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Massive and parallel expression profiling using
microarrayed single-cell sequencing
Sanja Vickovic1, Patrik L. Ståhl2,*, Fredrik Salmén1,*, Sarantis Giatrellis2, Jakub Orzechowski Westholm3,
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Single-cell transcriptome analysis overcomes problems inherently associated with averaging

gene expression measurements in bulk analysis. However, single-cell analysis is currently

challenging in terms of cost, throughput and robustness. Here, we present a method enabling

massive microarray-based barcoding of expression patterns in single cells, termed

MASC-seq. This technology enables both imaging and high-throughput single-cell analysis,

characterizing thousands of single-cell transcriptomes per day at a low cost (0.13 USD/cell),

which is two orders of magnitude less than commercially available systems. Our novel

approach provides data in a rapid and simple way. Therefore, MASC-seq has the potential to

accelerate the study of subtle clonal dynamics and help provide critical insights into disease

development and other biological processes.
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R
NA sequencing has been an invaluable tool for gene
expression analysis1 that has recently progressed from bulk
analysis and averaging multiple cells’ transcriptome profiles

to single-cell profiling. We have advanced from studying
group-specific or condition-dependent fold-changes using
microarrays2 to transcript counting3 and isoform analysis4. This
has afforded the potential to unravel both variations among
individual cells and stochastic changes across the gene body5.

Averaging gene expression levels in a population of cells is
beneficial when comparing states of particular tissues in different
conditions or developmental stages, and this approach has
provided numerous advances and biomarkers for diverse
pathological, and other conditions6. However, it cannot clarify
the discrete roles of individual cells nor the transcriptomic
triggers responsible for changes in their phenotypes7. In addition,
scarcity of biological material often precludes the profiling of rare
cell populations by conventional RNA sequencing methods8.

There have been major recent technological breakthroughs9–12

in the ability to analyse single cells, using methods including cell
encapsulation in droplets13,14, solid-surface complementarity
DNA (cDNA) analysis15,16 and in situ messenger RNA
(mRNA) hybridizations17. These methods enable quantitative
analysis of gene expression in single cells18 and have been applied,
for example, to study of mouse embryogenesis19 and expression
bimodality20. Nevertheless, these methods do not provide any
possibilities in combining cell imaging and transcriptome
profiling, exhibit low-throughput by analysing a single cell at a
time or require expensive droplet instrumentation when available
at high-throughput.

In this paper, we describe a novel method, termed micro-
arrayed single-cell sequencing (MASC-seq), a single tube
approach for analysis of single cells using a barcoded microarray,
and demonstrate its ability to profile single cells, in both model
cell lines and primary chronic lymphocytic leukaemia (CLL)
patient cells. MASC-seq can both image cells to provide
qualitative information on cells’ morphology and profile the
expression of hundreds to thousands of single cells daily, far more
than current standard procedures based on fluorescence-activated
cell sorting (FACS) into plates or single-cell picking into
individual reaction volumes10. MASC-seq could be compared
to commercially available systems such as the Fluidigm C1 (ref.
21), which also provides an imaging system before library
preparation. However, MASC-seq is improved in terms of daily
throughput, not limited by cell size and also is the first system
that enables cDNA synthesis of single cells to run in parallel in a
single-reaction lowering chances of technical variation in library

preparation. MASC-seq is based on commercially available
products and reagents and requires only an extra imaging
system when compared with standard RNA-sequencing.

Results
Principles of MASC-seq technology. With MASC-seq, single
cells can either simply be smeared and randomly positioned or
FACS sorted onto a 6.5� 6.8 mm2 microarray of barcoded DNA
oligonucleotides printed in a 33� 35 matrix with 200 mm centre-
to-centre pitch (Fig. 1). The matrix contains 1,007 unique DNA
barcodes surrounded by a frame used for orientation during
positioning. After attachment, a high-resolution image is taken,
which links the position of each barcode sequence with each
individual cell, and provides information concerning cell
morphology. The image also gives information about the number
of cells present on top of each barcoded oligonucleotide spot. In
MASC-seq the cDNA is synthesized in a hybridization cassette
from B500 single (given 47% occupancy) cells simultaneously in
a single well, thereby reducing possibilities of technical variation
in the single-cell cDNA synthesis and library preparation steps.
This not only increases robustness, but also lowers time and
labour costs. After cDNA synthesis, the cells are removed from
the microarray surface by proteinase K digestion and the probes
are cleaved from the surface with a uracil-specific excision reagent
enzyme, which targets the uracil sequence located at the 50 end of
the microarray barcodes. Each cell barcode consists of a uniquely
designed 18 nt sequence22 followed by a unique molecular
identifier (UMI), for individual transcript counting, and an
oligo-dTVN sequence, thus the method involves 30 tagging
(Fig. 1). The cleaved material is ready for in vitro amplification23

and library preparation following a procedure similar to the
cell expression by linear amplification and sequencing (CEL- seq)
protocol11. Around 10,000 single-cell libraries can be prepared,
for subsequent sequencing, in 2 days.

Human adenocarcinoma cell line as a model system. A human
breast adenocarcinoma cell line, MCF-7, was used as a model
system to evaluate the quality and quantity of data produced
using the MASC-seq method. An experiment was first performed
to establish where the cDNA was labelled during the reverse
transcription reaction (Fig. 2a). This generated a high-resolution
fluorescent (Cy3) print, which could be superimposed with the
image of either haematoxylin-stained (Fib. 2b) or fluorescently
labelled cells taken before cDNA synthesis, providing a con-
venient way to assess the cells’ quality and visually colocalize the
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Figure 1 | MASC-Seq overview. A FACS machine sorts single cells onto a barcoded microarray, printed with six replicates on an activated glass slide.

The throughput of the method and microarray design as a 33� 35 ID matrix is illustrated. An alternative is to pipette and smear cells which then distribute

randomly onto the array. Positions of the cells and IDs are noted in a high-resolution image and cDNA is only transcribed when an individual cell lands on

top of the barcoded oligo-dTVN primer (ID).
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cDNAs with single cells. This colocalization confirmed that each
cell would produce decoded reads with the correct cell-barcode
combination (Fig. 2b, black and white arrow). Furthermore, the
cDNA print could only be created when cells were positioned on
top of the cell barcode containing the oligo-dTVN sequence
(Fig. 2b, red arrows). The results were visually inspected for all
cell types used in the study (Fig. 2c). Diffusion of the cDNA signal
from the cells’ borders was estimated at 0.81±1.46 mm for MCF-7
and at 0.86±1.96 mm for 3T3 cells (Supplementary Fig. 1d,e).

We smeared cells onto the barcoded array, creating four
groups of barcoded libraries: singles (1 cell), doublets (2 cells),
clusters (42 cells) and background (0 cells). The groups could
be decoded based on the positional information from the
high-resolution image.

A total of six libraries were prepared and three libraries were
shared per slide and operator to evaluate reproducibility and
robustness of the protocol. On average 72% of the sequence reads
for each library mapped to the reference transcriptome with
around 20,000 unique protein-coding genes expressed per library
(Fig. 3a) and 82% saturation of unique transcripts at B384,000
raw reads per barcode (Fig. 3b). Furthermore, 494% of the
barcodes could be correctly demultiplexed and assigned to a
specific barcode group. At this sequencing depth, the single-cell
libraries yielded on average 27,427 unique transcripts and 6,293
unique protein-coding genes per cell, with the doublet and cluster
libraries following a similar pattern (Fig. 3c).

Irrespective of the number of cells per barcode, cell libraries
clearly separated from the background, which generated the
fewest reads and the fewest unique protein-coding genes.
Furthermore, the background libraries, likely to represent
cell-free RNA from lysed cells present in the collection buffer
before attachment to the array, yielded higher mean coefficients
of variation of gene expression levels, regardless of their strength
of expression, while the cell libraries all exhibited very similar
profiles, in which signal dispersion was negatively correlated with
expression levels (as expected)24 (Supplementary Fig. 2a).

We also confirmed that UMIs are important for reducing
noise, as indicated by a lowered mean coefficient of variation
(CV) over gene expression after UMI filtering (Supplementary
Fig. 2b)9. In addition, we assessed similarities between the groups
using Pearson’s correlation coefficients and visualized the results

with t-statistic Stochastic Neighbor Embedding (t-SNE)25

(Fig. 3d) – the background again successfully separated from
cell libraries whilst the cell libraries all formed a single cluster,
irrespective of the array, slide or operator (Supplementary
Fig. 2c,d).

More than 99% of the genes in the single-cell libraries were also
found in the bulk RNA sequencing experiments (Fig. 3e).
Two types of bulk RNA sequencing libraries were obtained, by
polyA-selected cDNA synthesis from 300 ng total RNA via
reverse transcription either in solution or anchored on the
barcoded microarray surface. In both cases, the single-cell average
(n¼ 136) correlated well (Fig. 3f and Supplementary Fig. 3a) with
data obtained from the bulk population-average experiments
(R¼ 0.92 and R¼ 0.90, respectively). A total 15,937 genes were
identified in the single-cell and bulk experiments, of which 1,970
were found only in either of the bulk samples, resulting in an
average dropout rate (DOR) of 3.4–6.6% in the single-cell sample
(Fig. 3f and Supplementary Fig. 3a). Notably the bulk libraries
also had DORs of 3.3 and 7.4% compared with each other.

Additionally, we compared the acquired gene expression
profiles of the single cells between each other (Supplementary
Fig. 3b,c) and noted that the expression profiles can vary
significantly between single cells (DOR¼ 35.46%, n¼ 136). In
summary, these findings demonstrate the quality and reprodu-
cibility of the data obtained using our MASC-seq technique.

Efficiency and sensitivity. MASC-seq efficiency as well as
variation in MCF-7 cells were compared with single FACS sorted
MCF-7 cells prepared with the CEL-Seq protocol11. To assure a
fair comparison, cells were taken from the same culturing plate
on the same day for both experiments. Also, a UMI-based primer
was used when preparing libraries with the CEL-Seq approach to
ensure possibility for UMI filtering. Randomly selected cells from
the MASC-seq protocol and the same number of cells created
with the CEL-Seq protocol (n¼ 36 for each) shared 64% of the
genes (Fig. 4a), with MASC-seq detecting 1.4 times more protein-
coding genes in total. On average, MASC-seq captures 17.5 times
more unique transcripts and 6.5 times unique protein-coding
genes per cell (Fig. 4b). However, most importantly, MASC-seq
achieves lower variation of gene expression between cells, as
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Figure 2 | Schematic illustration and results of cDNA and cell colocalization. (a) cDNA is labelled with Cy3 nucleotides during reverse transcription.

(b) A haematoxylin image is taken before cDNA synthesis, and a Cy3 image after cDNA synthesis and removal of cells from the microarray. Cell

(black arrow) and cDNA (white arrow) can then be colocalized given the cell is positioned on top of the ID primers (inner circle of the white dashed area).

Cells not positioned on top of ID primers do not undergo reverse transcription (red arrows). (c) Cell-cDNA colocalization prints for cells used in the study.
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compared with CEL-Seq, due to a single-tube reaction principle
(Fig. 4c). Furthermore, single-molecule fluorescent in situ
hybridization (smFISH) was performed on MCF-7 cells to
determine the sensitivity. Absolute numbers of transcripts for
seven well characterized genes present in a single cell
were compared between the platforms. The sensitivity for the
MASC-seq technique was determined to 17.3% (Fig. 4d).

Barcode crosstalk. To estimate the degree of barcode crosstalk
(to ensure that the data decoded for each cell were accurate and
contained within the corresponding cell-barcode combination),
we mixed human MCF-7 and mouse 3T3 fibroblasts and smeared
them on the barcoded microarray. We then estimated species-
specific transcript counts for each of the barcodes that had
received a single cell (Supplementary Fig. 4a) based on the high-
resolution image. In the single-cell libraries, which produced over
2,000 reads and revealed 1,000 uniquely expressed protein-coding
genes per cell (Supplementary Fig. 4b,c), only 30–40 reads were
misassigned per barcode, thus only 1.42–1.68% of the total
species-specific reads were misassigned to human and mouse
barcodes, respectively. Furthermore, t-SNE separated species even
at the orthologous gene level (Supplementary Fig. 4d), generating
two distinct clusters with all cells from each species clustered

together. Population averages correlated well with those of pure
samples (R40.88; Supplementary Fig. 4e,f), further confirming
the quality of the data.

Differential expression in single leukaemic cells. To assess
the applicability of our method for studying a disease state,
we analysed primary single-sorted neoplastic B cells obtained
from three patients diagnosed with CLL, assigned to different
major CLL subsets, with distinct clinical and biological
characteristics (clinically classified poor-prognostic subsets
#1 and #2, and the good-prognostic subset #4)26,27.
CD5þCD19þ cells from patients were FACS sorted onto
MASC-seq arrays (n¼ 1,189±186 cells per case). As expected,
these small-sized cells (7–10 mm) showed a proportionally lower
amount of labelled cDNA in each cell (Fig. 2c, left panel).

Average gene expression levels in cells of the three CLL subsets
clearly differed (Supplementary Fig. 5a), with only 43% of the
expressed genes shared (Supplementary Fig. 5b), and the
strongest differences between the subsets were among the most
abundantly expressed genes (Supplementary Fig. 5c). Notably,
comparing the 500 genes with highest expression in each subset,
only 30 genes showed high expression in two subset pairs and no
genes were shared in all three subsets (Supplementary Fig. 5d).
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Further analysis through t-SNE and hierarchical clustering
revealed subtle differences between single cells within each CLL
subset. A number of major and minor clusters were observed in
connection to each subset (Fig. 5a–c).

Differential expression analysis based on the hierarchical
clustering results revealed unique expression signatures for each
of the clusters. For example, in subset #1, the two minor clusters
were defined by strong expression of a number of distinct genes,
downregulated in the major cluster (Fig. 5a, Supplementary
Fig. 5e). Subset #2 exhibited the strongest expression levels per
cell (Supplementary Fig. 5a), possibly related to the proliferative
drive and very poor prognosis for patients assigned to this
subset26,27, with all of the clusters in the subset displaying variable
expression of DAB1 and DAB1-AS1, which are reportedly involved
in cancer progression through NOTCH signalling28. The two
largest clusters (indicated in black and red in Fig. 5b and
Supplementary Fig. 5f) observed in subset #2 had very similar
expression patterns, with C5orf63 being the only overexpressed
gene unique for the major cluster (black) while the other cluster
(red) exhibited dysregulation in expression of genes like CAMK1
and GLIPR1, connected to renewal of leukaemic stem cells and
tumour progression29,30 (Fig. 5b, Supplementary Fig. 5f). Gene
expression levels were notably lower in cells of subset #4
(Supplementary Fig. 5a), a prototype for indolent CLL26,27, than
in cells of the other two subsets. In contrast to the minor clusters,
the major cluster of subset #4 were the only cells expressing
DNMT3A and EPC1 (Fig. 5c, Supplementary Fig. 5g), both of
which are known to be deregulated in acute myeloid
leukaemia31,32. A complete list of differentially expressed genes is
provided in Supplementary Data 1–3.

To further investigate the CLL subsets, we calculated a
cell-cycle-specific score for each single cell in each of the subsets
(Fig. 5d). Although most of the CLL B cells did not appear to be
cycling, as previously reported33–35, almost 10% of the subset #2

cells exhibited strong cell cycle signatures, mostly indicative of
commitment to genome replication, in accordance with previous
microarray analysis36. For all subsets, the cycling cells were
contained within the major cluster.

Hierarchical clustering revealed that, as expected, most single
cells within each subset had similar expression profiles, and
clustered with other cells of their subset, but a few cells from both
subsets #2 and #4 clustered with the poor-prognosis subset #1
cells (Fig. 5e, color-coded by subset and by cluster). This cluster
containing cells from all three subsets was marked by a
differential expression signature of inhibin beta A (INHBA)
(Fig. 5f), a gene associated with cancer progression37 and poor
survival38.

Discussion
The importance of heterogeneity between, and within, tumours
for therapeutic responses and patient outcomes is well known.
However, detecting unique markers within cells of a tumour,
predicting associated phenotypic changes and linking the
heterogeneity to disease progression is far from straightforward,
requiring single-cell analysis39. Previous advances in single-cell
analysis have enabled measurement of gene expression in a large
number of individual cells. This has addressed the drawback of
population-averaging in bulk analysis. Further enabling rapid and
simple analysis of thousands of cells would help accelerate
experimental throughput in both academic and clinical research,
potentially resulting in improved patient monitoring, particularly
in relation to given therapy.

The presented MASC-seq method for analysing expression
profiles in single cells by combining cell imaging with high-
throughput single-cell RNA sequencing has been thoroughly
validated using both human and mouse cell lines, and primary
patient samples. Experiments to evaluate bulk RNA-sequencing
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CLL data have allowed characterization of CLL patients into
subsets40, but averaging gene expression cannot reveal intra-
tumour heterogeneity. Using MASC-seq we observed differences
between and within different CLL patient subsets. Also, in each
of the subsets, we found a major clone that supports the
idea of clonal cooperation and long-lasting clonal equilibrium
encouraging overall cancer progression in CLL41. Whether these
differences are related to the functional pathology of CLL requires
further investigation and more extensive studies. Nevertheless,
these findings illustrate the heterogeneity within each patient and
underscore the importance of analysing transcriptomes at the
single-cell level.

The greatest advantage of MACS-seq is generating hundreds
of single-cell expression profiles in a single reaction, thus
simultaneously lowering technical variability, costs and labour.
It can generate expression data from B10,000 single cells in only

2 days at a cost of just USD 0.13 per cell (Supplementary Data 4),
an approach at least 200–300 times lower in cost than the
currently most widely applied methods by researchers10 or
commercially21. High-throughput approaches such as MASC-seq
will greatly facilitate investigations of the biological processes
involved in diseases like cancer, and will help to improve our
understanding of complex biological phenomena at the single-cell
level.

Methods
Array production. Six of the microarrays were printed per Codelink glass slide.
Each microarray could be used in an individual experiment, with a specific
Illumina indexing primer, and each glass slide could accommodate up to 16
microarrays, but slides with six replicates were prepared and used in the reported
experiments to facilitate daily use. The printing process was performed by ArrayJet
LTD (Scotland, UK) using the ArrayJet Spider system. The DNA oligonucleotides
were spotted in 200 mm centre-to-centre vertical and horizontal pitch fashion. The
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arrays’ frame was labelled to enable visualization during FACS as described in
Supplementary Information.

Cell handling and total RNA extraction. MCF-7 (human breast metastatic
adenocarcinoma) cells were cultured at 37 �C in a 5% CO2 environment. The breast
cancer cells were grown in Eagle’s Minimum Essential Medium supplemented with
10% FBS (both from Thermo Fisher Scientific, Life Technologies, Paisley, UK),
harvested at 70% plate confluency by trypsinization, and RNA was extracted
from B1 million of the cells using an RNeasy Mini Kit (Qiagen, Limburg, The
Netherlands). NIH/3T3 (mouse embryonic fibroblast, hereinafter 3T3) cells were
cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10% FBS
(both from Thermo Fisher Scientific, Life Technologies, Paisley, UK). These 3T3
cells were harvested at 70% plate confluency for RNA extraction, as described
above. After trypsinization, the cells were washed twice with 1� PBS. Total
MCF-7 RNA (300 ng) was fragmented to 350 nt fragments, on average, using a
magnesium fragmentation protocol42 involving 5 min incubation at 95 �C and used
in all bulk reference experiments, for cDNA synthesis in both solution and on the
microarray surface. MCF-7 and 3T3 cells were used in further single-cell
experiments by smearing them on the microarray surface after fixation43. Before
attachment to the array surface, the buffer was exchanged to 0.1� saline sodium
citrate (SSC) and the cells kept on ice until the protocol was started. Smearing was
performed by taking 3 ml of cells at a concentration B2,000 cells ml� 1 and first
slowly pipetting the cells on the array surface with taking care not to actually touch
the surface with the tip. Then, the cell solution could be smeared with a side of a
pipette tip (again careful not to touch the surface of the array) followed by
attachment at 37 �C for 5 min to the slide. MCF-7 was obtained from the German
collection of microorganisms and cell cultures (DSMZ) and authenticated with
RNA sequencing. The 3T3 cell line was obtained from ATCC. Both cells lines were
tested for mycoplasma contamination (Minerva Biolabs Gmbh, Berlin, Germany).

Patient sample collection. Cryopreserved peripheral blood mononuclear samples
derived from 3 CLL patients were included from the Biobank at Uppsala University
Hospital, Sweden. All cases were diagnosed and classified according to recently
revised iwCLL criteria44 with a typical CLL immunophenotype. Cases were selected
based on the expression of stereotyped B-cell receptor immunoglobulins from the
following major subsets: one subset #1 case (IGHV1/5/7/IGKV1(D)-39 usage), one
subset #2 (IGHV3-21/IGLV3-21 usage) and one subset #4 case (IGHV4-34/
IGKV2-30 usage). Informed consent was obtained according to the Helsinki
declaration and the study was approved by the Regional Ethics Review Committee
in Uppsala (2014/33).

FACS sorting. The patient samples were collected as described. Before sorting, the
cells were fixed in a way to be compatible with staining and immunohistochemical
methods43. The CD5þCD19þ population (for antibody staining see Supplementary
Information) was sorted on the labelled array with position adjustments to increase the
sorting accuracy on the correct barcoded DNA oligonucleotide position. The FACS
sorter utilized for analyses and single-cell sorting was a BD Influx by Becton
Dickinson. Cells analyses and sorting were performed using a 70mm nozzle. The FACS
sorting stage spatial resolution is o100mm but the droplet size is the one setting the
spatial limitations and dictates the sorting strategy. The FACS set-up with the 70mm
nozzle created droplets with a trace diameter of 340±40mm on the collection slide. To
increase the positional precision in single-cell sorting we have used Cell Precision, a kit
that integrates an indication laser and a camera beneath the sorting slide to the FACS
sorter. The laser trace size on the slide was 330±20mm and the effective positioning
resolution was o100mm.

The single-cell sorting was performed in successive sorting cycles giving
adequate space between neighbouring matrix positions for avoiding droplet fusion.
The FACS sorting matrix was 11-by-12 with a matrix unit length of 600 mm
(centre-to-centre). The successive sorting cycles differed in the initialization
position, which was displaced by 200mm for every successive cycle at the X
dimension (3 cycles) and 200 mm at the Y dimension (3 cycles). In total, we
performed 9 sorting cycles to achieve maximum coverage of the oligonucleotides
microarrays. Adequate time between successive sorting cycles was given in order
for the sorted droplets to evaporate and the encapsulated cell to end up on the
oligonucleotides base. The total sorting time per microarray was 8 min. The average
efficiency for indexed sorting was 47% (Supplementary Data 5). After sorting, the
slide was heated to 37 �C for 5 min.

Visualization of cell positions. Images of sorted and stained cells (for staining
protocol see Supplementary Information) on barcoded microarrays were recorded
using a Metafer Vslide scanning system (MetaSystems, Mannheim, Germany)
installed on an Axio Imager Z2 LSM700 microscope (Carl Zeiss, Oberkochen,
Germany). All images were taken with the � 20 Plan-Apochromat objective lens,
and stitched using the VSlide software (v1.0.0). Before scanning the Cy3 emission
range (560–610 nm), the glass slide was mounted with SlowFade Gold Antifade
reagent (Life Technologies, Paisley, UK). In case a � 40 objective was used, the
scanning was performed on the Zeiss LSM700 system and the images stitched with
the ZEN (Zeiss) software. Photoshop CS6 software (Adobe Systems) was used to
merge images.

cDNA synthesis and library preparation. Cell permeabilization. To permeabilize
cells on the slide, the slide was placed in an ArrayIT hybridization cassette diving
the slide into individual arrays. Then 0.1� pepsin (Sigma-Aldrich, St Louis, MO)
solution (pH 1) warmed to 37 �C was added to each of the sample arrays for 30 s,
carefully pipetted out, and the surface carefully washed with 100 ml 0.1� SSC.

cDNA synthesis. The cDNA synthesis mixture contained 1,280 U of Superscript
III Reverse Transcriptase, 256 U of RNaseOUT, 3.2 ml of 0.1 M dithiothreitol
(DTT) and 0.8� First Strand buffer (all from Invitrogen, Life Technologies,
Paisley, UK), 3.2 mg actinomycin-D (Sigma-Aldrich, St Louis, MO), 0.4 mM dNTPs
mix (Thermo Fisher Scientific, Life Technologies, Paisley, UK) and 1.5� BSA
(NEB, Ipswich, MA, USA). The reaction volume was set to 70 ml by adding water.
The mix was then added to the microarray surface with the attached ArrayIT
hybridization cassette, and then incubated for 16 h. After cDNA synthesis, the
microarray surface was washed with 100 ml W3.

Cell removal. To remove cells, proteinase K (Qiagen, Limburg, Netherlands) was
mixed with proteinase K digestion (PKD) buffer 1:4 then added to the microarray
surface with the attached ArrayIT hybridization cassette. After incubation for 1 h at
56 �C, the glass slide was sequentially washed in 2� SSC supplemented with 0.1%
sodium dodecyl sulphate at 50 �C for 600 s, 0.2� SSC for 60 s and 0.1� SSC for
60 s at room temperature, then spin-dried.

Probe release. A probe release mix was prepared by mixing 6.4 U of USER
enzyme and 1.5� BSA (both from NEB, Ipswich, MA, USA), 0.8� second strand
buffer (Invitrogen, Life Technologies, Paisley, UK), 70 mM dNTP mix (Thermo
Fisher Scientific, Life Technologies, Paisley, UK) and water to a final volume of
70 ml, and heated to 37 �C. The glass slide (with the attached ArrayIT hybridization
cassette) was then incubated with the mixture for 2 h at 37 �C, then 65ml of the
released probe-containing mixture was collected in a 0.2 ml low-binding tube
(Axygen, Corning Life Sciences, Corning, NY). All of the following reactions were
performed using low-binding tubes and tips (Biotix, San Diego, CA). Reference
material was added as described in Supplementary Information. The array print
quality was also examined and used in picture overlay, also described in the
Supplementary Information.

Second strand synthesis and blunting. Second strands were generated from
template cDNA strands using 18.4 U DNA Polymerase I and 0.92 U RNaseH
mixed with 0.2� first strand buffer (all from Invitrogen, Life Technologies,
Paisley, UK). The mixtures were incubated for 2 h at 16 �C. To initiate blunting
reactions, 15 U of T4 DNA polymerase (NEB, Ipswich, MA) was then added to
each mixture for 20 min before the reaction was stopped by adding cold EDTA to a
final concentration of 800 mM. Samples were then purified using the Agencourt
RNAClean XP system (Beckman Coulter, Pasadena, CA) according to the
manufacturer’s instructions, and eluted in 20 ml water. Sample volumes were
subsequently reduced to B5.6 ml using a SpeedVac vacuum centrifuge.

In vitro transcription. In vitro transcription was performed using a MEGAscript
T7 Transcription kit (Ambion, Life Technologies, Paisley, UK) with 1.6 ml of the
provided enzyme mix in 1� reaction buffer and 6.4 ml of the provided nucleoside
50-triphosphate (NTP) mix, supplemented with 16 U of the SUPERase In RNase
Inhibitor (Invitrogen, Life Technologies, Paisley, UK). The mixture was added to
the purified product and incubated initially for 14 h at 37 �C and subsequently 4 �C
until the sample could be processed. The amplified RNA (aRNA) was then purified
using the Agencourt RNAClean XP system (Beckman Coulter) according to the
manufacturer’s instructions and eluted in 10 ml water. Finally, the purified and
aRNA was evaluated using a mRNA Pico Bioanalyzer 2100 system (Agilent,
Santa Clara, CA).

Adaptor ligation and second cDNA synthesis. After denaturing secondary
strands by incubation for 2 min at 70 �C, aRNA adaptors (50-AGATCGGAAGA
GCACACGTCTGAACTCCAGTCAC-30 , 0.7 mM) were ligated to the aRNA
strands using 300 U of the truncated T4 Rnl2 (NEB, Ipswich, MA) in 1� T4 RNA
ligase reaction buffer. The adaptors had each been capped at the 30 end with ddC
and adenylated at the 50 end to mitigate single-strand ligation to the aRNA. 60 U of
murine RNase Inhibitor was then added and the mixture was incubated at 25 �C for
1 h. The sample was purified using the Agencourt RNAClean XP system (Beckman
Coulter) according to the manufacturer’s instructions and eluted in 10 ml water. To
generate cDNA, the RT adaptor (50-GTGACTGGAGTTCAGACGTGTGCTCTTC
CGA-30) was added to a final concentration of 1 mM together with 50mM dNTPs.
To ensure secondary strand denaturation, again, the sample was heated to 65 �C for
2 min, then incubated at 50 �C for 1 h with 200 U SuperScript III Reverse
Transcriptase and 40 U RNAseOUT in 1� first strand buffer and 5 mM DTT.
Finally, the acquired cDNA was purified using the Agencourt RNAClean XP
system (Beckman Coulter) according to the manufacturer’s instructions and eluted
in 10 ml water.

Indexing PCR. Quantitative PCR was first applied to determine the number of
cycles needed for the indexing reaction, using the KAPA HiFi HotStart Ready mix
supplemented with 1� EVA Green, with InPE1.0 (50-AATGATACGGCGACC
ACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-30) at
5 mM, InPE2.0 (50-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-30)
at 0.2 mM and the Illumina Indexing primer at 5 mM final concentrations.
The indexing reaction was then performed using the same amplification conditions
and determined Ct value. The samples were purified using carboxylic acid beads
and polyethylene glycol45, then diluted for sequencing on the NextSeq500
instrument. Reference libraries were constructed as described in Supplementary
Information and also sequenced on the NextSeq500 instrument.
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Establishing fluorescent cDNA signatures from single cells. Cells were
routinely attached to the array surface by heating the slide for 5 min at 37 �C, after
confirming that they would not detach by placing 121 DAPI-labelled cells on the
array (via the FACS procedure), heating, then visually inspecting and counting the
cells remaining on the array. The slide was re-examined and the cells were
re-counted after washing the glass slide in 2� SSC supplemented with 0.1%
sodium dodecyl sulphate at 50 �C for 600 s, 0.2� SSC for 60 s and 0.1� SSC for
60 s at room temperature. Images of the slides were also acquired before and after
washing then superimposed. All of the 121 cells remained and did not move on the
array surface during the washing steps (data not shown).

To ensure that the cDNA was localized under the cells’ surfaces, we performed
another straightforward but informative preliminary experiment, in which cells
from patient samples or cell lines were attached to the array surface by the FACS
procedure or smearing (respectively), stained with haematoxylin, and visualized.
The cDNA was then labelled during the cDNA synthesis reaction by
supplementing the mixture with 25 mM Cy3-labelled dCTPs (PerkinElmer,
Waltham, MA). In addition, the concentration of dCTPs was reduced to 10 mM
while concentrations of the remaining dNTPs remained the same. The mixture was
incubated overnight at 37 �C, then the cells were removed from the array surface
and the underlying Cy3-cDNA print was visualized. Diffusion signatures were
estimated using ImageJ. The cells were fluorescently labelled prior as described in
the Supplementary information and the cDNA synthesis reaction supplemented as
described here. Distance of the Cy3-cDNA signal compared with the cell border
was estimated for 9 3T3 cells and 11 MCF-7 cells.

smFISH. All probes, except GAPDH, were designed based on our previously
described database targeting all human transcripts (www.fusefish.eu(ref. 46)) and
consisted of the oligonucleotides listed in Supplementary Data 6. Oligonucleotides with
a 30-TEG amino modification were provided from Biosearch Technologies, and
coupled them to Cy5 (GE Healthcare, Cat. Q15108), Alexa Fluor 647 (Molecular
Probes, Cat. A37566) or Alexa Fluor 594 (Molecular Probes, Cat. A37565). We fixed
cells in methanol-acetic acid 3:1 (v/v) and performed probe hybridization as previously
described46. We imaged cells at � 100 magnification using high numerical aperture
objective (Nikon) on an inverted epifluorescence microscope (Eclipse Ti-E, Nikon)
equipped with an EMCCD camera (iXON Ultra 888, ANDOR) and controlled by NIS-
Elements software (Nikon). Per field of view, we acquired an image stack consisting of
31 focal planes spaced 0.3mm apart. We filtered the images and counted mRNA spots
using custom-made software written in MATLAB.

Data analysis. Mapping and demultiplexing. The samples were sequenced in
paired end mode. The forward read was sequenced at 31 nt containing the cell
barcode sequence and the UMI, and the reverse read consisted of 121 nt providing
the matching transcript information. First, the reads were trimmed from both ends
on a Burrows-Wheeler aligner (BWA) quality-based approach, and the adaptor
sequences were removed. The reads were then mapped to a NCBI’s reference
human transcriptome using Bowtie2 and annotated against the RefSeq tran-
scriptome reference containing sequences annotated as NM_ and NR_ sequences
(as of 11 March 2014). The mapped reads were filtered to identify (and discard)
ribosomal sequences.

HTSeq count, with the setting ‘-intersection-nonempty’, was employed to count
the number of reads per gene, marking the results as gene expression values in the
downstream analysis. The reads could then be demultiplexed, using the 18 nt cell
barcode processed with a kmer-approach with two mismatches permitted during
the process.

The reads belonging to each of the cell barcodes were subsequently filtered
to remove duplicates based on the UMI. To avoid unnecessary delays in data
processing, a minimal hamming distance was set and read clusters were created.
Potential duplicated sequences were discarded from further analyses. The standard
UMI was a semi-randomized 9 nt sequence, WSNNWSNNV, but when analysing
reference bulk libraries in solution, it was combined with a fully randomized 8 nt
sequence (NNNNNNNN) embedded in the template switch oligo to generate
enough possible UMI combinations. UMI-filtered data were used in all of the
following data analyses. The reads mapping to gene MALAT1 were removed from
analysis due to problems with self-priming. An illustration of data processing is
depicted in Supplementary Fig. 6.

Normalization and data pre-processing. Expression profiles were normalized by
adjusting the total number of UMIs per barcode (corresponding to the total
number of transcripts per cell) to 200,000 reads (providing so called TP200K)
and adding a pseudocount before transforming the data to log2 scale. In
case of CLL samples, data was normalized to 10,000 reads per barcode
(so called TP10K).

To assess expression signatures associated with empty barcodes (which did not
receive a cell based on the high-resolution image) we first examined expression of
the 50 most highly expressed genes apart from recognized ‘housekeeping genes’19,
and removed them from the data set. This resulted in removal of 15 genes from the
model MCF-7 and 3T3 data sets (Supplementary Data 7). Visual inspection of the
reads confirmed that most of them were cytoplasmic non-coding RNA or binding
protein sequences, apart from the apparently most abundant mitochondrial
signatures. To further investigate these most abundant genes present in the
background, we first compared their levels of expression and distributions to those
present in the single-cell libraries. All of these highly abundant genes exhibit higher

and more even levels of expression continuously in the single-cell libraries as
compared with the background libraries with the expressions of ACTB and
GAPDH exemplified in Supplementary Fig. 7a. All the background libraries also
correlated well to each other (Supplementary Fig. 7b) concluding the background
libraries were similar to each other and most probably a result of background
cell-free RNA material present in the cell-suspension buffer before smearing
cells onto the array. Similarly, when amount of reads mapping to background
barcodes was compared between FACS sorted libraries and smeared libraries,
the smeared libraries on average exhibited 11% more reads mapping to the
background (Supplementary Fig. 8), at the same sequencing depth, further
strengthening the fact the background in depended on the material present in the
suspension buffer.

Expression profiles of single MCF-7 cells. In experiments which involved
smearing MCF-7 cells on the array surface, four sets of libraries were obtained:
background (no cells), singles (1 cell), doublets (2 cells) and clusters (42 cells).
Gene expression profiles of 1,021 background, 136 single-cell, 107 doublet and 858
cluster libraries were acquired from three MCF-7 array experiments performed on
the same day under the same conditions. Data were filtered based on mean number
of reads present in the single-cell libraries, that is, all cell libraries above this
threshold were taken into analysis. After data pre-processing, signals from all of the
remaining genes were used in subsequent analyses. These included hierarchical
clustering of Pearson’s correlation distances, and t-SNE to visualize the results
(although the groups were clearly separated by the first two components).
We examined ranked gene expression by linking it to the mean CV for all four
groups in the MCF-7 data. We also evaluated cell-to-cell Pearson’s correlation
coefficients. Finally, DOR were defined as percentage of genes that were not
expressed in one data set while showing any levels of expression in
the other.

Barcode cross-talk experiment. To evaluate barcode crosstalk, 3T3 and MCF-7
cells were mixed in an B1:1 ratio, smeared on an array, and expression profiles of
barcoded single-cell libraries (identified from high-resolution images, 97 in total)
were analysed, as described above. A list of gene orthologs was downloaded from
Biomart47. Species-specificity was decoded by hierarchical clustering based on
non-orthologous sequences (of 2,828 human-specific and 2,348 mouse-specific
protein-coding genes) in each of the 97 barcoded libraries. In total 46 MCF-7 and
51 3T3 single cells were correctly identified. We then examined barcode crosstalk
by evaluating raw species-specific read counts in each of the demultiplexed
single-cell libraries.

We further investigated whether or not the single-cell libraries could be
separated using orthologous sequences, by examining cells’ correlations based on
the 2,000 most variable (based on CV) gene orthologs. t-SNE was run for 10,000
iterations on two significant principal component loadings (Po0.01) providing
clear species-specific clustering. We also compared the average normalized
expression of the decoded species-specific libraries to that of pure species libraries
created separately.

Chronic lymphocytic leukaemia single-cell analysis. Each patient sample was
processed on a separate MASC-seq slide to avoid any chances of cross-
contamination between the samples. Expression profiles of 1,102, 1,403 and 1,063
single cells of CLL subset #1, #2 and #4 cells were examined and compared, as
follows. The gene expression profiles were normalized (to TP10K values) and
transformed to log-scale, as previously described. Sequences of one highly
expressed background gene (BCYRN1) were removed (apart from mitochondrial
genes) and then genes with average population expression values of at least
6.5 TP10K in each subset were analysed further, following mean-centring
of the data. The subsets on average expressed 10,242, 12,228 and 6,782 genes,
respectively.

To inspect major differences between the subsets, we examined expression of
the 500 most strongly expressed genes in each of the subsets. Subsets #1, #2
and #4 had 469, 474 and 495 abundantly expressed genes not present at high
levels in any other subset, respectively. Pearson’s correlations between cells
expressing these genes were obtained and used in hierarchical clustering and
t-SNE, the latter based on 47 significant principal component loadings (Po0.01).
A likelihood ratio test48 was used to determine whether the expression patterns of
the three clusters determined in the previous step significantly differed (at
Po0.001).

Additionally, to evaluate intra-subset differences, we further examined the
2,000 most variable genes (based on CV) in each of the subsets, after reducing
dimensions of the distances of Pearson correlation matrices and the significant
principal components (Po0.01). t-SNE plots were created in three dimensions and
hierarchical clustering was applied to each of the clusters identified in the subsets.
The significance of differences in expression patterns between the clusters was then
tested as above, using the likelihood ratio test and a Po0.001 significance
threshold.

Cell cycle analysis. A list of cell-cycle-specific genes representing five stages of
the cell cycle (G1/S, S, G2/M, M and M/G1) was taken from a published source49,
and genes that passed a certain threshold (R40.3) in each of the respective cell
cycle phases were selected for further analysis. The data were normalized in two
steps and average phase-specific score was generated for each cell through all the
five phases, to determine its current cell cycle stage13. When analysing the CLL
samples, a cell-cycle-specific score was further calculated for each patient’s subset,
thereby creating subset-specific scores.
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Data availability. The data have been deposited at SRP067878 and at
http://www.spatialtranscriptomicsresearch.org/.

References
1. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome

in Arabidopsis. Cell 133, 523–536 (2008).
2. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406,

747–752 (2000).
3. Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with

high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).
4. Wang, E. T. et al. Alternative isoform regulation in human tissue

transcriptomes. Nature 456, 470–476 (2008).
5. Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic associations

masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013).
6. van ’t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of

breast cancer. Nature 415, 530–536 (2002).
7. Bengtsson, M., Stahlberg, A., Rorsman, P. & Kubista, M. Gene expression

profiling in single cells from the pancreatic islets of Langerhans reveals
lognormal distribution of mRNA levels. Genome Res. 15, 1388–1392 (2005).

8. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in
human colon tumors. Nat. Biotechnol. 29, 1120–1127 (2011).

9. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular
identifiers. Nat. Methods 11, 163–166 (2014).

10. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in
single cells. Nat. Methods 10, 1096–1098 (2013).

11. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell
RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

12. Sasagawa, Y. et al. Quartz-Seq: a highly reproducible and sensitive single-cell
RNA sequencing method, reveals non-genetic gene-expression heterogeneity.
Genome Biol. 14, R31 (2013).

13. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

14. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to
embryonic stem cells. Cell 161, 1187–1201 (2015).

15. Bose, S. et al. Scalable microfluidics for single-cell RNA printing and
sequencing. Genome Biol. 16, 120 (2015).

16. Fan, H. C., Fu, G. F. & Fodor, S. P. A. Combinatorail labeling of single cells for
gene expression cytometry. Science 347, 628–636 (2015).

17. Raj, A. et al. Imaging individual mRNA molecules using multiple singly labeled
probes. Nat. Methods 5, 877–879 (2008).

18. Wu, A. R. et al. Quantitative assessment of single-cell RNA-sequencing
methods. Nat. Methods 11, 41–46 (2014).

19. Xue, Z. et al. Genetic programs in human and mouse early embryos revealed by
single-cell RNA sequencing. Nature 500, 593–597 (2013).

20. Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression
and splicing in immune cells. Nature 498, 236–240 (2013).

21. Fluidigm. www.fluidigm.com. Accessed on 7 Jan 2016.
22. Costea, P. I., Lundeberg, J. & Akan, P. TagGD: fast and accurate software for

DNA tag generation and demultiplexing. PLoS One 8, e57521 (2013).
23. Eberwine, J. et al. Analysis of gene expression in single live neurons. PNAS 89,

3010–3014 (1992).
24. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq

experiments. Nat. Methods 10, 1093–1095 (2013).
25. Maaten, v. d. L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res.

8, 2579–2605 (2008).
26. Baliakas, P. et al. Clinical effect of stereotyped B-cell receptor immunoglobulins

in chronic lymphocytic leukemia: a retrospective multicenter study. Lancet
Haematol. 1, e74–e84 (2015).

27. Stamatopoulos, K. et al. Over 20% of patients with chronic lymphocytic
leukemia carry stereotyped receptors: pathogenetic implications and clinical
correlations. Blood 109, 259–270 (2007).

28. Sonoshita, M. et al. Promotion of colorectal cancer invasion and metastasis
through activation of NOTCH–DAB1–ABL–RHOGEF protein TRIO. Cancer
Discov. 5, 198–211 (2015).

29. Kang, X. et al. The ITIM-containing receptor LAIR1 is essential for acute
myeloid leukemia development. Nat. Cell Biol. 17, 665–677 (2015).

30. Xiao, Y.-H. et al. Identification of GLIPR1 tumor suppressor as methylation-
silenced gene in acute myeloid leukemia by microarray analysis. J. Cancer Res.
Clin. Oncol. 137, 1831–1840 (2011).

31. Yang, L., Rau, R. & Goodell, M. A. DNMT3A in haematological malignancies.
Nat. Rev. Cancer 15, 152–165 (2015).

32. Huang, X. et al. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic
potential of MLL leukemia stem cells. Leukemia 5, 1081–1091 (2014).

33. Calissano, C. et al. In vivo intraclonal and interclonal kinetic heterogeneity in
B-cell chronic lymphocytic leukemia. Blood 114, 4832–4842 (2009).

34. Messmer, B. T. et al. In vivo measurements document the dynamic cellular
kinetics of chronic lymphocytic leukemia B cells. J. Clin. Invest. 115, 755–764
(2005).

35. Decker, T. et al. D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk
inhibitor p27. Leukemia 16, 327–334 (2002).

36. Fält, S. et al. Distinctive gene expression pattern in VH3-21 utilizing B-cell
chronic lymphocytic leukemia. Blood 106, 681–689 (2005).

37. Togashi, Y. et al. Activin signal promotes cancer progression and is involved in
cachexia in a subset of pancreatic cancer. Cancer Lett. 356, 819–827 (2015).

38. Seder, C. W. et al. Upregulated INHBA expression may promote cell
proliferation and is associated with poor survival in lung adenocarcinoma.
Neoplasia 11, 388–396 (2009).

39. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma. Science 344, 1396–1401 (2014).

40. Mansouri, L. et al. Next generation RNA-sequencing in prognostic subsets of
chronic lymphocytic leukemia. Am. J. Hematol. 87, 737–740 (2012).

41. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic
lymphocytic leukemia. Cell 152, 714–726 (2013).

42. Sigurgeirsson, B., Emanuelsson, O. & Lundeberg, J. Sequencing degraded RNA
addressed by 30 tag counting. PLoS ONE 9, e91851 (2014).

43. Vickovic, S., Ahmadian, A., Lewensohn, R. & Lundeberg, J. Toward rare blood
cell preservation for RNA sequencing. J. Mol. Diagn. 17, 352–359 (2015).

44. Hallek, M. et al. Guidelines for the diagnosis and treatment of chronic
lymphocytic leukemia: a report from the International Workshop on Chronic
Lymphocytic Leukemia updating the National Cancer Institute–Working
Group 1996 guidelines. Blood 111, 5446–5456 (2008).

45. Borgström, E., Lundin, S. & Lundeberg, J. Large scale library generation for
high throughput sequencing. PLoS ONE 6, e19119 (2011).

46. Semrau, S. et al. FuseFISH: robust detection of transcribed gene fusions in
single cells. Cell Rep. 6, 18–23 (2014).

47. Ensembl Biomart. www.ensembl.org/biomart. Accessed on 26 Oct 2015.
48. McDavid, A. et al. Data exploration, quality control and testing in single-cell

qPCR-based gene expression experiments. Bioinformatics 29, 461–467 (2013).
49. Whitfield, M. L. et al. Identification of genes periodically expressed in the human

cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

Acknowledgements
We thank David Redin for help with illustrations and Marc Friedländer for help with
manuscript preparation. We also thank Nicola Crosetto for help with the smFISH data
analysis. The data were analysed using resources provided by SNIC through the Uppsala
Multidisciplinary Center for Advanced Computational Science (SNIC/UPPMAX) and
Bioinformatics Long-Term Support (WABI). This work was supported by the Knut and
Alice Wallenberg Foundation, Swedish Cancer Society, Swedish Foundation for Strategic
Research, the Swedish Research Council, Tobias Stiftelsen, Torsten Söderbergs
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