Presence of any co-morbidity among the susceptible individuals increase the disease burden.
C The number of infected cases increase quickly if the re-infection rate increase.

Global uncertainty and sensitivity analysis was carried out to identify the most significant parameters that influence the
transmission dynamics of COVID-19.

Uncertainty and sensitivity analysis suggest that:

C Intervention programs aiming for reduction in contact rate, increasing the number of quarantined individuals with the
use of effective NPIs will have higher impact on controlling the COVID-19 spread.

C e; m; b; T 3; sq are the most important parameters that control the dynamics of the COVID-19.

In summary, our study suggests that using NPIs, particularly maintaining social distance and using effective face mask
publicly, the disease can be controlled. It also suggests that co-morbidity and re-infection are key factor to increase the disease
burden. Although R c < 1 is necessary to curtail the COVID-19 burden but backward bifurcation feature indicates R c < 1 is
not sufficient for disease elimination. It is important to mention that If there is no re-infection, backward bifurcation will not
occur which will help curtail the COVID-19 outbreak.
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