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An artificial stent implantation is one of the most effective ways to treat coronary artery diseases. It is vital in vascular medical
imaging, such as intravascular optical coherence tomography (IVOCT), to be able to track the position of stents in blood vessels
effectively. We trained two models, the “You Only Look Once” version 3 (YOLOv3) and the Region-based Fully Convolutional
Network (R-FCN), to detect metal support struts in IVOCT, respectively. After rotating the original images in the training set
for data augmentation, and modifying the scale of the conventional anchor box in both two algorithms to fit the size of the
target strut, YOLOvV3 and R-FCN achieved precision, recall, and AP all above 95% in 0.4 IoU threshold. And R-FCN performs

better than YOLOV3 in all relevant indicators.

1. Introduction

Coronary artery disease (CAD) is one of the most frequent
causes of death despite being treatable. For treating the
obstructive plaques, stenting is commonly used of the bare
metal stent (BMS), the drug-eluting stent (DES), or bioresorb-
able vascular scaffolds (BVS). After implantation, the stents
have to be assessed to detect malposition or endothelialisation.
Intravascular optical coherence tomography (IVOCT) is one
of imaging modality with the resolution and contrast neces-
sary to enable accurate measurements of luminal architecture
and neointima stent coverage. Figure 1 shows an IVOCT
image frame after metallic stent implantation. However, since
a pullback of the IVOCT image sequence for a single patient
often contains hundreds of images and thousands of struts,
it is labour-intensive and time-consuming to conduct a quan-
titative evaluation for every patient manually. Therefore, a

fully automatic method for metallic strut analysis is highly
desired. Until now, several different strategies [1-19] have
been proposed for the detection of stent strut candidates in
IVOCT and the removal of false positives.

Since metallic struts appear as high-reflecting spots
followed by trailing shadows in IVOCT images, as shown
in Figure 1, most algorithms are searching for these features
to detect stent struts [1]. Lu et al. [2] trained a bagged deci-
sion tree classifier, using specific features extracted from the
images to classify the candidate stent struts. Han et al. [3]
applied the Laplacian filter to the image in the polar coordi-
nates map to extract corners and edges and then used the
intensity threshold to identify the stent struts. Nam et al.
[4] detected the candidate struts by IVOCT intensity image
and gradient image, and then by using a hidden layer and a
ten-node artificial neural network determines the candidate
struts. Migliori et al. [5] classified pixels associated with high
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F1Gure 1: IVOCT image after metallic stent implantation.

slopes as candidate struts and applied a penalty function
away from the lumen contour structure.

Alternative approaches for stent strut detection as follow.
A controllable filter is designed by Xu et al. [6] to calculate
the local ridge strength and direction to locate the deeply
buried struts. Wang et al. [7] used the Bayesian network
and the stent mesh information of the adjacent frame to
determine the location of the struts in the A-scan. They used
the graph cut algorithm to simultaneously locate the exact
struts depth positions in the IVOCT pullback.

In recent years, a deep learning framework has achieved
excellent results in the computer visual object detection and
recognition domain, and it has attracted increasing attention
and led to more research based on this framework. Tradi-
tional machine learning methods depend on manually
designed features. Unlike that, novel representation patterns
or models are automatically learned from low-level features
to high-level semantics in deep learning, which often makes
the detection performance more correct and robust. BVS
detection in IVOCT images based on deep learning has been
reported recently. Cao et al. [8] constructed a region-based
fully convolutional network (R-FCN) detector for BVS detec-
tion in IVOCT images. Zhou et al. [9] proposed an automatic
detection method for BVS based on a U-shaped convolu-
tional neural network. Gessert et al. [10] can predict whether
image slices contain metal supports, BVS, or do not contain
any equipment only using image-level tags by a trained convo-
lutional neural network, achieving 99.0% classification accu-
racy. However, there are few methods for detecting metallic
stents based on deep learning. Given this, in this paper, we
attempt to use two deep learning object detection models to
detect metallic stents and compare the performance.

Conventional deep learning models for object detection
fall into two types: one-stage and two-stage. YOLOvV3 and
R-FCN are, respectively, typical algorithms of these two
types, and also are frequently used in the medical field. Wu
et al. [11] developed a deep learning model (BMSNet) with
the YOLOV3 architecture for assisting haematologists in the
interpretation of bone marrow smears for faster diagnosis
and disease monitoring. Park et al. [12] compared the perfor-
mance of various state-of-the-art deep-learning architec-
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tures, including YOLOV3, for detecting the optic nerve head
and vertical cup-to-disc ratio in fundus images. Safdar et al.
[13] highlighted the most suitable Data Augmentation tech-
nique for medical imaging by using YOLOv3. Wu et al.
[14] investigated the potential for using Principal Compo-
nent Analysis (PVA) and Adaptive Median Filter (AMF) to
improve four algorithms, including R-FCN and YOLOV3.
Zhang et al. [15] proposed a novel abnormal region detection
approach for cervical screening based on R-FCN. Morrell
et al. [16] presented a neural net architecture based on R-
FCN to suit mammograms.

Since YOLOv3 and R-FCN perform well in medical
fields, we used them in this paper for metallic stent struts
detection and tried to compare the performance of these
two models systematically. We also realised the data augmen-
tation of the existing training set through images rotation to
enhance the advantage of big data in feature extraction. To
explore the use of anchor box in specialized fields, we also
adjusted its size to suit the detection of metallic stent struts:
k-means clustering in YOLOv3, manually fixed in R-FCN.

2. Material and Methods

2.1. Dataset. For validating the algorithm, ten pull-back runs
were acquired with an IVOCT imaging system from a base-
line study. The pull-back speed was 15 mm/s. All of the stents
were metallic stents. The total stent length was 21 2.17 mm.
The different patients who participated in the study were
independent of each other. As shown in Figure 1, the IVOCT
image contains the stent, guidewire, imaging catheter, pro-
tective sheath, blood artefacts, and lumen border. To assist
medical personnel in judging the location and performance
of the stent, we need to identify the metallic stent in these
complex backgrounds automatically. There are 165 IVOCT
images, and each image has about 3-22 metallic stent struts,
which has manually marked all the stent struts as the ground
truth by rectangular frames.

2.2. Deep Learning Object Detection Model. There are two
types of deep learning models for object detection: one-
stage and two-stage. Two-stage object detection strategy
consists of: (i) region proposal, and (ii) region classifica-
tion. Typical two-stage model includes R-CNN [20], Fast
R-CNN [21], Faster R-CNN [22], and R-FCN [23]. The
one-stage model is an end-to-end algorithm. It does not need
to generate candidate frames and directly transform the
problem of object frames positioning into a regression prob-
lem. The typical 1-stage model includes the YOLO series
[24-26] and SSD [27]. Generally speaking, the method based
on candidate regions has higher accuracy, but the end-to-end
way has distinct advantages in speed. In this paper, R-FCN
and YOLOV3 are compared, and they are used to detect the
metallic stent struts in the IVOCT image.

2.3. YOLOv3. Given the input image, YOLOv1 directly
returns the object’s bounding box and its category at multiple
locations in the image. YOLOv2 and YOLO9000 introduced
anchor boxes to predict the offset and confidence of the
anchor boxes instead of directly predicting the coordinate
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FIGURE 2: Architecture of metallic stent detection based on YOLOV3.

values. By adding a pass-through layer, the high-resolution
shallow features are connected to the low-resolution features
for fusion and detection. YOLOv3 detects objects on multiple
fusion feature maps separately, which improves efficiency in
the detection of smaller objects. At the same time, the classi-
fication uses multiple logistic classifiers instead of a softmax
classifier, which is used to solve the multilabel classification
problem in YOLOV2.

2.3.1. Overall Architecture of YOLOv3. The network architec-
ture of YOLOvV3 (Figure 2) is divided into three parts: dar-
knet53 for feature extraction, YOLO layers for feature
fusion, and classification and location. Darknet53 has a total
of 53 convolutional layers, and the rest are residual layers.
The YOLO layers are used for feature fusion to generate three
scale feature maps. It takes feature maps from earlier in the
network and merges it with the upsampled features using
concatenation. Object classification and locating are carried
out on the feature fusion maps of three scales (13 13,
26 = 26, or 52 * 52), respectively, to the different size objects
for detection.

2.3.2. Unified Detection of YOLOv3. Taking the 13 x 13
fusion feature map as an example, YOLOv3 divides the
map into 13 = 13 grids. If the center of an object falls into a
grid cell, the grid cell is responsible for detecting the object.

Each grid cell predicts three bounding boxes, thus, returning
3% (44 1+ C) tensors, of which four bounding box offsets,
one confidence score, and C conditional class probabilities.
Four bounding box offsets refer to the offsets from the given
anchor box. Each scale needs three anchor boxes as bounding
boxes prior, so a total of 9 anchor boxes are clustered from
our data set before. Including all cells, the scale feature map
outputs 13 % 13 % 3 % (5+ C) tensors. Adding the output
of 26 26 and 52 = 52 scale feature maps, we get a total of
(13 %13+26 %26+ 52 % 52) * 3 % (5+ C) tensor.

As shown in Figure 3, the four bounding box offsets ¢,,

t,, by I, can be converted into the center coordinates b,, b,

and the width b, and the height b, of the bounding box by
formula:

b,=o0(t,) +cy (1)
by=0(t,) +c, (2)
b, =p,e", (3)
by =pue’, (4)

where P, and P, are the width and height of the prior box, C,
and C, are the offsets of the responsible grid from the upper

left corner of the image, and o is the sigmoid function.
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FiGure 3: Bounding boxes with dimension priors and location
prediction.

The objectness score reflects the confidence that the grid
cell contains objects and the accuracy of predicting that the
cell contains objects,

objectness score = Pr (object) x IoUgr“etCI{‘. (5)

When there are objects in the cell, the objectness score
will be equal to the intersection over union (IoU) between
the bounding box and the ground truth:

ground truth box N predicted bounding box

truth _
IOUpred =

ground truth box U predicted bounding box -

C conditional class probabilities Pr (class;|object) are
conditioned on the grid cell containing an object. The final
category of confidence is

Pr (class;|object) x Pr (object) x ToU'T"?

pred (7)
=Pr (class;) x IoUgr‘;g‘.

2.3.3. Training YOLOv3. The final loss function will summa-
rize the losses of the three scales. During training, the error
function of each scale includes a localization error, a confi-
dence error, and a classification error. Using the formula

(1)-(4) to inverse the four coordinates X;,7,, @;, h; corre-
sponding to the ground truth in cell i, we can calculate SSE
of the corresponding predicted coordinates x;,y,, w;, h; as
the localization error. YOLOv3 uses logistic regression to
predict the confidence score ¢;, and the actual score ¢; is
depending on the IoU of the bounding box prior and ground
truth. Then, the binary cross-entropy of the predicted and
actual confidence score is the confidence loss. YOLOV3 uses
independent logistics instead of softmax as the classifier.
For each category, binary cross-entropy is also used as the
loss function. Two parameters A o, and A, can adjust
the balance of the loss from bounding box coordinate predic-
tions and the loss from confidence predictions for boxes that
do not contain objects. The final loss a function is
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Loss = Error),,jization + EYTOT, + Error,

confidence class?

ob] ~\2 ~\2
Errorlocahzatlon - /\coord Z Z I;; i xi) + (yz - yl) }
i=0 j=0

bj
+Acoordzzlo "2~ w; Xhi)

i=0 j=0

: [(w,. —@) + (h,. - ﬁ,.)z],

Errorconﬁdence Z Z IOb] C X lOg ¢+ (1 - Ei)
i=0 j=0
X 10g (1 - C noob) Z Z InOObJ
i=0 j=0
x [¢;xlog ¢; + (1-7¢;) xlog (1 -¢;)],
bj
Errorclass ZIO J Z ) x lngl( )

ceclasses

+(1=p;(c)) xlog (1 = p;(€))}:

(8)

where §* is the number of grid cells, B is the number of
anchor boxes. By minimizing the loss function to learn the
weights, we can obtain the location of the bounding box
and the category prediction.

2.4. Region-Based Fully Convolutional Networks (R-FCN). R-
FCN is a typical two-stage object detection method. In the
first stage, the Regional Proposal Network (RPN) is used
for regional proposals to generate candidate Rol. In the sec-
ond stage, R-FCN uses position-sensitive score maps to syn-
thesize the features of different positions of ROIs so that the
network can solve the dilemma between the translation
invariance in classification and the translation variance in
object detection. At the same time, all the learnable weight
layers are convolutional and can be calculated in the whole
image. Finally, the entire network reaches the structure of full
convolution, which significantly improves efficiency.

2.4.1. Overall Architecture of R-FCN. The overall architecture
of the metallic stent strut detection based on R-FCN is shown
in Figure 4. After extracting features through a series of con-
volutions in Resnet-50, a Region Proposal Network (RPN)
uses a small sliding window and anchor boxes to generate
candidate regions on a whole feature map. For the metallic
stent strut and the background, the feature map of the entire
image is, respectively, connected with 3 * 3 position-sensitive
score maps by convolution. Combining the Rol pooling of 9
position-sensitive scores, the category probability corre-
sponding to each Rol can be voted. The four localization
parameters that represent the offset from the anchor boxes
are also obtained by voting similarly. After training the net-
work, R-FCN outputs the adjusted new position and score
of the metallic stent strut Rols as “R-FCN output.” If the cat-
egory score of each Rol is less than the score threshold, we
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FIGURE 4: Architecture of metallic stent detection based on R-FCN.

remove the bounding box to get a “Threshold output.” The
remaining bounding boxes still have a lot of overlap. Run a
nonmaximum suppression (NMS), and only the bounding
box with the highest score is kept where the IoU exceeds a
certain threshold. The remaining bounding box is the final
“Detection result.”

2.4.2. Region Proposal Network (RPN). RPN uses a fully con-
volutional network to output a set of rectangular region pro-
posals at once on the entire feature map. Slide a small sliding
window on the feature map, and use each area located by it as
input. If k (k =9) anchor boxes are used as the regression ref-
erence, each sliding window will output 4k coordinate
regression f,,1,1,,%, and 2k bounding box classification
to estimate the probability that each proposal is the object
or not.

The RPN loss function consists of two parts, the log clas-
sification loss, and the smooth regression loss:

({P} {t} ZLcls pz’pz sz reg
cs i reg i

Las(pypp;) =—pi xlog p;— (1~ p;) xlog (1 - p;),

Lyeg(t;> 1) = smooth; (t, —t;) +smooth; (ty - t;)

+smooth, (t, —t,)+smooth; (t,-1,),

where the smooth L, is defined by

0.5x*  if x| <1,
smooth; (x)= (10)

|| = 0.5 otherwise,

{p;}, {t;} are the outputs of the anchor in the classifica-
tion layer and regression layer. During training, we assign
labels to the anchor based on the IoU of the anchor i and
the ground truth box. A positive label is 1, and a negative
label is 0. t is the vector about the ground truth box location
associated with the positive anchor.

RPN only relies on a single-scale image and feature map-
ping, uses a single-size filter, and thus generates a region pro-
posal that is translation-invariant. Shared features require no
additional cost to process the scale of the object.

2.4.3. Position-Sensitive Score Maps. The innovation of R-
FCN is the position-sensitive score map. Object classification
and location all need 3 * 3 score maps. We take the position-
sensitive score maps of the stent strut classification as an
example. 9 position-sensitive score maps correspond to fea-
tures of nine positions of the strut. Each position-sensitive
map in the Rol area is divided into 3 %3 bins, and a
position-sensitive Rol pooling operated only over the appro-
priate bin of each score map:

r(ijl®)= )

() ebini)

zi,j,c(x+x0,y +,|0)/n. (11)

Nine pool responses vote on the Rol by averaging; then,
the classification probability of Rol is output by the softmax
function.

= Zrc(i’j|®)’
ij
C
WS
c'=0
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TaBLE 1: Comparisons between R-FCN and YOLOV3 algorithms corresponding to various IoU threshold. The amount of stents for testing is

425,
IoU TP FP Precision Recall AP
R-FCN YOLOvV3 R-FCN YOLOvV3 R-FCN YOLOV3 R-FCN YOLOV3 R-FCN YOLOV3
0.30 409 410 1 12 99.8% 97.2% 96.2% 96.5% 96.2% 96.0%
0.35 408 409 2 13 99.5% 96.9% 96.0% 96.2% 96.0% 95.5%
0.40 408 407 2 15 99.5% 96.4% 96.0% 95.8% 96.0% 95.0%
0.45 407 402 3 20 99.3% 95.3% 95.8% 94.6% 95.7% 92.7%
0.50 403 391 7 31 98.3% 92.7% 94.8% 92.0% 94.2% 88.7%
0.55 386 376 24 46 94.1% 89.1% 90.8% 88.5% 88.4% 81.9%
0.60 353 347 57 75 86.1% 82.2% 83.1% 81.6% 76.5% 69.6%

Bounding box regression is similar, except that the out-
put after voting is the 4 d vector (t,, 1, t,, t;).

The loss function for each Rol includes cross-entropy
loss for classification and regression loss for the location of
the positive sample:

L(S’ tx,y,w,h) = Lcls (SC*) + A[C* > O]Lreg(t’ t*)’

Ls(see) = =5, xlogs—(1—5s.) xlog (1 -5).

(13)

Regression loss is the same as RPN’s. C* represents the
label of the Rol. [C* > 0] means that if the label is positive,
it is equal to 1; otherwise, it is 0.

2.5. Performance Measures. precision (P), recall (R), and AP
are principal quantitative indicators for algorithm perfor-
mance evaluation in deep learning, which are employed in
this experiment.

Denote by TP, FP, and FN the numbers of true positives,
false positives, and false negatives, respectively. Then, preci-
sion and recall are computed as follows:

.. TP
Precision = ————,
TP + FP
(14)
Recall P
ecall = ————.
TP + FN

Here, whether a bounding box belongs to TP or FP
depends on the IoU threshold of the ground truth and
bounding box.

Here, AP refers to the average precision, the area under
the P-R curve by numerical integration. The computation
of it is shown as follows:

AP = Z(Rn_Rn—l)Pn’ (15)

where P, and R, are the precision and recall at the nth
threshold.

3. Results and Discussion

3.1. Data Preprocessing. To effectively detect the metallic
stent strut, we cropped the extraneous edges in all the IVOCT
images, so that the image size changes from 704 * 704 to
450 % 450. Of all 165 IVOCT images, we used 100 images
as the training set, 33 images as the verification set for adjust-
ing hyperparameters, and 32 images as the test set. To aug-
ment the training of samples, we rotated the training set
images. Along the catheter centre, a new training set image
is generated every 30 degrees of rotation, and finally, 1200
images are obtained as the training set (Figure 5).

3.2. Parameters Setting. Only one type of metallic stent strut
is to be detected. We take C the number of categories in
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FIGURE 6: Examples of metallic stents detection results by YOLOv3 (a—c) orc by R-FCN (d-f). The green dashed boxes refer to the ground
truth, and those in red refer to bounding boxes (when IoU threshold = 0.4).

YOLOvV3 and R-FCN as 1. Due to the relatively small size of
the stent struts, the anchor box should be different from the
usual. Through the K-means algorithm, nine anchor boxes
were clustered in YOLOv3 with the data set, which size
results in 12 x 14, 14 x 18, 15x 15, 18 x 18, 19 x 26, 19 x 15,

24 x 19, 29 x 26, 30 x 16. As a comparison, the anchor boxes
in R-FCN is manually fixed to the length of {8, 16, 32} and the
ratio of {0.85, 1, 1.85}.

In YOLOV3, we set 0.1 as the IoU threshold to mark pos-
itive labels, and the threshold in the objectiveness score is also
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(e) (f)

FiGURre 7: Examples of metallic stents detection result by YOLOv3 (a—c) or by R-FCN (d-f). The boxes which are pointed at by white arrow
and yellow arrow refer to false positives and false negatives, respectively.

set to 0.1. The coordinate weight A_ .4 and the no object  3.3. Results and Discussion. The test results are shown in
weight A,,.,; in the loss function adopt the default values of ~ Table 1. We compared the performance of YOLOv3 and R-
5 and 0.5. FCN corresponding to different IoU between the bounding

In R-FCN, the positive overlap in RPN has a threshold of ~ box and the ground truth. As the IoU threshold gradually
0.7, while the threshold in “R-FCN output” is 0.1, and in  increases, the precision, recall, and AP decrease slowly in
NMS, it is 0.3. both algorithms. When the IoU threshold is less than 0.45,
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all the indicators are above 92.7%. When 0.4 IoU threshold,
they even all reach above 95%. And it is not hard to find that
the R-FCN is superior to the YOLOV3 for any of the IoU
thresholds.

Table 1 shows that the difference between YOLOvV3 and
R-FCN in precision is higher than that in the recall. It indi-
cates that false positives (FP) are more likely to occur in
YOLOV3 than false negatives (FN). For example, when the
IoU threshold is 0.4, the number of false positives based on
R-FCN is only 2, but yolov3 reaches 15. The difference
between the two methods in the recall is only 0.2%, but in
precision is 3.1%.

Examples of metallic stents detecting results got by
YOLOv3 and R-FCN in the same image sets show more com-
parison in Figures 6 and 7 (when IoU=0.4). The green
dashed boxes refer to the ground truth, and those in red refer
to bounding boxes in both figures. The boxes which are
pointed at by the white arrow in Figure 7 refer to false posi-
tives, while those by yellow arrow refer to false negatives.
Figure 6 shows that both algorithms perform quite well in
metallic stents detection. But it is easy to find that YOLOv3
has some false positives while R-FCN does not have in the
same image sets in Figure 7. R-FCN has better performance
in samples with unobvious characteristics, most of which
are located in the areas where the color changes or the stent
struts are denser.

In general, both of YOLOv3 and R-FCN algorithms per-
formed pretty well in metallic stents detection (Figure 6(a)-
6(c) and Figures 6(d)-6(f)). However, R-FCN has better per-
formance in obscure samples, such as images with intimal
hyperplasia or noise interference (Figures 7(a)-7(c) and
Figures 7(d)-7(f)).

4. Conclusion

In this paper, we presented two automatic methods for
metallic stents detection based on YOLOV3 (one-stage) and
R-FCN (two-stage), respectively. To augment the data, we
rotated the images of the training data set. And we adjusted
the size of the anchor box to adapt to the detection of small
objects. The experiments demonstrate that both algorithms
perform fairly well whether the characteristic of metallic
stents is clear or blurred (on account of intimal hyperplasia
and noise interference). When the IoU threshold of the
ground truth and bounding box is set to 0.4, precision, recall,
and AP all reach above 95%. Nevertheless, R-FCN performs
better than YOLOV3 in all relevant indicators, as shown in
Table 1. The precision of R-FCN reaches more than 99.3%
when the IoU threshold is less than or equal to 0.45. The
future work will mainly focus on adding the complexity of
the network, combining multiple algorithms for reinforce-
ment learning to improve the performance further.
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