
RESEARCH ARTICLE

Long-Term Dynamical Constraints on
Pharmacologically Evoked Potentiation
Imply Activity Conservation within In Vitro
Hippocampal Networks
Mark Niedringhaus1☯¤, Xin Chen2,3☯, Rhonda Dzakpasu1,2,3*

1 Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of
Columbia, United States of America, 2 Department of Physics, Georgetown University, Washington, District
of Columbia, United States of America, 3 Department of Pharmacology and Physiology, Georgetown
University Medical Center, Washington, District of Columbia, United States of America

☯ These authors contributed equally to this work.
¤ Current address: Department of Biomedical Engineering, University of North Carolina, Chapel Hill, United
States of America
* rd259@georgetown.edu

Abstract
This paper describes a long-term study of network dynamics from in vitro, cultured hippo-

campal neurons after a pharmacological induction of synaptic potentiation. We plate a sus-

pension of hippocampal neurons on an array of extracellular electrodes and record

electrical activity in the absence of the drugs several days after treatment. While previous

studies have reported on potentiation lasting up to a few hours after treatment, to the best of

our knowledge, this is the first report to characterize the network effects of a potentiating

mechanism several days after treatment. Using this reduced, two-dimensional in vitro net-

work of hippocampal neurons, we show that the effects of potentiation are persistent over

time but are modulated under a conservation of spike principle. We suggest that this conser-

vation principle might be mediated by the appearance of a resonant inter-spike interval that

prevents the network from advancing towards a state of hyperexcitability.

Introduction
One of the major challenges for the brain is to maintain a stable operating state while retaining
sufficient flexibility to grow [1, 2]. However, neural systems must experience plasticity in re-
sponse to external stimuli and adapt to its environment. How these two opposing constraints
reconcile is not well understood. During development, a neural circuit will undergo enormous
changes in activity. There is a large degree of spontaneous activity as the immature circuit is
largely excitatory, with strong recurrent connectivity [3–6]. Subsequently there is a shift and
the GABAergic neurons transition from excitatory to inhibitory [6, 7]. The adult brain must
also be receptive to experience-dependent plasticity. The brain still receives sensory inputs for
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which it may be required to adapt to a new stimulus. The operating state of the brain must be
such that it does not produce excessive excitation or insufficient excitation so that the brain is
able to perform its normal functions as well as preserve changes that occur from experiential
learning.

Modulations in excitability can occur via an increase in synaptic efficacy and a common
method is synaptic potentiation. One example is long-term potentiation (LTP), which can be
described by the synaptic strengthening that is induced by the coordinated spiking of pre- and
postsynaptic neurons, thereby increasing the likelihood of the production of an action potential
[8–15]. This synaptic potentiation is thought to form the cellular mechanism for learning and
memory and is frequently induced via electrical stimulation [16–19]. However electrical stimu-
lation is spatially restricted which will therefore limit the number of synapses for which plastic-
ity changes can be induced. Studying the effects of synaptic potentiation in a large population
of synapses permits the assessment of a network response to a small spatial scale perturbation
as well as allowing for extensive biochemical investigations of LTP. As a result, chemical meth-
ods have been introduced to induce synaptic potentiation in a large population of synapses and
it has been demonstrated that several of these methods are evoked via similar biochemical
pathways that have been elucidated in the electrical techniques [20,21,22].

However, while increasing synaptic efficacy leads to an increase in activity, what can happen
in the long term? If left unchecked, a network might evolve into a pathological state of uncon-
trolled excitation, at one extreme, that could result in epileptiform activity or the other extreme,
a cessation of activity. Therefore, the network, while still experiencing activity-dependent plas-
ticity, needs to operate within a well-regulated regime to prevent an untenable outcome. Regu-
latory mechanisms are needed to balance the effects of increased excitability.

We previously reported on changes in network activity from short-term studies in which we
used a pharmacological paradigm to potentiate synapses within an in vitro network of hippo-
campal neurons [23, 24]. After twenty minutes of treatment we saw a dramatic and persistent
network-wide increase in firing rates. We also showed that the concomitant bursting frequency
increased, with more spikes that are not within bursts recruited into the burst profile. This
evoked an elevation of network activity that is reminiscent of attractor dynamics. In our cur-
rent studies we use the same paradigm to potentiate synapses within an in vitro network of hip-
pocampal neurons. As before, we use this paradigm to study how increasing excitability can
modulate activity but here we focus on the long-term impact of potentiation on dynamical
activity.

We use a multi-electrode array (MEA) to record changes in extracellular potentials, specifi-
cally action potentials from capacitively-coupled neural units. MEAs facilitate the characteriza-
tion of spiking activity from in vitro networks of neurons and also allows for long-term studies
[25–31]. We treat cultured networks of hippocampal neurons with a cocktail of two drugs in
order to induce synaptic potentiation: forskolin, which activates adenylyl cyclase, and rolipram,
which is a phosphodiesterase inhibitor [21]. Together, this cocktail increases the levels of cyclic
AMP thereby potentiating a large fraction of synapses in the network. This results in an in-
crease in the probability of neuronal spike generation. We show that there is a considerable re-
organization of spiking activity one day after treatment that consists of long periods of high
frequency firing. Periods of quiescence follow and the activity during quiescence decreases over
time. Additionally we observe that the networks do not evolve towards a state of hyperexcit-
ability as there appears to be a mechanism in which some channels maintain elevated spiking
activity and others decrease activity. After the initial increase in activity, overall spiking returns
to levels observed in the unperturbed, control networks. Lastly we show the rise of a peak in the
distribution of inter-spike intervals around 100 ms and we suggest that this might be a resonant
interval that maintains spike conservation.
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Methods

1. Cell culture
Ethics Statement. All experimental procedures were approved by the Georgetown Univer-

sity Animal Care and Use Committee (GUACUC). We used a protocol modified from [32] to
extract hippocampal tissue from embryonic day 18 (E18) Sprague-Dawley rats. Briefly, the
neural tissue was finely chopped and digested with 0.1% trypsin followed by mechanical tritu-
ration. Upon reaching a single cell suspension, approximately 200,000 cells were added to each
multi-electrode array (MEA, Multi Channel Systems MCS GmbH, Reutlingen, Germany) that
was previously treated with poly-d-lysine and laminin (Sigma, St. Louis, MO). This results in
an approximate plating density of 600 cells/mm2. Cultures were maintained in Neuralbasal me-
dium with B27 (Invitrogen, Carlsbad, CA) and kept in a humidified 5% CO2 and 95% O2 incu-
bator at 37°C. To provide a consistent supply of nutrients, one third of the media was changed
on a bi-weekly basis.

2. Electrophysiological Recordings
We recorded all spontaneous electrical activity using a multi-electrode array (MEA). The MEA
is composed of 59 titanium nitride electrodes, one reference electrode and four auxiliary analog
channels each of which is 30 μm in diameter. These electrodes are arranged on an 8x8 square
array with an inter-electrode spacing of 200 μm. Within a few hours after plating, the cells in
suspension settle and adhere to the silicon nitride substrate of the MEA. After seven days spon-
taneous electrical activity is detectable. We use the MEA1060 preamplifier and sample electri-
cal activity at a 10kHz acquisition rate to allow for the detection of multi-unit spikes. The data
is digitized and stored on a Dell personal computer (Round Rock, TX). Possible exposure to
contaminants and fluctuations in osmolality and pH were significantly reduced during the data
acquisition period by the use of an MEA cover made of a hydrophobic membrane [33]. This
membrane provides a seal that is semi-permeable to CO2 and O2 and is largely impermeable to
water vapor. Experiments from at least four MEAs for each condition, including vehicle and
control cultures, were performed on a heated stage at 37°C at 14 days in vitro (14DIV), a time
point during development in which the network displayed vigorous spontaneous electrical ac-
tivity and for which network connectivity is well-established [28]. To ensure reproducibility of
results across animals, all reported experimental groups were comprised of multiple cultures
derived from multiple experimental preparations. Results obtained from cultures within and
across different preparations were not significantly different.

3. Synaptic potentiation induction
We induced synaptic potentiation within cultured networks of hippocampal neurons using for-
skolin (50 μm) and rolipram (100 nM) on DIV14 as this paradigm has been previously shown
to induce chemical LTP (21). Forskolin was dissolved in dimethyl sulfoxide (DMSO) to a stock
concentration of 50 mM. Rolipram was dissolved in DMSO to a stock concentration of
100 μM. All reagents were purchased from Sigma-Aldrich (St. Louis, MO). After a pre-treat-
ment recording of 20 minutes of spontaneous activity, the MEA was removed from the record-
ing stage. The conditioned media was aspirated from the MEA and stored in the incubator
until after the treatment. The cells were then washed three times with 200 μL of artificial cere-
brospinal fluid (ACSF; 140mM NaCl, 5 mM KCl, 1.5 mM CaCl2, 0.75 mMMgCl2, 1.25 mM
NaH2PO4, 20 mM glucose, 15 mMHEPES/NaOH adjusted to 7.4 pH) and then treated with
400 μL of ACSF containing 50 μM forskolin and 0.1 μL rolipram. After 15 minutes, the treat-
ment solution was removed and the cells were washed three times with 200 μL of
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unconditioned media. The original conditioned media was then added back to the cell culture
in the MEA and the MEA was returned to the incubator. Long-term effects of synaptic potenti-
ation were assessed 24 and 96 hours after treatment.

This experimental design includes two control groups: a “vehicle” group in which 1 μL
of DMSO was diluted into the conditioned media to control for effects of solvent and mechani-
cal perturbation introduced by solution exchange, and a “control” group to account for the de-
velopmental changes of the unperturbed culture. For these groups, no treatment or washing
was performed, and recordings were performed at the same time points as the other two
groups.

4. Data Analysis
To obtain a stable baseline for the spike threshold procedure, we removed low frequency fluc-
tuations by high-pass filtering all voltage traces at 200 Hz. Extracellularly recorded spikes
were detected using a threshold algorithm from Offline Sorter (Plexon Inc., Dallas TX).
The threshold is calculated as a multiple of the standard deviation, 5σ, of the biological
noise. No attempt was made to discriminate and sort spikes within each electrode because for
this study, we concentrate on overall network spiking activity and the signal from each elec-
trode suitably reflects these dynamics. This spike identification process results in an M x N
matrix where M corresponds to the electrode number and the N’s are the time stamps of
the spikes.

We used custom-written software written in MATLAB (The MathWorks, Natick, MA) to
analyze the network activity recorded from the cultured hippocampal networks. We plotted
the number of spikes from each electrode in the pre-treatment recordings against the spike
counts one and four days after synaptic potentiation. The time evolution of these spike distri-
butions was compared to those within the vehicle and control networks. We also generated log
histograms of the inter-spike intervals (ISIs) from each MEA. This was this done by computing
ISIs for each individual electrode within a given MEA and pooling them into a single distribu-
tion to distinguish between populations of ISIs that participate within brief episodes of spiking
activity (short time-scale ISIs) from those ISIs that represent intervals between periods of high
activity (long time-scale ISIs). The log histograms were used to characterize aspects of the high
frequency activity observed within the potentiated networks.

Next, we investigated the variability of firing rates, FR, within each network. We calculated
the Fano Factor, defined as [34]:

FF ¼ varhFRi
hFRi

When the Fano factor is equal to unity, the electrodes exhibit dynamics of Poisson process-
es. A Fano factor between 0 and 1 is under-dispersed and suggests that the distribution has a
more regular firing pattern than that of a Poisson distribution. If the Fano factor is greater than
1, the distribution is over-dispersed and indicates large fluctuations of spiking activity through-
out the epoch of activity.

Lastly, we investigated the time evolution of oscillatory activity within the networks. We
used a short time, Fourier transform based time-frequency analysis (STFT—The Mathworks,
Natick, MA). For this analysis, we returned to the unfiltered data sets in order to study both
low- and high-frequency oscillations. For the low-frequency oscillations, we performed a low-
pass filter with a cutoff at 250 Hz. For the high-frequency oscillations, we performed a high-
pass filter with a 200 Hz floor. The STFT analysis will result in a power spectrum as a function
of time in which the power at a particular frequency will be displayed as a color map.
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Results
Fig 1, left, shows a differential interference contrast (DIC) micrograph of a 14DIV culture of
hippocampal neurons plated on the multi-electrode array. On the right is an accompanying
screen shot of network electrical activity from the culture. Each box corresponds to one-second
of activity. The dynamics consist of a rich mix of high- and low-frequency spikes.

1. Raster Plots of Evolving Network Activity
Fig 2 displays representative raster plots of five minutes of activity from the treated and vehicle
networks. Dynamics from the vehicle experiments appear to be quite uniform over the course
of the five-day period (Fig 2A–2C). In contrast, the activity from the synaptic potentiation-
treated networks changes considerably (Fig 2D–2F). Initially, the pattern observed within the
pre-treated activity is very similar to the pre-treatment activity in the vehicle networks. Howev-
er, one day after the induction of synaptic potentiation, the spiking activity organizes into long
epochs, i.e., super-bursts, of intense activity. This becomes more pronounced four days after
treatment. The spiking activity in the intervals between these intensely firing epochs re-
structures—the period prior to these long epochs begins to cluster and organize (Fig 2F) and
there is less activity between these long epochs that in the vehicle or pre-treatment conditions.

When the activity is examined in finer temporal detail as shown in Fig 3, the dynamics ap-
pear to be a mix of tonic firing of individual spikes and small bursts. Preceding the large, super-
bursts of activity are short episodes of bursts with diminishing inter-episode intervals (Fig 3A
and 3C). Within the large super-bursts (Fig 3B and 3D), a primarily tonic activity pattern is
present. In contrast, there appears to be clusters of short bursts in the vehicle networks with no
transition to high frequency tonic activity (Fig 4A and 4B).

To investigate the regularity in the spiking pattern, we calculated the Fano factor (Figs 5 and
6). There is a large increase in the Fano factor one and four days after the synaptic potentia-
tion-treatment (one-way ANOVA, p< 10–8). This increase reflects the large variablilty in the
evolving spiking dynamics. The activity alternates between long epochs of bursts of bursts and
periods of shorter spiking episodes interspersed with quiescence as visualized in the raster plots
of Figs 2 and 3. In contrast, values of the Fano factor for both the vehicle and control networks
fall largely along the identity line suggesting that the variability in firing patterns is low and
does not change as a function of time. Additionally, mechanical perturbations as well as net-
work maturation do not appear affect the pattern of activity within these networks (one-way
ANOVA, p< 10–6).

Fig 1. Hippocampal neurons cultured onmulti-electrode arrays. Left: A DIC image of cells plated on the
MEA. Scale bar = 200 μmRight: Screen shot of raw, unfiltered data of spontaneous activity from the
networks. Each box represents one second of activity.

doi:10.1371/journal.pone.0129324.g001
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2. Network Spiking Activity
Fig 7 shows the number of spikes from each electrode within each MEA before treatment
(baseline) plotted on a log scale against the number of spikes from each electrode one and four
days after treatment as well as within the vehicle networks. Activity increases observed after
synaptic potentiation were maintained for a large number of electrodes but there is also a con-
siderable number of electrodes for which electrical activity decreases (Fig 7A and 7B) (one-way
ANOVA, p<10–5). This is evident by the symmetric expansion about the identity line (y = x).
This expansion is much reduced within the vehicle (Fig 7C and 7D) and control (Fig 8) net-
works. In contrast, Fig 9 shows our previously published results displaying the number of
spikes from each electrode 20 minutes after induction of synaptic potentiation. In those experi-
ments, most of the electrodes show a marked increase in activity (one-way ANOVA, p<10–6).

The impact of synaptic potentiation is further demonstrated by the sharp increase in the
fold-change in activity one day after the synaptic potentiation application (Fig 10). While there
is a marked increase in activity one day after treatment, overall activity returns to the average
number of spikes generated in the control networks (one-way ANOVA, p<10–9). The increase
in the control networks represents network maturation due to the increase in connectivity dur-
ing development [28, 35]. In comparison, there is a slight decrease in activity within the vehicle
networks on day 1 and those dynamics return to baseline activity by day 4 (one-way ANOVA,
p<10–7). This offset of spiking activity is likely due to mechanical perturbations introduced by
solution exchange but we note that the slope for the vehicle networks after day 1 is very similar

Fig 2. There is a reorganization of network spiking activity after synaptic potentiation. A-C) Representative raster plot of network activity from a vehicle
MEA is largely uniform over the three days. D-F) Representative raster plot of network activity from an MEA after treatment shows long epochs of high
frequency spiking activity one and four days after treatment. These epochs are separated by periods of quiescence during which the activity decreases
over time.

doi:10.1371/journal.pone.0129324.g002
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to that of the control networks. Lastly, these mechanical influences do not appear to alter the
distribution of spike counts as the network develops; activity from the vehicle networks on
both day 1 and day 4 with respect to pre-treatment activity largely follows the identity line (Fig
7C and 7D) and again are very similar to the control networks in Fig 8.

As stated above, the synaptic potentiation treatment caused the spiking activity to cluster
into periods of high activity as seen in the raster plots of Figs 2 and 3. Therefore, to investigate
possible changes in inter-spike interval distributions, we created epochs that corresponded to
these distinct periods of activity and the epochs are numbered in Fig 2E and 2F. We generated
log histograms (Figs 11 and 12A) of the inter-spike intervals (ISI) from each epoch in these ras-
ter plots and compared them to log histograms of ISIs from the raster plots of the vehicle net-
works in Figs 2B, 2C and 12B). Since the activity in the vehicle networks was not differentiated
over time, the periods for the vehicle epochs were equally divided.

Fig 11 displays the histograms of ISIs for the pre-treatment synaptic potentiation activity
along with the ISIs for the high frequency activity on day 1 (epochs 1,3 and 5) and day 4 (ep-
ochs 2 and 4). After treatment, there is a reorganization of the distribution of inter-spike

Fig 3. Expanded view of activity from synaptically potentiated networks. A) C) A 30-second window extracted from the epoch of high activity seen in Fig
2E and 2F. At the onset of these long epochs, there are several short bursts of activity. B) D) A 10-second window extracted from the epoch of high activity
seen in A and C. During these long epochs, the activity is mostly tonic.

doi:10.1371/journal.pone.0129324.g003
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Fig 4. Vehicle networks do not show large changes in spiking activity. A) Activity is clustered into short bursts with no transition to high frequency tonic
activity at the shorter time scale displayed in panel B. Spiking activity on day 4 is very similar to activity on day 1 (data not shown).

doi:10.1371/journal.pone.0129324.g004

Fig 5. There is a large increase in the Fano Factor after synaptic potentiation. A) B) Spiking activity within networks that experienced synaptic
potentiation becomemore variable after potentiation. This is due to the different periods of high frequency spiking punctuated by periods of quiescence. One-
way ANOVA, p < 10–8. C) D) In contrast, the Fano factor for the vehicle networks remains largely unchanged as the networks mature.

doi:10.1371/journal.pone.0129324.g005
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intervals as it shifts from bi-modal to log-normal with most of the activity taking place within
short intervals. Additionally, a potentially novel dynamical marker of LTP appears; there is an
induced peak in the distribution at approximately 100ms, independent of the network-wide fir-
ing rate (black colored bin in Fig 11D–11H). This corresponds to an interval in the theta
range, i.e., 4–9 Hz band, commonly seen after LTP induction within in vivo experiments [36].
This theta peak is not present within the ISI distributions from the vehicle networks (Fig 12B).
Lastly, the reorganization of inter-spike intervals to a log-normal distribution does not occur
in the vehicle networks (Fig 12B). The bi-modal nature of the vehicle distributions is time-
independent as it is present during all periods of recording.

These histograms remove the dependence of frequency with time since they solely display
the number of ISIs collected during the recording epochs. This allows us to assess the stability
of the distribution of ISIs before and after synaptic potentiation as well as within the vehicle-
treated networks. However, this does not provide us with a time course of oscillatory activity
with its associated power spectra. Therefore, to investigate the frequency components observed
over time, we performed a short time, Fourier transform (STFT) based time-frequency analysis
on the collected data. Whereas the raster plots of Figs 2–4 display the high-frequency spiking
activity, Figs 13 and 14 presents waveforms for both low-pass and high-pass filtered data from
representative electrodes during a one-minute segment of this activity. This allows us to study
the emergence of collective phenomena rather than focusing on the dynamical features of sin-
gle spikes and bursts that occur on a shorter time scale. The low-pass filtered data represents
the subthreshold activity and the high-pass filtered data is a result of the spiking activity within
the network. Each figure is composed of two sets of images with the top set corresponding to
the low-pass filtered data and the bottom set corresponding to the high-pass filtered data.
Each set is a montage of three images in which the top image corresponds to baseline activity,
the middle image corresponds to activity one day after vehicle or treatment and the bottom
image is the recorded activity on day 4. Lastly, each image is a color-coded time series of activi-
ty in which each vertical striation is a color map representing the power (red—high power and
blue—low power) of the given frequency (as defined by the y-axis) that is present as a function

Fig 6. Fano factor does not change in the control networks. The values of the Fano factor are primarily
distributed along the identity line and appear to be unchanged as the networks mature. (one-way ANOVA,
p < 10–6)

doi:10.1371/journal.pone.0129324.g006
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of time. Data from the vehicle networks are shown in Fig 13 with the corresponding data from
the synaptic potentiation treatment presented in Fig 14.

In the low-pass filtered, vehicle-treated networks of Fig 13, there is little change in activity
between the baseline and day 1. The power is also low within the frequency range as depicted
by the largely pale blue streaks indicating a small presence of subthreshold activity. On day 4,
the power distribution within the frequency range is lower as the pale blue streaks continue to
fade. This pattern of low power is also present in the high frequency domain, again with little
change from baseline to days 1 and 4 indicating that the spikes are distinct in time, punctuated
by periods of quiescence. In the treated networks of Fig 14, both baseline patterns in the low-
and high-pass filtered data display similar trends seen in the vehicle networks. However, there
are marked differences on days 1 and 4 within both regimes. In the low-pass filtered montage,
there is an increase in the power at the low frequencies and these periods of low frequency ac-
tivity are longer in duration—as indicated by the spread—than in the vehicle networks. This
pattern continues on day 4 with sustained low frequency activity over several seconds in dura-
tion. Riding on top of these sub-threshold oscillations is a barrage of spiking activity, as shown

Fig 7. Not all electrodesmaintain an increase in spiking activity after synaptic potentiation. Number of spikes before and after treatment. Each symbol
corresponds to an electrode from a different MEA. A) Synaptic potentiation experiments. Each symbol represents an electrode from each MEA. (N = 4) A
uniform expansion is observed and takes the shape of an ellipsoid with principle axis of rotational symmetry about y = x. (one-way ANOVA, p <10–5) B)
Vehicle experiments. (N = 4) The change in the shape is negligible. (one-way ANOVA, p < 10–6)

doi:10.1371/journal.pone.0129324.g007
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in the high-pass filtered montage. The frequency is very high at the onset of the barrage with
some frequency attenuation as time progresses. However, the frequency of spiking does not de-
crease to that seen in the vehicle networks. Lastly, we note that the increase of the low frequen-
cy, i.e., the spread in activity occurs both at the beginning and at the tail end of the spiking
activity. This appears one day after treatment and becomes more pronounced four days later.

Fig 8. Number of spikes in control hippocampal networks show little change. (one-way ANOVA, p< 10–6)
Fluctuations about the identity line are a result of network maturation.

doi:10.1371/journal.pone.0129324.g008

Fig 9. There is a persistent increase in spiking activity after synaptic potentiation. A) Spike counts from all electrodes before and treatment. Most
electrodes have an increase in activity with a large cluster displaying an increase of at least two orders of magnitude. (one-way ANOVA, p<10–9) B) Spike
counts from the DMSO-treated MEAs show no increase in activity. (one-way ANOVA, p<10–7). Each symbol corresponds an electrode from a different MEA.
Three MEAs were used for the vehicle and four MEAs were used for the synaptic potentiation studies. The diagonal line denotes the identity line, y = x.
(Modified and reprinted with permission.)

doi:10.1371/journal.pone.0129324.g009
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Discussion
We report long time-scale dynamical results from an in vitro network of hippocampal neurons
after a synaptic potentiation treatment. We recorded electrical activity from these networks up
to five days after treatment. There was a large increase in the Fano factor after synaptic potenti-
ation that reflects the increase in variability in activity; the networks alternated between states
of high, bursting epochs and periods of lower activity. The control networks did not show a
change in the Fano factor during development suggesting that network maturation alone does
not significantly impact the variability of overall spiking activity. Additionally, despite the fact
that mechanical perturbations may have caused a decrease in network activity in the vehicle
cultures, this perturbation did not affect spike regularity as the Fano factor was distributed
along the identity line as in the control networks.

We show that while the effects of potentiation continued to modulate network dynamics
after the removal of pharmacological agents, regulatory mechanisms seems to prevent the net-
work from transitioning into a state of unbridled excitation with a rampant increase in the
number of overall spikes. However, it is clear that there are a host of possible biochemical

Fig 10. There is an increase in network spiking activity one day after synaptic potentiation but activity returns to the control curve three days later
(one-way ANOVA, p<10–9). In contrast, there is a graduate increase in activity for the control networks. There is a small decrease in activity within the
vehicle networks, which is likely due to mechanical perturbations (one-way ANOVA, p <10–7). However, activity increases thereafter with a similar slope to
that of the control curve.

doi:10.1371/journal.pone.0129324.g010
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mechanisms that may be involved. We suggest that the initial potentiation may induce depres-
sion on a subset of synapses, resulting in the decrease of activity that we observe. However, the
focus of this study was to investigate the network effects that culminate from an initial synaptic
perturbation and future work will entail elucidating the underlying biochemical mechanisms.
We show that increase in global spiking activity was maintained up to one day after treatment
but returned to normal levels within four days thereafter. In addition, there is a uniform, sym-
metric expansion in the spike count distributions one and four days after treatment. This ex-
pansion takes the shape of an ellipsoid with the principle axis of rotational symmetry following
the identity line. This suggests that a conservation mechanism may be present that will

Fig 11. Log(ISI) histograms of activity within epochs of activity before and after synaptic potentiation. A-C: Activity from the pre-treatment MEAs in
Fig 2D was equally divided and the ISI histograms are presented. There are no changes to the distribution as activity evolves over time. D-F: Activity from the
first day after synaptic potentiation in Fig 2E was divided between epochs of high frequency activity and the epochs of lower activity. The numbers above Fig
2E define the epochs of activity presented here. A new peak in the distribution of the emerges around 100ms. This peak corresponds to firing rates in the
range of rat hippocampal theta activity and is highly associated with hippocampal learning and memory (35). G-H: Activity from the fourth day after treatment
in Fig 2E was divided between epochs of high frequency activity and the epochs of lower activity. This 100 ms peak in the distribution is still present. Note the
y-axis scale change on day 5 (panels G and H).

doi:10.1371/journal.pone.0129324.g011
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maintain a balanced state of activity after the chemical perturbation, i.e., any increase in activity
in a set of electrodes is offset by a decrease in activity in others, as we have observed.

Next, the synaptic potentiation networks display a strong, persistent theta peak in the log
histograms of inter-spike intervals (ISIs). This is intriguing because theta range activity is de-
tected in the hippocampus during learning tasks in animals [36–39] as well as in the prefrontal
cortex of humans [40, 41, 42]. We previously reported on this 100 ms peak after synaptic po-
tentiation 20 minutes after induction and these current studies indicate that this peak persists
over a longer period of time. Notably however, the ISI distributions acquired in the short-term
studies had two peaks in the short ISI regime whereas in these long-term recordings the 100ms
bin is the sole peak within the distribution. We also note that the distribution of ISIs reported
in the epochs between the super-bursts as well as within the vehicle networks are characteristic
of our previously published studies.

We speculate that this theta interval may be a resonant interval over which a subset of the
network is responsive. It has been previously proposed that bursts having certain resonant
inter-spike frequencies increase the likelihood of a postsynaptic response over bursts with
higher or lower frequencies [43]. A resonance effect could therefore explain why some elec-
trodes increase their activity while activity in other electrodes decrease, allowing the network to
operate under a spike conservation principle.

We also note the increased prominence of subthreshold, low frequency oscillations that
manifest one day and persist for four days after synaptic potentiation. These oscillations are
within the theta regime and their largest spectral power appears at the end of a spiking barrage.
While our studies were not performed on an intact structure such as a slice or in vivo, we sug-
gest that the generation of these theta oscillations, after a synaptic potentiation protocol, within
a network without native architecture might indicate the presence of a fundamental dynamical
pattern of hippocampal networks.

Lastly, while these studies were performed on a cultured preparation, we must be very pru-
dent in making direct connections to in vivo systems. Nevertheless, our goal was to study the
long-term effects of potentiating a large fraction of synapses within a network—since many
in vivo synapses are indeed potentiated during a learning exercise. To this end, we asked the

Fig 12. Interspike (ISI) distributions for low activity epochs during synaptic potentiation and vehicle are similar to the baseline, pre-treatment
distributions. A) Log histograms for epochs during which the activity is low after synaptic potentiation. For day 1 these correspond to epochs 2, 4 and 6 from
Fig 2E and on day 4 these are epochs 1 and 3 from Fig 2F. B) Log histograms of inter-spike intervals from vehicle networks.

doi:10.1371/journal.pone.0129324.g012
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question: “Does LTP beget more LTP?”, because the understanding of LTP is that it increases
the likelihood that the postsynaptic neuron will fire an action potential. This, therefore, led us
to wonder whether within a network of neurons, would chemical LTP drive the network to-
wards an unstable, hyper-excited state? As this is not what we observed over time, we suggest
that the healthy neural circuit does not evolve into a pathological state when the excitatory-in-
hibitory balance is moderately perturbed; there may be homeostatic mechanisms that prevent
this behavior from taking place. However, in diseased circuits in which the excitatory-

Fig 13. Vehicle networks do not show large power distributions within low- and high-frequency
networks. Short time, Fourier transform based time-frequency analyses were performed on one-minute
epochs of low-pass filtered (top set) and high-pass filtered (bottom set) data from one representative
electrode. Each set is a montage of three images in which the top image corresponds to baseline activity, the
middle image corresponds to activity one day after treatment and the bottom image is the activity that was
recorded four days after treatment. Within each image are vertical striations in which each striation is a color
map that represents the power of the frequency present within the electrode. Red corresponds to high power
and blue is low power. In both the low-pass filtered and high-pass filtered montages, the activity does not
appreciably change before and after treatment and the power within each frequency regime is low.

doi:10.1371/journal.pone.0129324.g013
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Fig 14. Synaptically potentiated networks display changes in power distributions after treatment.
Short time, Fourier transform based time-frequency analyses were performed on one-minute epochs of low-
pass filtered (top set) and high-pass filtered (bottom set) data from one representative electrode. Each set is a
montage of three images in which the top image corresponds to baseline activity, the middle image
corresponds to activity one day after treatment and the bottom image is the activity that was recorded four
days after treatment. Within each image are vertical striations in which each striation is a color map that
represents the power of the frequency present within the electrode. Red corresponds to high power and blue
is low power. There is a spread in the sub-threshold oscillations (top set) one day after treatment and persists
four days later. These low-theta oscillations also increase in their power four days after treatment. Within the
high-frequency regime (bottom set), there is persistent activity one day and four days after treatment. The
power distribution within the vertical striations is similar to that seen in the baseline activity, with the large
increase in frequency that confirms Figs 2–4.

doi:10.1371/journal.pone.0129324.g014
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inhibitory balance has been perturbed, it may be that the underlying mechanisms normally
present to “rein in” the network may have been damaged.

Conclusions
We demonstrate that synaptic potentiation causes a persistent elevation of network activity but
not in a pathological manner. Hyper-excitability may be constrained by a conservation of activ-
ity principle that is governed by the steady-state regulation of the network.
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