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Abstract

RNA structures are widely distributed across all life forms. The global conformation of these structures is defined by a
variety of constituent structural units such as helices, hairpin loops, kissing-loop motifs and pseudoknots, which often
behave in a modular way. Their ubiquitous distribution is associated with a variety of functions in biological processes. The
location of these structures in the genomes of RNA viruses is often coordinated with specific processes in the viral life cycle,
where the presence of the structure acts as a checkpoint for deciding the eventual fate of the process. These structures have
been found to adopt complex conformations and exert their effects by interacting with ribosomes, multiple host translation
factors and small RNA molecules like miRNA. A number of such RNA structures have also been shown to regulate
translation in viruses at the level of initiation, elongation or termination. The role of various computational studies in the
preliminary identification of such sequences and/or structures and subsequent functional analysis has not been fully
appreciated. This review aims to summarize the processes in which viral RNA structures have been found to play an active
role in translational regulation, their global conformational features and the bioinformatics/computational tools available
for the identification and prediction of these structures.
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Introduction
In biological systems ranging from viruses to prokaryotes to
eukaryotes, single-stranded RNA molecules have been shown to
be ubiquitously distributed in cells. The sequence and structural
features of these molecules cover a gamut of length and size in
terms of nucleotides, molecular mass, cellular localization and
biological functions. At one end of this spectrum lie small RNAs
(∼10–100 nucleotides) that include heteronuclear RNAs, small
nuclear/nucleolar RNAs and group-I introns, tRNA and small
regulatory RNAs like miRNA, siRNA and piRNAs [1]. Further along

this spectrum are long non-coding RNAs (>200 nucleotides) like

HOTAIR [2] that are believed to be involved in the regulation

of gene expression and ribosomal RNAs that encompass larger

sequence lengths, ∼1400 and ∼3000 nucleotides for 23S and 30S
rRNAs (prokaryotic 70S ribosome), respectively. With the surge in
high-throughput sequencing technologies, numerous small and
long non-coding RNAs have been identified, and several reviews
comprehensively discuss the functions of these classes of RNAs
[3–5]. Finally, at the other end of this spectrum lie many RNA viral
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genomes ranging in size from ∼1.7 kb for hepatitis delta virus to
∼30 kb for Coronaviridae.

All the RNAs from this staggering size range can, except siR-
NAs, miRNAs and certain lncRNAs, in principle, adopt a variety
of folded structures, yet available scientific literature documents
a limited number of cases where RNA chains that fold into
stable, three-dimensional structures are involved with a biolog-
ical process. These structures are composed of basic building
blocks formed by simple helices and loops that associate with a
number of ways to generate a variety of tertiary structures. Many
viral genomic RNAs are reported to assume a highly complex,
extensive and dynamic structural landscape, during different
stages of their life cycle as illustrated from studies on dengue
virus [6]. This landscape is studded with many RNA structural
modules or units that play critical roles in regulating different
stages of translation from initiation to termination. The past two
decades have witnessed a steady progress in the studies involved
in identifying the presence of such RNA structures in viruses.
While a combination of chemical-probing techniques and high-
throughput sequencing have yielded the entire ‘structuromes’ of
viruses like HIV-1 [7], continuous efforts employing X-ray crystal-
lography and nuclear magnetic resonance (NMR) have shed light
on various relatively well-defined, smaller RNA structures that
are located in specific regions of viral genomes, for example 5′/3′-
untranslated regions (UTRs), coding regions, overlapping genes,
etc. [8].

While many viruses carry their own enzymatic machinery for
autonomous genome replication, transcription, genome assem-
bly and packaging, they completely lack the translational appa-
ratus required for protein synthesis. Apart from the limitations
posed in terms of their utter dependency on host translation
machinery, viruses are also under tremendous selective pressure
to optimize their coding capacity due to their small genome
sizes. In order to evade the multiple immunity barriers of their
host cells, viruses have evolved countermeasures of their own
to disrupt the host’s antiviral mechanisms. As a result, they
possess highly sophisticated strategies by which they bypass the
normal translation process of their host to recruit the translation
apparatus in alternative ways. Furthermore, the different types
of mRNAs that are synthesized in viruses exhibit various fea-
tures that determine the kind of alternative translation they are
involved in. For example, the presence or absence of a 5′-cap or a
cap-substituted structure in which, unconventional 5′-moeities
cap viral mRNAs instead of m7G (7-methyl Guanosine [9]), pres-
ence or absence of poly-A tails at 3′-end and finally presence
of a range of tertiary structures in either 5′/3′-UTRs, intergenic
or coding regions. These alternative translation schemes fall
under an umbrella term ‘Non Canonical translation’ strategies.
Which is why a wide range of functions involved in controlling
and commandeering the host translation apparatus are encoded
by viruses [10]. These alternative or non-canonical translation
strategies are often mediated by RNA structures encoded within
the viral genomes.

This essay is aimed towards reviewing the role of, which have
been found to play a critical role in these non-canonical trans-
lation pathways. The following sections review the processes
where RNA structures/sequences have been found to regulate
translation at the stages of initiation, elongation or termination
and (i) the complexity and dynamics of these structures, (ii)
computational studies in which they were either identified,
characterized or where simulation/modeling were performed for
their structural analysis, (iii) databases that store the structural
and sequence information pertaining to these processes, and
prediction algorithms, wherever available. We then conclude by

reviewing the ongoing research, to illustrate the techniques that
are being developed to efficiently discover and predict novel
RNA structures from viral genome sequences. The experimental
characterization of these structures as well as those viral RNA
structures that play roles other than regulating translation has
been discussed in earlier reviews [11–13] and will not be dis-
cussed here.

Non-canonical translation regulation
mechanisms in RNA viruses
Internal ribosome entry sites

Eukaryotic translation initiation requires recognition of a 5′-
modified nucleotide cap (m7GpppN, N = A/C/U/G) of mRNA by
pre-initiation complex machinery containing 40S ribosome and
some initiation factors (eIF4F, formed by three polypeptides,
viz.eIF4FA, eIF4E and eIF4G). As the mRNAs of many positive
sense RNA viruses do not possess this cap structure, the
canonical signatures for the recruitment of 40S subunit of
ribosome are absent. An internal ribosome entry site (IRES)
element is an RNA sequence present in either 5′-UTRs (exam-
ple—Picornaviridae family) or intergenic regions (example—
Virgaviridae family) of some viral mRNAs that recruit the
ribosome at an ‘internal’ position for translation, in a cap-
independent manner (Figure 1). These sites were first identified
in poliovirus and encephalomyocarditis virus mRNAs, which
possessed unusually long 5′-UTR regions with multiple non-
initiating AUG codons scattered throughout this sequence [14,
15]. These sequences were proposed to fold in order to adopt
highly organized, complex RNA structures that were capable
of recruiting ribosomes to initiation ‘AUG’ codons internally
on mRNAs that lacked a conventional m7G 5′-cap. Since their
discovery, various IRES elements have been identified in the
genomes of other RNA virus families, the best characterized
examples belonging to Dicistroviridae, Flaviviridae, Retroviridae
[16] as well as cellular mRNAs, from both bioinformatics-
based predictions and experiments [17]. Viral IRES elements are
broadly divided into four groups depending on their secondary
structure, involvement of eukaryotic translation factors and
distance between IRES element and start codon. Group I IRES-
RNA structures bind to the ribosome directly in absence of any
protein factors and initiator methionyl-tRNAi [18–20]. Group
II IRES-RNA structures bind to 40S subunit directly along with
certain initiation factors like eIF2/3 and Met-tRNAi [21, 22]. Group
III and IV IRES-RNA bind ribosomes in presence of additional IFs
and proteins described as IRES trans-activating factors (ITAFs)
[23, 24]. Most of the available structural information about known
IRES-RNA structures comes from groups I and II as they directly
bind to ribosomes. On the other hand, due to a gap in our
understanding of the mechanism by which ITAFs interact with
IRES sequence/structure motifs to recruit ribosome, not much is
known about IRES belonging to groups III and IV.

Recent computational analyses on data from high-throughput
IRES activity assays have attempted to bridge this gap, by
employing supervised machine-learning algorithms [25]. In the
structure from group I IRES belonging to viruses in Dicistroviridae
family, three pseudoknots I, II and III and two conserved
stem–loops IV and V were found to interact directly with the
ribosome [26, 27]. The different stem–loop segments in full-
length IRES structures are often brought together by long-
range tertiary interactions like pseudoknots, kink-turns and
A-minor interactions (Figure 2A, B) as identified by studies



RNA-mediated translation regulation 3

Figure 1. Schematic representation of non-canonical translation strategies employed by viruses and discussed in this review. (A) IRES: an extensive RNA structure

in 5′-UTR composed of many hairpin stems recruits 40S ribosome and other translation factors. These factors assemble at the structure and scan the mRNA for the

nearest AUG codon to start translation. (B) −1 ribosomal frameshifting: an RNA pseudoknot or a stem–loop present in the overlapping genomic region stalls the actively

translating ribosome and induces a shift in the reading register, so that downstream translation can be resumed from a new reading frame. (C) Ribosomal shunting:

an extensive RNA structure located between a short and a long ORF shunts the 40S subunit of the ribosome between the two ORFs. (D) Stop codon readthrough: RNA

structure that is located between two ORFs prevents the reading of the cognate stop codon and releases factor binding so that translation can be continued. (E,F)

Reinitiation and non-AUG initiation: in reinitiation, upstream sequence motifs [termination upstream ribosome binding site (TURBS)] interact with 40S subunit to

reinitiate translation. In non-AUG initiation, the RNA sequence and/or structure stimulates reading of a near-cognate start codon by the ribosome.

on hepatitis C virus (HCV) and foot-and-mouth disease virus
[28–31]. In 2013, a full-length structure of an IRES element
from HCV at atomic resolution was presented [32], which
combined data from small angle X-ray scattering and molecular
dynamics simulation for generating a model structure for
HCV IRES. The study used the data from available cryo-
electronmicroscopy (cryo-EM) maps of ribosome-bound IRES
structures to assemble and fit the atomic resolution structures
available for its constituent modular units. The study illustrated
that full-length HCV IRES is composed of many extended
structured regions that are connected by flexible linkers,
such as four-way junctions and pseudoknots [32]. Molecular
dynamics simulations have also been used for studying the

conformational plasticity of individual IRES domains, dynamics
involved in the folding of separate modular units of IRES
element from HCV and its dependence on Mg2+/Na+ ions [33,
34].

Viral genomes display high genome variation that is reflected
in their 5′- and/or 3’-UTRs and also causes variation in the
IRES elements. Such variation in the IRES elements for HCV
genome has been documented in HCVIVdb [35] database, which
could be used for deducing the effect of sequence variations
on different structural domains. Database like IRESite [36]
houses the complete list of experimentally and computationally
annotated IRES sequences from a broad range of eukaryotic
viral and cellular sources (Table 1). The IRES sequences have
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Figure 2. Experimentally verified atomic resolution RNA structures. (A) HCV IRES secondary structure showing the modular architecture and corresponding tertiary

structures of different units (secondary structure schematic adapted from [40]). (B) Cryo-EM-derived structure of ribosome-bound cricket paralysis virus IRES.

(C) Secondary and tertiary structure (1Z2J) of RNA stem–loop from HIV involved in −1 PRF. (D) Secondary structure of pseudoknot involved in programmed −1 ribosomal

frameshift (−1 PRF) from mouse mammary tumor virus (MMTV) and its NMR structure (1RNK).

been found to be poorly conserved among different viral
families, although sequences within a single family have shown
similarity to a certain level [37]. The low sequence homology
among different viral families poses a further bottleneck in
in silico IRES prediction using BLAST searches [17]. However,
the IRES elements do show similarity at the level of their
secondary structure with many sequences adopting an extended
structure composed of multiple stems and loops (Figure 2). The
similarity found at the level of secondary structures can be used
for comparative structural alignment of predicted secondary
structures with known IRES elements and could provide a basis
for de novo IRES prediction. This strategy is used by programs
like IRSS [38] and online prediction server VIPS [39], which
were developed to predict IRES, based on secondary structure
prediction using minimum free energy methods [40, 41] and
subsequent structure alignments using RNALFold [42] (Table 2).
More recently, a new IRES prediction tool had been developed
for searching these sites in eukaryotic and viral genomes based
on support vector machines, called IRESPred [43], and employs
∼35 classifiers including predictions of secondary structure
[44] and interaction probabilities between 5′-UTR sequences

and proteins from the small ribosomal subunit [45] (Table 2).
However, many of these programs that were developed into
web servers like VIPS, IRSS and IRESPred are not maintained
anymore. IRSS, however, provides useful downloadable Perl
and R scripts for carrying out secondary structure prediction
and comparative analysis. We have mentioned these programs,
nonetheless, in order to highlight the chronological progress in
development of approaches and algorithms that led to increase
in our understanding of these elements.

Frameshifting

Frameshifting is a recoding mechanism, first described in
Rous sarcoma alpha retrovirus where the gag-pol genes were
found to be co-expressed from a single polycistronic transcript
[46]. Frameshifting is widely used by retroviruses for efficient
replication of their genomes and infection [47, 48]. Programmed
ribosomal frameshifting (PRF) can occur when the ribosome is
systematically guided to express open reading frames (ORFs)
that are shifted by −1 (Figure 1), −2 [49] or +1 [50] reading
register with respect to each other. It has been reported recently
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Table 1. List of existing tools and databases dedicated to storing information and prediction of sequence signals involved in non-canonical
translation processes in viruses and other organisms

Program Description

IRESite Database housing experimentally annotated cellular and viral IRES elements, as well as in silico predictions freely
available to scientific community for experimental verification [36]
URL— http://iresite.org/

HCVIVdb Database of HCV IRES sequences with published natural or engineered mutations [35]
URL—http://hcvivdb.org/

PRFdb Database of ribosomal frameshifting signals from eukaryotic database [41]
URL—http://prfdb.umd.edu/

KnotInFrame Prediction of −1 PRF signals [42], uses pknotsRG as a background program for secondary structure prediction
URL—http://bibiserv.techfak.uni-bielefeld.de/knotinframe

FSFinder2 Prediction of −1 and +1 ribosomal frameshifting sites in genomic and mRNA sequences [43, 44]
URL—http://wilab.inha.ac.kr/fsfinder2/

FSscan Prediction of +1 ribosomal frameshift signals [45]. Python-based framework; detailed algorithm described in associated
reference. Currently, there is no web server implementation.

FSDB Database of experimentally verified and predicted ribosomal frameshifting [46]
URL—http://wilab.inha.ac.kr/fsdb/

Recode Database of experimentally known translation recoding events and signals [47]
URL—http://recode.ucc.ie

that organisms other than viruses also employ frameshifting
to express the overlapping ORFs [51–53]. −1 PRF process per
se is coordinated by three key determinants: a 7 nucleotides
long ‘slippery-site’, a 5–9 nucleotides long spacer sequence
and an RNA structure that could be either a simple stem–
loop or a pseudoknot. Several studies have reiterated the
fact that an RNA pseudoknot is a more efficient stimulator
of frameshifting than a structurally simple hairpin loop [54,
55]. According to Recode V2.0 database, a large number of
viruses use an H-type pseudoknot for efficiently mediating −1
PRF process [56]. In single-stranded RNA viruses belonging to
Coronaviridae (SARS-CoV) [57], Luteoviridae (sugarcane yellow leaf
virus) [58] and Astroviridae [59] families, −1 ribosomal frameshift
has been found to be modulated by RNA pseudoknots. The
retroviruses (HIV-1, HTLV-2) [60, 61] display involvement of
both pseudoknots as well as extended hairpins in the process
[62].

The H-type pseudoknots consist of two helical stems (named
S1 and S2) interspersed by two or three loops (named L1, L2
and L3) [8]. Crystallographic and NMR studies have suggested
that the two helical stems in these H-type pseudoknots
are twisted and bent with respect to each other [63–65], as
observed from the solution structure of mouse mammary
tumor virus (MMTV) RNA pseudoknot where the two helical
stems showed a bending angle of ∼121◦ [66] (Figure 2D). This
kink/hinge arises mainly due to a single nucleotide in loop
2 that intercalates itself between the helical stems, thus
preventing co-axial stacking of the two helices. The loop and
stems interact through multiple non-canonical hydrogen bonds
involving the sugar edge of stem nucleotides and Watson–
Crick face of loop bases, thus providing added mechanical
strength to the structure [8, 67]. The structural features of
frameshift inducing RNA pseudoknots have been discovered
mainly by NMR [66, 68], crystallographic [69] and molecular
dynamics studies [70, 71], which also highlight the importance
of ions and ion-coordinated water molecules in holding such
a compact structure together. The physical significance of
the presence of a kink in frameshift inducing structures is
important as it was observed that structurally simpler hairpin
structures also displayed a kink between their helices [72, 73]
although the helices in these hairpins were larger than the

constituent helices of retroviral and luteoviral pseudoknots [72]
(Figure 2C).

PRFdb [74] catalogs the programmed ribosomal frameshift
signals filtered from Yeast Genome project and Mammalian
Gene Collection [75]. As is the case with IRES elements,
RNA structures (pseudoknots/hairpins) share little sequence
similarity among different viral families, although within a sub-
group the sequence signals do exhibit a high degree of sequence
conservation, as was observed for retroviruses. The length of
these structures vary from the tightly compact polerovirus
and enamovirus pseudoknots (<30 nucleotides) to extended
coronaviral structures (>200 nucleotides). This renders their in
silico prediction extremely difficult. Recent studies have been
devoted to search for existing PRF signals and develop predictive
rules for identification of novel signals, not only in viruses
but also across different domains of life, e.g. KnotInFrame
[76] and FSFinder [77, 78]. These algorithms employ a set of
rules in which a preliminary screening of putative frameshift
sequences is done based on consensus slippery sequence
motif (X XXY YYZ) followed by secondary structure prediction
on filtered sequences using minimum free energy programs
like pknotsRG [41] and RNAFold [40] (Tables 1 and 2). While
some algorithms can predict stem–loop frameshift structures
(FSFinder), others take into account the pseudoknot stimulators
in −1 PRF (KnotInFrame). The accuracy of the prediction of novel
−1 frameshift signals could be further augmented by the fact
that overlapping regions from different RNA viral sub-groups
show high sequence similarity, a feature that could be used
to increase the reliability of secondary structure prediction
(Table 2). Apart from these predictive programs, databases like
FSDB [78] store all the experimental and predicted frameshift
hotspots, and RECODE-2 [56] houses all the information related
to translation recoding events and signals involved. Programmed
frameshifting is also utilized by prokaryotic and mammalian
genomes for translating multiple products from same set
of ORFs. FSscan [79] predicts such +1 frameshift signals in
Escherichia coli. A remarkable feature that has been observed
in case of −1 PRF inducing RNA structures is that relatively
smaller structures like RNA pseudoknots from MMTV and
other viruses can act as ribosomal roadblocks and induce
−1 PRF. This extraordinary ability has been attributed to not

http://iresite.org/
http://hcvivdb.org/
http://prfdb.umd.edu/
http://bibiserv.techfak.uni-bielefeld.de/knotinframe
http://wilab.inha.ac.kr/fsfinder2/
http://wilab.inha.ac.kr/fsdb/
http://recode.ucc.ie
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Table 2. Comparison of RNA sequence/structure motif prediction programs and algorithms utilized in the background. The average sensitivity
and specificity values for the predictions have been provided wherever applicable. The list also includes programs that were developed but are
no longer maintained (indicated by an∗)

Program Background algorithm Description Performance parameters

VIPS∗ (IRES) RNALfold [48] For calculating local, thermodynamically stable RNA secondary
structure, minimum free energy parameters [49, 50]

Accuracy—51.87%
Specificity—81.08%
Sensitivity—23.28%
Precision—55.69%

RNA Align [51] Comparative secondary structure analysis
pknotsRG [52] Prediction of pseudoknotted regions in the predicted IRES

secondary structures

Advantages • Predicts both viral and cellular IRES structures.
• Can predict IRES structures with pseudoknots.

Limitation Due to dependency of algorithm on sequence and structural features conservation, prediction of cellular IRES is poor,
since cellular IRESes mostly lack any consensus sequence/structural features.

IRESPred∗
(IRES)

RNAFold [53] Support vector machine-based classifiers, RNAFold and RPISeq
were used as back-end programs to compute classifying features

Accuracy—70.89%
Specificity—71.95%
Sensitivity—69.84%
Precision—71.35%

RPISeq [54]

Advantages Prediction scores were consistently better than VIPS, since algorithm is independent of intrinsic sequence conser-
vation bias.

Limitations Principal parameter used for prediction algorithm is the interaction between IRES sequence and 40S ribosome. This
interaction is not conserved in cellular IRES and viral IRES from HCV and cricket paralysis virus. Hence, the algorithm
is unable to predict IRES when they lack any of the features defined in the feature set of machine-learning algorithm.

KnotInFrame
(−1 PRF)

PknotsRG-fs Constraint-based folding of input sequence to enforce
pseudoknot formation, modified from original pknotsRG
program

Ranking the predictions
based on differences in
constrained and relaxed
mfe values

Advantages Computationally efficient, scans complete genomes within few hours.

Limitations Prediction accuracy is as good as the accuracy of thermodynamic parameters used for RNA secondary structure
prediction.

FSFinder The algorithm works by scanning for slippery sequence motif and estimating
base-pairing possibility in the contextual region for presence of stimulatory signals.

Sensitivity (−1 FS)—88%
Specificity (−1 FS)—97%
Sensitivity (+1FS)—72%
Specificity (+1 FS)—92%

Advantages Predicts both −1 and +1 frameshift sequences.

Limitations Prediction of +1 frameshifting has been tested on only two genes: protein chain release factor (prfB) and ornithine
decarboxylase antizyme (oaz). Hence, prediction accuracy is limited for +1 frameshift.

∗Indicates databases which are no longer being maintained.

just the thermodynamic and mechanical strength of these
structures but also to their conformational plasticity, defined
by their abilities to adopt alternate conformations during
unfolding, as documented in recent RNA unfolding studies
employing optical tweezers [80, 81].

Ribosome shunting

Ribosome shunting is a translational mechanism that comprises
features of both 5′-cap-dependent translations but is partially
independent of internal sequence scanning. It was first discov-
ered in plant pararetroviruses in the family Caulimoviridae and
subsequently in rice tungro bacilliform virus [RTBV, a cauliflower
mosaic virus (CaMV)-related plant pararetrovirus] [82, 83]. It was
found that the mRNA (also pregenomic RNA, pgRNA) leader
sequences in the members of this family were unusually long.
The long leader sequences folded into a large stem–loop struc-
ture and contained several small ORFs (sORFs) (Figure 1). Differ-
ent chemical and enzymatic probing studies have shed light on

the architecture of this structure. In CaMV, a sORF and a strong
downstream hairpin constitute a minimal shunting element. In
CaMV, the 40S subunit along with a complement of initiation
factors assemble at 5′-cap of mRNA, scan for a short 60–70
nucleotides downstream till an AUG codon of the proximal sORF.
All the scanning ribosomes assemble at this codon to form
complete 80S subunit. After initiating translation of the first
sORF and release of the newly formed short peptide, the 80S ribo-
somes disassemble. A fraction of the remaining 40S ribosome
then shunts (bypasses) over the downstream 500 residue-long
sequence that assumes a thermodynamically stable structure
and consists of multiple sORFs (Figure 1). After shunting, the
scanning continues for a short distance downstream until the
nearest start codon of the first large ORF and translation is
reinitiated [84]. Chemical and enzymatic probing studies suggest
that the shunting structure present in the 35S leader sequence
of pgRNA of CaMV alternates between a long-range pseudoknot,
connecting central and terminal parts of leader and a hairpin
dimer at high ionic strength [85]. Shunting is believed to expand
the coding capacity of mRNA by directing the ribosomes to inter-
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nal coding regions by bypassing upstream sORFs. The shunting
mechanism is employed by all genera of plant pararetroviruses,
late adenovirus mRNA and animal viruses [86, 87] and is found
to be conserved in all plant pararetroviruses, making it a widely
used strategy of non-canonical translation.

Computational identification of a shunting element in rice
tungro spherical virus, RTBV and CaMV revealed that the leader
sequences were highly rich in GC content [88]. RNA secondary
structure prediction using earliest dynamic programming algo-
rithms like Mfold [89] (for thermodynamic parameters used
to derive free energy values, see [90]) on the pgRNA leader
sequences of these viruses suggested presence of a structure
containing several stem–loops, which were found to be present
in both the optimal and sub-optimal structures. The upper por-
tion of these structures was capable of adopting various different
conformations, as highlighted in recent review [86]. The shunt
efficiency was determined by the stability of the helix located at
the base of structure [88]. Unlike IRES and ribosomal frameshift
signals, currently there are no in silico tools that can identify
these structures.

Stop codon readthrough

Eukaryotic translation terminates at three stop codons, namely
UAA, UAG and UGA, mainly due to recognition of these codons
by class I release factors (eRF1) [91] and because of absence
of any cognate tRNAs that might contain an appropriate
anticodon sequence to recognize and pair with these codons
[92]. The termination process not only depends on stop codon
sequence but also on the proximal contextual sequence with
some bases resulting in a significantly ‘leaky’ stop signal [93].
These leaky codons allow ‘read-through’ of the translating
ribosome (Figure 1). In this process, the stop codon is recognized
by near-cognate suppressor tRNA that allows translation to
proceed and terminate at the next stop codon [92]. In many
ssRNA viruses belonging to Luteovirus (Luteoviridae family),
Alphavirus (Togaviridae family) and Tobamovirus (Virgaviridae
family), programmed readthrough takes place, resulting in
a C-terminal extension of the initial protein. This extension
often encodes the viral RNA-dependent RNA polymerase or
an extension to the coat protein [94–96]. Like programmed
frameshifting, the efficiency of programmed readthrough is
also modulated by features located in the 5′- and 3′-end of
the suppressed stop codon, such as adenosine residues in
the region immediately 5′ of the stop codon [97]. However, it
is the presence of many sequence and structural features in
the 3′-end of the stop codon that stimulates and enhances the
readthrough efficiency. These signatures fall into three major
classes, group I, II and III, out of which viral readthrough signals
belonging to group II and III contain an RNA secondary structural
element [96]. In type I motifs, readthrough across a UAG codon
is stimulated by a six nucleotide motif having a consensus
sequence of UAG CAR YYA (R = purine, Y = pyrimidine) and
are mainly present in tobamoviruses to allow translation of
polymerase [98, 99]. Type II motifs consist of a UGA stop codon
followed by CGG or CUA and an extended stem–loop structure
∼8 nucleotides downstream [100]. Type III motifs consist of a
UAG stop codon and purine-rich octanucleotide spacer sequence
followed by an RNA structure that has been found to be an
RNA pseudoknot in cases of gammaretroviruses [98, 101]. Apart
from these classes, a novel type of readthrough signature in
RNA viruses was identified recently in ORF5 of potato leafroll
virus (Luteoviride family), which consisted of a C-rich region in

the vicinity of coat protein stop codon and a distal RNA stem–
loop structure ∼640 nucleotides downstream of this ‘leaky’ stop
codon. The presence of stem–loop structure was validated by
SHAPE [102] and was found to be essential for readthrough
protein translation.

The identification and characterization of readthrough
stimulating RNA structure in viruses belonging to group II
category involved a preliminary computational screening
using BLAST [103], EMBOSS [104] and ClustalW to predict
RNA secondary structures using sequence conservation and
dynamic programming algorithms RNAfold [44] and PknotsRG
[41]. The approach identified a phylogenetically conserved stem–
loop structure [100] in alphaviruses, which was later verified
experimentally by chemical probing [105]. The stem–loop was
found to have 10–12 base pairs with a 1 nucleotide asymmetric
bulge [100]. The presence of a classical H-type RNA pseudoknot
in the 3′ region of the readthrough signal of murine leukemia
virus (MuLV) and other retroviruses was also verified by chemical
probing and computational studies that identified loop and
stem regions, which were critical in stimulating the efficiency
of readthrough [101, 106, 107]. RNA-folding algorithms further
constituted a powerful and reliable tool to screen sequences
from plant RNA viruses belonging to Virgaviridae family and were
found to harbor potential phylogenetically conserved stem–loop
structures involved in readthrough stimulation [100]. These
RNA structures have been proposed to modulate readthrough
in a number of possible ways that involve interference with
release factors binding or unwinding by ribosomal helicases or
by pausing the ribosome in a way akin to frameshift inducing
pseudoknots [105].

Non-AUG initiation and reinitiation

Non-AUG initiation: In 1988, it was discovered in Sendai virus [108]
and then in Moloney MuLV [109] that initiation is also possible
at several alternative start codons other than the cognate AUG
start codon but that are near cognate in sequence like ACG
and CUG. It has been found that codons like ACG, CUG, AUU,
AUA, AUC, etc. can initiate translation at ∼2–30% of the levels
obtained with an AUG start codon [110]. Initiation at a non-AUG
codon depends strongly on the sequence context (A/G at −3 and
a G at +4). This is significantly stimulated by the presence of
an RNA structure that forms nearly 14 residues downstream
of this codon [111] (Figure 1). This spacing appropriately posi-
tions the tertiary structure at the mRNA entry tunnel of the
ribosome so that the potential non-AUG codon lies at the P-
site of ribosome, while the ribosome is paused at the base of
structure and unwinds it. Because of the relative inefficiency
of a non-AUG codon initiation, some ribosomes eventually slide
past this site until they encounter a cognate AUG or near-cognate
codon.

Identification and characterization of an RNA structure
involved in non-AUG initiation in dengue virus type 2 was done
using Mfold [89] secondary structure prediction, followed by
selecting a candidate minimum free energy structure obtained
after a refining step from the ensemble, done using Vienna RNA
package [112] and subsequent experimental validation [113].
Tertiary structural information regarding RNAs involved in the
stimulation of the process is sparse, and in most known cases,
presence of an optimal sequence context is sufficient. Hence,
any bioinformatics prediction tool will have to rely heavily on
scanning these features.
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Reinitiation: Eukaryotic translation terminates when the ribo-
somal A-site encounters a stop codon. This is then followed by
release of 60S subunit, aided by several release factors (eRF1
and eRF3, eRF1 being responsible for codon recognition). The
dissociation of 60S subunit leaves a 40S/deacylated tRNA still
bound to mRNA, which is dissociated following a sequence of
events. However, in certain incidences, the 40S subunit remains
associated within the message and reinitiates translation at a
downstream AUG codon [114] (Figure 1). This happens when
translation has terminated at very short (usually <30 codons)
ORFs that can give rise to 40S subunits capable of scanning
and reinitiating translation at a downstream AUG codon [115].
The chances of reinitiation depend on the length of upstream
ORF and distance between the termination codon of this ORF
and start codon of downstream ORF [116, 117]. Termination of
translation of the upstream ORF is a mandatory requirement
in order to distinguish this process from internal translation
initiation by IRES.

As studied in viruses from Caliciviridae family, containing
consecutive protein-coding ORFs, ORF1, ORF2 and ORF3, it was
illustrated that reinitiation depends on an RNA sequence motif
(UGGGA, along with proximal flanking nucleotides) [115, 118].
This sequence motif is located ∼40–90 nucleotides upstream
of ORF2 termination codon and forms base pair with loop
region of helix 26 in 18S rRNA (Figure 1). These motifs are
called termination upstream ribosome binding site (TURBS).
The complex of TURBS and 18S rRNA has been shown to
bind eIF3 and prevent 40S subunit from dissociating from the
transcript.

Translation enhancers in the 3′-UTRs of viral genomes

Apart from these functions, certain RNA structures like 3′-
cap-independent translation enhancers (3′-CITE) and tRNA-like
structures (TLS) that have been found to be present in the 3′-
UTRs of many positive strand RNA viruses. 3′-CITEs are found in
the viruses from family Tombusviridae and genus Luteovirus. They
enhance translation by recruiting multiple initiation factors
or ribosomal subunits at 3′-end, to form a complex, which
is subsequently brought near 5′-end to initiate translation
[119]. Due to high structural diversity among different 3′-CITE
structures, they have been classified into seven different classes
on the basis of their structural features, types of initiation
factors recruited and mode of interacting with the 5′-end.
These aspects have been covered in a comprehensive way
in recent review [120]. The high structural variability makes
the bioinformatics prediction of 3′-CITEs extremely difficult.
Furthermore, like RNA structures in shunting, the absence of
experimental structural data from biophysical methods is a great
hindrance in studying the conformational dynamics and folding
landscape of these structures. However, studies proposing a
tertiary structure model using programs like RNAComposer
[121], generated from secondary structure predictions, have
shed light on the putative conformational features of these
structures.

Other class of such RNA structures is TLS, which are present
in 3′-termini of many positive-strand RNA viruses across mul-
tiple genera. They functionally mimic tRNA molecules and also
act as translation enhancers. They are involved in viral encap-
sidation, regulation of negative strand synthesis, and possess
tRNA-like functional features such as ability to be aminoacylated
and interaction with elongation factors (EF1A). The structural
information available from chemical and enzymatic probing
studies has been utilized in studying their dynamics using

single-molecule Forster Resonance Energy Transfer (smFRET)
studies [122] and can provide valuable preliminary data for
setting up molecular simulation and modeling studies.

Non-canonical translation strategies employing RNA
sequence motifs

In some plant RNA viruses under certain conditions, the majority
of ribosomes do not initiate translation at the first AUG codon
but continue scanning until they reach an alternative down-
stream start codon [123], in a process called leaky scanning. The
efficiency of leaky scanning has been reported to depend on a
sub-optimal sequence context of the initiator methionine AUG
codon (defined from +1 to +3) defined by absence of a G at +4
and A/G at −3 position. Presence of these residues constitutes
an optimal sequence context for canonical translation initiation
to take place [124]. Leaky scanning can be stimulated when the
AUG codon is located very close to 5′-end of the UTR, particularly
when the length of UTR is <15 nucleotides [125]. When the two
AUG codons are located in close vicinity to each other (<6 nt
separation), the potential for leaky scanning increases [126]. As
an example, in segment 6 of influenza virus B, leaky scanning
involves alternating forward and backward movements about a
downstream AUG codon that allows capturing of a proportion
of scanning ribosomes in order to stack them in a position
appropriate for initiating translation at the preceding AUG codon
[127]. In vitro expression studies in plant plum pox virus (genus
Potyvirus) have revealed that leaky scanning mainly depends
on presence of initiator codons located in an optimal sequence
context, and no RNA secondary structure has been found to reg-
ulate or stimulate the process. While programs like TITER [128]
have been developed to predict alternative translation initiation
sites (TISs) in mammalian genomes, no such dedicated tools are
available for predicting alternative TISs in viral genomes.

Insights from high-throughput RNA structure probing

Apart from IRES and ribosomal frameshifting, the current knowl-
edge on the tertiary structural organization of RNA structures
involved in ribosomal shunting, reinitiation and non-AUG ini-
tiation is acutely limited. This creates a large vacuum in the
current understanding of RNA structure–function relationship
as well as mechanisms by which these structures engage and
recruit ribosome and various translation factors. Recent stud-
ies have highlighted the importance of whole-genome studies
like Frag-Seq and PARS, accompanied by empirical structural
modeling tools to come up with an accurate model of IRES
elements [129] in Picornaviridae [37, 130]. Studies of a similar mag-
nitude are still required for investigating the structures involved
in −1/+1/−2/+2 ribosomal frameshift, stop-codon readthrough,
shunting and reinitiation. Although getting a secondary struc-
ture map of entire genomes from high-throughput sequencing
is now a routine process, inferring the long-range tertiary inter-
actions from secondary structure components still remains a
challenging task. Moreover, even the large-scale viral genomic
maps, yielded by chemical probing data such as SHAPE, provide
an incomplete picture, since protein induced dynamic structural
changes are not taken into account in these analyses [131].
Recent approaches combining chemical probing with simulta-
neous native gel electrophoresis (in-gel SHAPE [132]) and high-
throughput sequencing [133], ribosome profiling, fluorescence-
activated cell sorting and viral deep sequencing [134] have paved
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the way for developing deep-learning algorithms, capable of
identifying sequence motifs and have provided fresh insights
into the local, highly variable conformations of 5′-/3′-UTRs and
coding regions [135]. Of the recent techniques developed to
study RNA structures in vivo/in vitro in a high-throughput way,
SHAPE technique has been tweaked extensively to generate
different variants suitable for specific purposes, e.g. SHAPE-
Map, SHAPE-Seq and aiSHAPE [133, 136]. Mod-Seq is another
pipeline developed to study the in vivo and in vitro structures of
long RNAs, e.g. ribosomes that have been combined with deep
sequencing [137]. More recently, a state-of-the-art technique
called LASER-Seq [138] has been developed to probe structures
directly in cells, which exploits conformation-related parame-
ters like solvent accessibility. A recent in vivo analysis of RNA
conformational dynamics in Zika virus [139] has revealed the
vast and fluid conformational landscape of entire RNA genomes.
The observations from these studies combined with state-of-
the-art computational RNA-folding algorithms could provide a
stepping stone to predict RNA tertiary structure folding and
long-range interactions that could vastly improve our current
understanding of the mechanism by which various RNA struc-
tures modulate translation in viruses. There has been a steady
rise in the development of bioinformatics pipelines along with
aforementioned high-throughput structure probing algorithms;
a few, but in no way comprehensive, examples being Mod-Seeker
[137], StructureFold [140] and dStruct [141], along with excellent
reviews describing these and other pipelines [142, 143].

Conclusion
Nearly all the non-canonical protein-coding strategies used by
viruses have been found to be employed by eukaryotes as well.
With increasing instances of such mechanisms being identified
in yeast and mammals, efforts have redirected towards exploit-
ing features of these mechanisms towards biotechnological and
biomedical purposes. The ability to recruit the ribosome at an
internal location, independently of cap-recognition and 5′-UTR
scanning events, by IRES structures has serious biotechnological
implications. The IRES elements have been used for expres-
sion of synthetic bi-cistronic [144] and multi-cistronic [145] con-
structs to express proteins of desire in a number of experimental
setups. However, the lack of any global sequence conserva-
tion across different viral families poses technical challenges
in designing effective sequence constructs for in vitro experi-
ments. Recent computational studies employing RNA inverse-
folding methods, which involve designing a sequence capable
of assuming a desired reference structure, have proved to be
valuable tools in de novo IRES predictions [146]. Algorithms devel-
oped for inverse folding are being developed, keeping specific
scientific goals in perspective. They range mostly from heuris-
tic methods, which focus on providing optimal sequence sets
using user-specified constraints iteratively until a desired tar-
get structure is achieved [147], to probabilistic approaches like
INFO-RNA [148] and methods employing statistical mechanical
sampling schemes, reviewed in [149]. In addition to sequence
limitations, the paucity of available structural information on
a full-length, ribosome-free and bound IRES elements presents
another technical challenge for studying the conformational
dynamics and folding landscapes as well as in setting up sim-
ulation and homology modeling studies.

However, despite the advances in computational power
and development of algorithms for tertiary structure predic-
tion/modeling, much of our current understanding is built on
the information provided by computational studies that relied

heavily on deciphering secondary structure information from
sequences, a prime example being the studies by Tuplin et al.
[150, 151] on entire HCV viral genomes to yield genome-scale-
ordered RNA structures. The selection pressure on viruses to
maintain the features in the regulatory regions, and suppression
of synonymous site variability, is an often utilized feature in
viral bioinformatics [135]. Hence, although the future lies in
developing tertiary structure prediction, secondary structure
prediction will still remain a gold standard for predicting novel
structural motifs.

Key Points
• A range of non-canonical translation strategies

employed by viruses involve RNA sequence/structure
motifs; however, the experimental identification of
such sequences and structures has remained an
extremely challenging process to date.

• In almost every known example of non-canonical trans-
lation mechanism, computational studies have pro-
vided preliminary information on the consensus RNA
sequences involved in regulation, hence providing a
stepping stone for carrying out subsequent validation
experiments.

• A bottleneck in any computational study involving viral
RNA structures is posed by the high mutational rates
in viruses, resulting in poor homology and identifi-
cation of consensus sequence motifs. Although many
alternative translation strategies have been identified
in viruses, the detailed mechanism by which RNA struc-
tures regulate or stimulate these processes remains to
be understood.

• With development of state-of-the-art computational
platforms, significant progress has been made in ab
initio RNA structure modeling and deep-learning algo-
rithms, which have proved to be an invaluable tool to
fill the lacuna in the knowledge base of the available
structural information within RNA viruses.
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