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Abstract: The Epstein-Barr virus (EBV), which is a ubiquitous γ-herpesvirus, establishes a latent
infection in more than 90% of the global adult population. EBV-associated malignancies have
increased by 14.6% over the last 20 years, and account for approximately 1.5% of all cancers worldwide
and 1.8% of all cancer deaths. However, the potential involvement/contribution of lytic proteins
to the pathophysiology of EBV-associated cancers is not well understood. We have previously
demonstrated that the EBV-deoxyuridine triphosphate nucleotidohydrolase (dUTPase) modulates
innate and adaptive immune responses by engaging the Toll-Like Receptor 2 (TLR2), which leads to
the modulation of downstream genes involved in oncogenesis, chronic inflammation, and in effector
T-cell function. Furthermore, examination of serum samples from diffuse large B-cell lymphoma
(DLBCL) and chronic lymphocytic leukemia patients revealed the presence of increased levels of
anti-dUTPase antibodies in both cohorts compared to controls with the highest levels (3.67-fold
increase) observed in DLBCL female cases and the lowest (2.12-fold increase) in DLBCL males.
Using computer-generated algorithms, dUTPase amino acid sequence alignments, and functional
studies of BLLF3 mutants, we identified a putative amino acid motif involved with TLR2 interaction.
These findings suggest that the EBV-dUTPase: TLR2 interaction is a potential molecular target that
could be used for developing novel therapeutics (small molecules/vaccines).

Keywords: Epstein-Barr virus (EBV); deoxyuridine triphosphate nucleotidohydrolase (dUTPase);
Toll-like receptor 2 (TLR2); diffuse large B cell lymphoma (DLBCL); chronic lymphocytic leukemia (CLL)

1. Introduction

Epstein-Barr virus, which is a γ herpesvirus, is a ubiquitous virus that establishes a latent infection
in over 90% of the global adult population. In addition to being the etiological agent of infectious
mononucleosis (IM), it is implicated in several human malignancies including Burkitt’s lymphoma
(BL), nasopharyngeal carcinoma (NPC), classical Hodgkin lymphoma (cHL), gastric cancer, and diffuse
large B cell lymphoma (DLBCL) [1]. DLBCL is a heterogeneous disease that is classified based on
micro-array-based gene expression profiling as germinal center B-cell like (GCB) DLBCL or activated
B-cell-like (ABC) DLBCL [2]. A small percentage (10–20%) of DLBCLs are EBV-genome positive and
such tumors are usually classified in the ABC DLBCL group [3]. While EBV-genome positive tumors
were originally discovered in older (>50 years of age) immunocompetent individuals [4–8], they have
recently been reclassified to EBV+ DLBCL-NOS due to the increased occurrence of EBV+ DLBCL in
younger immunocompetent patients [9]. EBV is an independent factor that adversely affects risk
and/or survival among patients with DLBCL [5,7]. Conversely, while EBV is not generally associated
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with developing chronic lymphocytic leukemia (CLL), which is the most common leukemia in adults
in western countries [10], it is associated with Richter Syndrome (RS). RS, which occurs in 10% to
15% of patients with CLL, is a histological transformation to DLBCL resulting in a more aggressive
lymphoma with a poorer prognosis [11–14]. While several studies have implicated EBV in RS [15,16],
a mechanistic relationship has not been determined. However, a recent study demonstrated that
therapy related to immunosuppression in patients with CLL resulted in EBV reactivation, which drove
RS and the formation of the ABC subtype DLBCL in some patients [17]. This study as well as a recent
study of DLBCL [18] has suggested that products of lytic EBV may contribute to the development of
these malignancies, but additional studies need to be performed.

Studies to examine the roles of EBV-encoded proteins in cellular transformation have focused
primarily on those proteins and RNAs expressed during latency. These studies have demonstrated
unequivocally the roles of the latent membrane proteins LMP1 and LMP2A in the transformation
process and the immunological response of the host to these proteins [19,20]. Until recently, there have
been very few studies directed toward determining the role(s) of proteins expressed during the lytic
replication of EBV in immune modulation or in transformation despite the fact that low levels of EBV
reactivation and expression of genes associated with lytic replication are typically observed in a small
number of cells in many tumors [21–28]. However, recent studies have demonstrated the expression of
a large number of lytic genes in cell lines and, more importantly, in biopsy tissue [29–31]. It has been
suggested that proteins encoded by these genes may contribute to EBV oncogenesis by modulating
the tumor microenvironment through the release of growth factors and/or immunosuppressive
cytokines [32] or more directly by inducing genomic instability [28]. Additional data obtained from
studies using SCID and humanized mouse models support this premise [33–36].

The EBV gene BLLF3 encodes for a deoxyuridine triphosphate nucleotidohydrolase (dUTPase),
which is expressed during lytic/abortive lytic replication of the virus. While it has been difficult to
quantify the amount of EBV-dUTPase present in tissue or serum because of the lack of sensitive assays,
Ersing et al. [37] recently examined virus-host interactions during lytic replication using systemic
proteomic quantitative analysis with tandem mass tags and mass spectrometry and estimated that
the concentration of the EBV-dUTPase was 6000 nM and 7500 nM, respectively, in Akata and P3HR1
cells. There is indirect evidence to support the premise that EBV-encoded dUTPase is expressed and
released from cells in vivo by following lytic and/or abortive replication. We have demonstrated,
using quantitative real-time PCR, the expression of BLLF3 in tumors (9/10) obtained from SCID mice
injected with C666-1 cells, which is an EBV-genome positive NPC cell line [38]. Zhang et al. [39],
using microarray technology, demonstrated the expression of BLLF3 in PBMCs from a patient with
acute phase IM and in EBV genome positive tumor cell lines established from patients with nasal
NK/T-cell lymphoma. In addition, the EBV-encoded dUTPase protein has been detected using
immuno-histochemical techniques in the upper epithelial layers of oral hairy leukoplakia (HL) lesions
and the expression pattern was the same for BZLF-1 [40]. Similar results were obtained with lymphoid
cells in tonsils from patients with IM and in NPC tissue [40,41]. Furthermore, we recently demonstrated
by using immunohistochemistry the presence of the EBV- dUTPase in kidney biopsies from class III/IV
Lupus nephritis (LN) patients. The EBV-dUTPase localized in infiltrating plasma-cell aggregates near
glomeruli where neighboring cells expressing increased toll-like receptor 2 (TLR2) and IL-17 protein
levels were observed, which suggests that EBV-dUTPase may exacerbate the immunopathologies
in some LN patients [42]. We, as well as others, have demonstrated the presence of specific
anti-EBV-encoded dUTPase antibodies in the sera of patients with IM, in reactivated and chronic
EBV infections, in immunocompromised patients with HIV infections, and in immunocompetent
patients with EBV genome positive diffuse large B-cell lymphoma, chronic lymphocytic leukemia and
NPC [43–45], and unpublished data.

We have demonstrated that the dUTPases encoded by the human herpesviruses represent a new
class of pathogen-associated molecular pattern (PAMP) proteins that have novel immuno-regulatory
and neuro-regulatory functions, which may contribute to the pathophysiology of diseases caused
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by these viruses. Using the EBV-dUTPase as the prototype, our studies have demonstrated that it
possesses novel functions independent of its enzymatic activity. Among them, the EBV-dUTPase acts as
a trigger for TLR2, which leads to the activation of NF-κB and subsequent modulation of downstream
genes involved in chronic inflammation and oncogenesis [46]. We have also demonstrated that these
viral dUTPases are capable of differentially inducing the secretion of the pro-inflammatory TH1/TH17
cytokines IL-1β, IL-6, IL-8, IL-12p70, TNF-α, CCL20, and IFN-γ as well as the anti-inflammatory
cytokine IL-10 in human primary immune cells [47–51]. Not only is CCL20 reported to promote cellular
proliferation and differentiation of numerous cell types including malignant cells but IL-6, which is
a positive regulator of CCL20, also functions as an autocrine growth factor for EBV-immortalized
B-cells [52–54].

Since the interaction of EBV-dUTPase with TLR2 is the critical step for initiating the signaling
cascade that leads to the establishment of a microenvironment that may support the survival and
proliferation of EBV-transformed cells, the purpose of the present study was to elucidate the amino
acid residues in the EBV-dUTPase important for interacting with TLR2.

2. Results

2.1. Identification of a Putative TLR2 Binding Motif within the EBV-dUTPase

The EBV-encoded dUTPase is composed of 278 amino acids and, while it is the smallest of the
human herpesviruses’ dUTPases, it contains all five motifs characteristic of dUTPases [55] as well as a
unique motif (motif 6) found in herpesviruses’ dUTPases (see Figure 1) [56].
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Figure 1. Epstein-Barr Virus deoxyuridine triphosphate nucleotidohydrolase (EBV-dUTPase) amino
acid sequence. Typical dUTPase motifs 1–5 and the unique motif 6 characteristic of the Herpesviruses
dUTPase family are depicted.

Using computer-generated algorithms (hydrophilicity, flexibility, mobility, solvent exposure,
amphiphilicity, reverse turns, α-helical properties, and protrusion) to predict amino acid sequences
that have the potential to interact with other proteins, we identified five sequences, which were then
computer-ranked based upon their respective algorithms [51,57]. The amino acid sequences were
83–103 (rank 2), 109–140 (rank 1 contains the entire conserved motif 1), 174–194 (rank 4 contains most
of motif 6, which is restricted to herpesviruses’ dUTPases), 210–237 (rank 5 contains conserved motif
4), and 253–276 (rank 3 contains conserved motif 5).

Since amino acid residues 83 to 103 were identified by computer-generated algorithms as the
only non-conserved motif containing sequences with a high likelihood for interacting with other
proteins and amino acid sequence 174 to 194 contains most of the unique motif 6 of unknown function,
we next constructed synthetic peptides corresponding to amino acid residues leucine 83 through
lysine 103 (L83-K103) as well as leucine 174 through serine 194 (L174-S194) and tested whether or
not these peptides could induce NF-κB activation by engaging TLR2. As shown in Figure 2, only
the L83-K103 peptide induced the transcriptional activation of the NF-κB reporter gene by 34-fold,
which is approximately 50% of that exhibited by the full-length EBV-dUTPase protein (74-fold) while
L174-S194 and corresponding scrambled control peptides did not cause a significant activation of
NF-κB in human embryonic kidney 293 cells (HEK293)—stably expressing TLR2.
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Figure 2. Activation of NF-κB by L83-K103 peptide in HEK293 cells stably expressing TLR2. Cells were
transiently transfected with NF-κB luciferase reporter plasmid as we have described [40,43,44].
After 24–36 h, cells were treated with wild-type EBV-dUTPase, EBV-dUTPase peptide L83-K103,
scrambled peptide L83-K103, EBV-dUTPase peptide L174-S194, scrambled peptide L174-S194
(10 µg/mL), zymosan (10 µg/mL), or left untreated for 8 h and luciferase reporter gene activity
was measured. Values represent the mean fold induction (FI) ± SD relative to control (n = 3).
Values represent the mean fold induction (FI) ± SD relative to control (n = 3). * p < 0.05 (Groups
compared: wild-type dUTPase or synthetic peptide treated vs. untreated).

Further cytokine analysis of synthetic peptides in human PBMCs revealed that stimulation of
cells with the EBV-dUTPase synthetic peptide L83-K103 but not scrambled peptide resulted in an
increased production of IL-6 (9-fold increase over scrambled control peptide), IL-8 (2.5-fold increase),
TNF-α (5-fold increase), IL-10 (4.8-fold increase), and IL-1β (3.3-fold increase) cytokines compared
to untreated control cells. However, the cytokine response induced by L83-K103 peptide was not as
strong as that observed in cells stimulated with the full-length EBV-dUTPase protein especially for
IL-1β, TNFα, and IL-10 (see Table 1).

Table 1. Cytokine profile induced by EBV-dUTPase peptide L83-K103 in human a PBMCs at 48 h.

Treatments (10 µg/mL) IL-6
(pg/mL)

IL-1β
(pg/mL)

TNFα
(pg/mL)

IL-8
(pg/mL)

IL-10
(pg/mL)

Untreated 5 ± 0.8 31 ± 22.8 5 ± 4.9 407 ± 5.7 8 ± 3.8
EBV-dUTPase 9570 ± 5.7 978 ± 15 379 ± 123 35,039 ± 219 311 ± 35

Scrambled peptide L83-K103 369 ± 312 34 ± 24.4 9 ± 6.2 8738 ± 267.6 9 ± 5.2
EBV-dUTPase peptide L83-K103 3272 ± 6 111 ± 21.5 45 ± 6.6 21,934 ± 14 43 ± 6.2

a PBMCS from healthy donors were treated with EBV-dUTPase full-length protein, EBV-dUTPase peptide L83-K103,
scrambled control peptide (10 µg/mL), or left untreated for 48 h. Culture supernatants were collected for cytokine
analysis by ELISA. Cytokine levels are expressed as pg/mL. Values represent mean ± SD of an n = 3.

While the size and sequence homologies of the dUTPases encoded by members of the
Herpesviridae Family vary considerably, a common feature in the dUTPases encoded by EBV, HSV-2,
HHV-6, HHV-8, and VZV is their ability to trigger the activation of TLR2 [40,43,44]. Blast analyses
of the amino acid sequences of the herpesviruses dUTPases as well as the human nuclear dUTPase
demonstrated that the herpesviruses contained a sequence that was somewhat divergent especially
with the β-herpesviruses that may represent a conserved sequence (see Table 2).



Cancers 2018, 10, 129 5 of 15

Table 2. TLR2 putative binding motif.

dUTPases Amino Acid Sequence

EBV 81GELRLILQNQ90

HHV-8 109GEIQVILLNK118

HSV-1/2 102GTVMAVVAP110

VZV 130GVISALLYYR139

HHV-6A 207TDISVFLMNL116

HHV-7 215NVISISLINL224

HCMV 173LQVPQLDVVNL183

Human 84GNVGVVLFNF93

This TLR2 putative interactive motif is located in the β6 strand structure adjacent to motif 3,
which is part of the catalytic site. This motif contains eight amino acid residues, which are included
in the computer-generated algorithm sequence 83-103. The possibility of this motif being part of the
TLR2 interactive domain is further supported by the studies described above, which demonstrate
that a synthetic peptide corresponding to amino acids L83-K103 of the EBV-dUTPase induced NF-κB
activation (see Figure 1) in TLR2-HEK293 cells and stimulated the secretion of pro-inflammatory
cytokines in human PBMCs (see Table 2). To further confirm the importance of this motif for triggering
TLR2 signaling, we generated a recombinant EBV-dUTPase protein containing a triple mutation
(82ELR84 to 82GGG84; EBVdUTPase/TMutTLR2BD) and demonstrated that it significantly reduced
NF-κB activation by 83% to 12.31-fold compared to the wild-type EBV-dUTPase protein (75-fold
increase) (see Figure 3). Decreased cytokine secretion by stimulated PBMCs was also observed (data
not shown), which highlights the importance of amino acid residues glutamate (E) 82, leucine (L) 83,
and arginine (R) 84 in the activation of TLR2 signaling and further supporting this motif as a TLR2
putative interactive motif.
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Figure 3. Site-directed mutagenesis of the putative TLR2 binding motif in the EBV-dUTPase
inhibits NF-κB activation. TLR2-HEK293 cells were transiently transfected with NF-κB luciferase
reporter plasmid as we have described [40,43,44]. After 24–36 h, cells were treated with wild-type
EBV-dUTPase, a triple mutant (82ELR84 to 82GGG84) of the EBV-dUTPase TLR2 putative binding
motif (EBVdUTPase/TMutTLR2BD), EBV-dUTPase peptide L83-K103, scrambled peptide L83-K103
(10 µg/mL) or left untreated for 8 h and luciferase reporter gene activity was measured. Values represent
the mean fold induction (FI) ± SD relative to control (n = 3). * p < 0.05 (Groups compared:
dUTPase treated vs. untreated and dUTPase triple mutant vs. wild-type dUTPase).

2.2. Anti-EBV-Encoded dUTPase Antibody in Patients with DLBCL and Chronic Lymphocytic Leukemia (CLL)

A better understanding of the diversity in the humoral response to EBV-dUTPase in health
and disease states may enable us to identify EBV-dUTPase antibody patterns that could be used



Cancers 2018, 10, 129 6 of 15

as markers for early diagnosis and/or to monitor treatment. Using our standard neutralization
assay [44], we next conducted a pilot study to examine the humoral response to the EBV-dUTPase in
healthy EBV carriers (n = 89) and in the B cell malignancies DLBCL (n = 36) and CLL (n = 66) sera
samples from the European EPILYMPH case-control published study [58] exhibiting either a normal or
abnormal/reactive antibody pattern to EBV, which was determined by de Sanjose et al. [58]. Sera from
a control cohort of 431 individuals with no known health problems (268 females and 163 males)
ranging in age from 18–92 years with a median age 63.38 ± 12.52 for females and 62.48 ± 13.46 for
males, a DLBCL cohort of 36 cases (21 females and 15 males) ranging in age from 23 to 80 years
old with a median age of 59.22 ± 18.39 and 49.40 ± 15.95 years, respectively, and a CLL cohort of
66 patients (33 females and 34 males) ranging in age from 30 to 87 years old with a median age
of 69.52 ± 9.61 and 68.99 ± 11.75, respectively, were tested for the presence of anti-EBV dUTPase
neutralizing antibodies. This study revealed an overall increase in neutralizing antibodies specific to
the EBV-dUTPase in the case cohorts (36.11% and 39.39% for DLBCL and CLL, respectively) compared
to the controls (12.76%) (see Table 3). Data analysis by gender shows a difference in the prevalence of
dUTPase neutralizing antibodies between females and males within each cohort and across disease
type relative to the controls. Within the DLBCL sera samples, there was a higher prevalence of
dUTPase neutralizing antibodies in females than males (42.86% versus 26.66% in males). Additionally,
the opposite was observed in the CLL cohort with males exhibiting a higher prevalence of dUTPase
neutralizing antibodies than females (34.37% versus 44.12% in males). No differences were found
within the control cohort between females and males, which suggests that the prevalence of dUTPase
neutralizing antibodies in this group is independent of gender. More importantly, when comparing
dUTPase antibody prevalence across disease type, it was found that the highest increase was observed
in CLL male (44.12% versus 13.98% in controls) and DLBCL female cases (42.86% versus 11.67% in
controls) (a 3.16-fold and 3.67-fold increase respectively), which were followed by the CLL female
(34.37%, 2.95-fold increase) and DLBCL male cases (29.67%, 2.12-fold).

Table 3. Detection of anti-EBV-dUTPase antibodies (Ab) in patients with DLBCL or CLL.

Clinical Status Gender % Positive EBV
dUTPase Ab a

% Abnormal Reactive Ab
Pattern to EBV (ARP_EBV) b

% ARP_EBV & dUTPase
Seropositive c

Controls
Females 11.67 (32/268) 22.22 (10/45) 8.88 (4/45)
Males 13.98 (23/163) 11.36 (5/44) 4.54 (2/44)

DLBCL
Females 42.86 (9/21) 33.33 (7/21) 14.28 (3/21)
Males 26.66 (4/15) 20.00 (3/15) 0.00 (0/15)

CLL
Females 34.37 (11/32) 53.12 (17/32) 18.75 (6/32)
Males 44.12 (15/34) 20.59 (7/34) 14.70 (5/34)

a dUTPase neutralizing assays were performed as described previously [44]. Values in parentheses represent the
number of positive sera in either cases or controls/total sera. The total number of control sera (n = 431) include
89 samples from the EPILYMPH case-control study [58] as well as 352 samples from other published studies
[44,45,48]. b Individuals’ sera exhibiting an abnormal reactive Ab pattern to EBV (ARP_EBV) was determined
by de Sanjose et al., as part of the EPILYMPH case-control previously published study [58]. Values represent
the percentage of sera samples exhibiting EBV-IgG reactivity to combined immuno-dominant epitopes of EBNA1
and VCA-p18-based ELISA assays and abnormal reactivity/intensity score on immunoblots to EBV antigens
(ex: EAd-p47/54, EAd-p138) other than/besides EBNA1, VCA-p40, VAC-p18, and ZEBRA predominantly
recognized by healthy EBV immunocompetent individuals [58]. Values in parentheses represent the number
of individuals exhibiting increased/abnormal Ab responses to EBV proteins in either cases or controls sera/total
sera. c Values represent the percentage of sera samples that were positive for anti-EBV-dUTPase antibodies and also
had increased/abnormal EBV reactivity. Values in parentheses represent the number of positive sera in either case
or controls/total sera.

3. Discussion

EBV-associated malignancies are reported to account for approximately 1.5% of all cancers
worldwide and represent 1.8% of all cancer deaths [59]. While most studies have focused on the
contribution of EBV latency proteins such as LMP-1 and LMP-2A in oncogenesis, few studies have
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addressed the role, if any, that EBV proteins produced during lytic/abortive lytic replication may have
in this process.

In the current study, we demonstrate the presence of increased neutralizing antibodies against the
EBV-dUTPase in the sera of DLBCL and CCL patients from the EPYLYMPH study, which examined
abnormal humoral responses to EBV [58]. In the EPYLYMPH study, the investigators reported that
patients with aberrant EBV activity were identified by a broad immuno-reactive profile including
antibodies to several peptides from proteins composing the Early Antigen diffuse (EA-D) complex
(BMRF1, BALF2, BGLF5, and BXLF1) as well as EBNA1, VCA, and BZLF1 while uncomplicated
carriers and sera from some patients with lymphomas exhibited a more restricted antibody pattern
(EBNA1, VCA, and BZLF1). The dUTPase, which is encoded by the BLLF3 gene, is an early protein
that forms part of the EA-D complex. An important finding of our study is the observation that
CLL male cases exhibited the highest prevalence of dUTPase neutralizing antibodies (44.12% versus
13.98% in controls) of all cases examined and had the lowest prevalence of an abnormal reactive
antibody pattern to EBV. By contrast, CLL females had the highest increase in abnormal reactive
antibody patterns to EBV (53.12% versus 22.22% in controls as determined by de Sanjose et al. [58])
but had the second lowest prevalence in dUTPase antibodies. Furthermore, within the DLBCL cohort,
67% (6/9) of female and all male sera samples (4) that tested positive for the presence of dUTPase
neutralizing antibodies also expressed a normal/non-reactive antibody pattern to EBV. Overall, an
increased prevalence of dUTPase neutralizing antibodies was consistently observed in sera of DLBCL
and CLL patients who exhibited a normal/non-reactive antibody pattern to EBV. A recent study
demonstrated that immediate early and early EBV proteins expressed during lytic replication of
EBV are expressed in some tumor cells in patients with EBV+ DLBCL and that antibodies against
these proteins are detected in patients’ sera. This led the investigators to propose that products from
lytic/abortive lytic replication may contribute to tumor growth and survival [18]. Our previous
studies have demonstrated that the EBV-dUTPase protein induces IL-6 in primary dendritic cells
and PBMCs [46–48]. IL-6 is a growth factor for EBV-immortalized B cells and IL-6 over-expression
has been shown to enhance growth of EBV-transformed lymphoblastoid cell lines (LCL’s) in SCID
mice [60–63]. In addition, we have shown that EBV-dUTPase up-regulates the expression of CCL20
(335-fold) [49], which, in turn, may increase migration and trafficking of regulatory T cells (Tregs) into
the tumor environment. Therefore, this dampens the immune response to EBV [54]. EBV-dUTPase
also up-regulates the expression of BIC/miR155 [38], which is associated with aberrant inflammatory
responses and oncogenesis, enhanced B-cell transformation, and the development of Tregs [64]. In all,
these data support the premise that the dUTPase could modify the tumor microenvironment [32,38,65]
and that the presence of antibodies directed against the dUTPase may be a useful marker for detecting
aberrant virus replication in a subset of patients with DLBCL.

While several studies have demonstrated increases in EBV viral load, EBV miRNA and
anti-EBV-antibodies in the sera of patients with CLL [66–70], the potential role of EBV in the
development of CLL still remains poorly understood. Another study by de Sanjose et al. [58] reported
that CLL samples exhibited the highest prevalence of abnormal anti-EBV antibody reactivity (40%)
of any lymphomas examined. This finding was also observed in our analyses of anti-EBV dUTPase
antibodies in the same samples. Two independent studies have recently demonstrated that a subgroup
(53–59%) of patients presenting with CLL had significantly higher EBV-DNA copy numbers [69,70].
These patients required early treatment [69] and exhibited shorter survival rates [69,70]. It is also
well documented that a small percentage (10–15%) of patients with CLL will undergo histological
transformation into an aggressive form of DLBCL [11–14] referred to as Ritchter syndrome (RS).
Recently, it was reported that RS might occur following aggressive therapy during CLL that results
in the reactivation of EBV [17]. Therefore, it is possible that the CLL patients tested in this study
and the study by de Sanjose et al. [58] represent two subgroups one in which EBV is a negative
prognostic factor for patients with CLL and a second subgroup in which EBV contributes to RS
transformation. While additional studies are necessary to delineate additional markers to distinguish
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these subgroups, the results of this study as well as that of de Sanjose et al. [58] suggest that antibodies
against EBV-dUTPase and EA-D, which the dUTPase is a component of, could be useful markers for
initially identifying such patients.

There is a growing body of evidence demonstrating that the reactivation of latent herpesviruses,
as indicated by higher antibody titers to proteins expressed during lytic or abortive-lytic replication,
occurs when the immune system is compromised [45,48,71–74]. Several studies on EBV have
established that reactivation of the virus usually results in abortive-lytic replication in which only
immediate early and early genes are expressed and, therefore, no new virus is produced [75–77].
Since the dUTPase is expressed as an early protein, this would suggest that abortive and/or lytic
replication occurs in a subset of patients with DLBCL and CLL.

We have previously demonstrated that the EBV-dUTPase triggers NF-κB activation by engaging
TLR2 homodimers [46] while the dUTPases encoded by HSV-2, HHV-6, HHV-8, and VZV require
ligation of the TLR2/1 heterodimer complex to activate NF-κB [50]. Follow-up studies demonstrated
that these viral dUTPases are capable of differentially inducing the secretion of the pro-inflammatory
TH1/TH17 cytokines IL-1β, IL-6, IL-8, IL-12p70, TNF-α, and IFN-γ as well as the anti-inflammatory
cytokine IL-10 in human primary immune cells [46–51]. This suggests that they can modulate the
cellular microenvironment [32,38,65]. While sequence analyses have demonstrated that the α and
γ herpesvirus members contain the five highly conserved motifs characteristic of the homotrimeric
and monomeric dUTPases, members of the β herpesvirus group do not. However, all the human
herpesviruses contain an additional conserved motif (domain 6) that is absent in the homotrimeric
dUTPases [56]. It has been suggested that this novel herpesvirus-specific domain may contribute to
some unknown novel function. With the exception of the EBV-dUTPase [55], no crystal structure data
is available for the other human herpesviruses’ dUTPases. The results shown in this study demonstrate
that amino acid residues between 81G to 103K of the EBV-dUTPase are important for binding to and
activating TLR2 signaling. This TLR2 putative interactive motif is located in the β6 strand structure
adjacent to motif 3, which is part of the catalytic site.

The lack of control of EBV abortive/lytic replication may reflect a variety of physiological
processes including stress and aging, which affect T-cell function and, therefore, the role of EBV
in oncogenesis may or may not be a direct effect. However, our results suggest that lytic/abortive
lytic replication occurs in patients with DLBCL as well as CLL. The EBV-dUTPase may alter the tumor
microenvironment [32,38,65] by providing a selective advantage (growth/survival) to the malignant
cell. Future studies using a larger cohort of patients will be necessary to determine whether there
is a possible relationship between EBV-dUTPase expression and malignant progression as well as
whether or not the presence of anti-EBV-dUTPase antibodies could be useful for diagnostic purposes.
While additional experiments involving crystal structures of TLR2: EBV-dUTPase complexes are
needed to confirm the specific amino acid residues of the EBV-dUTPase that interacts with TLR2, the
results from the current study support the premise that the EBV-dUTPase-TLR2 interaction could be
used as a target for developing novel therapeutics specifically small molecules and/or vaccines.

4. Materials and Methods

4.1. Construction of EBV-dUTPase Triple Mutant

EBV-dUTPase containing a triple point mutation E82G, L83G, and R84G (82ELR84 to 82GGG84)
was generated by site-directed mutagenesis using the QuikChange Lightning Mutagenesis system
(Stratagene, Santa Clara, CA, USA), which was previously described [78] and the primer
set: Forward: 5′-CCGGTCACGTCTCATGTTGGCATCATCGATCCCGGCTACACG-3′; Reverse:
5′-CGTGTAGCCGGGATCGATGATGCCAACATGAGACGTGACCGG-3′. The PCR conditions used
include one cycle at 95 ◦C for 2 min, which was followed by 18 cycles of 95 ◦C for 20 s, 60 ◦C for 10 s,
and 68 ◦C for 2.5 min, and one cycle at 68 ◦C for 5 min. Amplified products were DpnI digested and
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screened for the β-galactosidase (β-gal+) phenotype. DNA was then purified and the amino acid
changes E82G, L83G, and R84G were verified by using sequence analysis.

4.2. Peptide Synthesis

EBV-dUTPase peptides 83LRLILQNQRRYNSTLRPSELK103, 174LAMQGILVKPCRWRRGGVDVS194

as well as the respective scrambled controls peptides 83ELQPKRTLQSRLYRINLSNRL103 and
174KRLGVCIQWVGLPRDVMRSAG194 were synthesized in house in the Peptide Protein Engineering
Laboratory at the Tzagrournis Medical Research Facility at The Ohio State University. Peptide synthesis
was performed on a Milligen/Biosearch 9600 solid-phase peptide synthesizer (Bedford, MA, USA)
using Fmoc/t-But chemistry. The C-terminal amino acid loaded on CLEAR ACID resin (0.32 mmol/gm)
(e.g., in case of peptide WILL 83-103, Fmoc-Ile-CLEAR ACID Resin (Peptides International, Louisville,
KY, USA) was used for the synthesis. All peptides were cleaved from the resin using cleavage
reagent B (Trifluoroacteic acid:Phenol:Water:Triisopropyl silane 90:4:4:2) and crude peptides were
purified on preparative Reverse Phase-High Pressure Liquid Chromatography (RP-HPLC) using
Vydac C-4 column and the acetonitrile-water (0.1% TFA) gradient system. All fractions were analyzed
on analytical RP-HPLC and characterized by using Matrix Assisted Laser Desorption Ionization
mass spectroscopy (MALDI) at The Ohio State University Campus Chemical Instrumentation Center.
RP-HPLC fractions showing the same mass spectrum peak were pooled together and lyophilized.
The respective scrambled peptides were synthesized using the number of amino acids present in
natural sequences and were scrambled manually. All pure peptides were further characterized using
MALDI mass spectroscopy analysis to confirm the calculated and observed molecular weight, which
include L83-K103 (M+H+) Cal/Obs 2598.49/2598.47, SCRL83-K103 (M+H+) Cal/Obs 2598.49/2598.23;
L174-S194 (M+H+) Cal/Obs 2341.82/2341.13, SCRL174-S194 (M+H+) Cal/Obs 2341.84/2341.42.

4.3. Purification of Recombinant EBV-dUTPase Protein

Sub-cloning and purification of recombinant EBV-dUTPase mutant and wild-type proteins were
performed as previously described [40,41,44]. All recombinant dUTPase protein preparations were
tested for the presence of contaminants, which was described previously [40,41,44], and were free of
detectable levels of LPS, peptidoglycan (SLP-HS), DNA, or RNA. Protein concentration was determined
using the Qubit fluorimeter (Invitrogen, Carlsbad, CA, USA). The purified recombinant dUTPase
proteins used in these studies were stored at −80 ◦C until further use.

4.4. EBV-dUTPase Neutralization Assays

Neutralization assays for the EBV dUTPase were performed as previously described [44]. In brief,
5 µL of human serum were mixed with 5 µL of purified EBV-dUTPase (3–5 units of enzyme) for 30 min
at room temperature prior to assaying for enzymatic activity. EBV-dUTPase activity was determined as
described previously [44]. For positive controls, assays were performed in the presence of human serum
that lacked detectable antibodies to the EBV. Negative controls were also performed in the absence
of the enzyme preparation. A unit of EBV-dUTPase activity was defined as the amount of enzyme
required to convert 1 nmole of dUTPase to dUMP and pyrophosphate/min/mL of enzyme at 37 ◦C.
Units of enzymatic activity neutralized per mL of serum were obtained as follows: (Ucontrol–Userum).
Serum with neutralizing units greater than or equal to two standard deviations from the control were
considered “positive” for dUTPase neutralizing antibodies.

4.5. Patients

The patient samples in this study were collected from 1988–2003 as part of the EPILYMPH
case-control study carried out in six European countries by de Sanjose et al. [58]. Cases were
defined as all consecutive patients having their initial diagnosis of lymphoid malignancy during
the study period. The diagnosis of lymphoma was verified by histology and 99% of cases were
supplemented by immunohistochemistry tests and flow cytometry. The cases were categorized
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according to the World Health Organization (WHO) Classification for Neoplastic Diseases of the
Lymphoid Tissues and included all B-cell, T-cell, and NK-cell neoplasms as well as Hodgkin’s
lymphoma [79]. Additionally, 20% of all diagnosed cases in each country were externally reviewed
by a panel of international pathologists. The panel diagnosis is the one used in this analysis in the
rare circumstance of disagreement between the local and the panel pathologists. Subjects with a
diagnosis of uncertain malignant potential such as post-transplant lymphoproliferative disorder or
monoclonal gammopathies of undetermined significance were excluded. Immunosuppressed patients
were excluded from the analysis.

4.6. Cell Culture

Human embryonic kidney (HEK293) cells stably expressing human TLR2 (TLR2-HEK293;
Invivogen, San Diego, CA, USA) were maintained in DMEM-supplemented medium, as recommended
by the manufacturer [46,49,50,78]. Human peripheral blood mononuclear cells (PBMCs) from healthy
subjects were obtained from Astarte Biologics (Bothell, WA, USA).

4.7. Luciferase Reporter Gene Assays

HEK293 cells (2.5 × 105) were seeded into 12-well plates and 24 h later transiently transfected
with pNFκB-Luc, pRL-TK reporter vectors (Promega, Madison, WI, USA), or with empty vectors as
described [46,49,50,78]. About 24 h to 36 h after transfection, cells were treated with recombinant
wild-type or truncated EBV dUTPase proteins (10 µg/mL), zymosan (10 µg/mL; positive control for
TLR2 activation) for 8 h or left untreated. After treatment, cell lysates were prepared and reporter
gene activities were measured using the dual-luciferase reporter assay system (Promega). Data were
normalized for transfection efficiency by measuring Renilla luciferase activity and expressed as mean
relative stimulation ± SD.

4.8. Cytokine Profile Induced by Herpesviruses-Encoded dUTPases

PBMCs were seeded at a density of 2.5 × 105 in 24-well plates and cultured in AIM-V serum-free
medium supplemented with L-glutamine (2 mM), streptomycin (50 µg/mL), and gentamycin
(10 µg/mL). The next day, cells were stimulated with wild-type or truncated dUTPases
(10 µg/mL), EBV-dUTPase peptide L83-K103, scrambled peptide L83-K103 or left untreated for
24 h. Following treatment, cell culture supernatants were collected and cytokine levels were
measured by using ELISA (MSD Multi-array and Multi-spot human cytokine kit), which we described
previously [46,49,50,78]. Concentrations are expressed as pg/mL and represent the mean ± SD of an
n of 3.

4.9. Statistical Analysis

Statistical analyses were performed using a paired two-sample t-test for the means and p values
were reported when displaying a significant value (p < 0.05). Values represent the mean ± SD of at
least three independent experiments.

5. Conclusions

Examination of serum samples from diffuse large B-cell lymphoma (DLBCL) and chronic
lymphocytic leukemia (CLL) patients revealed the presence of increased anti-dUTPase neutralizing
antibodies in both cohorts compared to controls with the highest levels (3.67-fold increase) observed
in DLBCL female cases and the lowest (2.12-fold increase) in the DLBCL males. Furthermore, using
computer-generated algorithms, dUTPase amino acid sequence alignments, and functional studies
of BLLF3 mutants, we identified a putative amino acid motif involved with TLR2 interaction and
demonstrated that amino acid residues between 81G to 103K of the EBV-dUTPase are important for
binding to and activating TLR2 signaling. These findings suggest that the EBV-dUTPase: TLR2
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interaction is a potential molecular target that could be used for developing novel therapeutics (small
molecules/vaccines).
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