
Research and Applications

Generative transfer learning for measuring plausibility of

EHR diagnosis records

Hossein Estiri ,1,2,3 Sebastien Vasey,4 and Shawn N. Murphy1,2,3

1Harvard Medical School, Boston, Massachusetts, USA, 2Massachusetts General Hospital, Boston, Massachusetts, USA, 3Mass

General Brigham, Boston, Massachusetts, USA, and 4Department of Mathematics, Harvard University, Cambridge, Massachu-

setts, USA

Corresponding Author: Hossein Estiri, PhD, MGH Laboratory of Computer Science, 50 Staniford Street, Suite 750, Boston,

MA 02114, USA; hestiri@mgh.harvard.edu

Received 2 June 2020; Editorial Decision 13 August 2020; Revised 30 July 2020; Accepted 18 August 2020

ABSTRACT

Objective: Due to a complex set of processes involved with the recording of health information in the Electronic

Health Records (EHRs), the truthfulness of EHR diagnosis records is questionable. We present a computational

approach to estimate the probability that a single diagnosis record in the EHR reflects the true disease.

Materials and Methods: Using EHR data on 18 diseases from the Mass General Brigham (MGB) Biobank, we de-

velop generative classifiers on a small set of disease-agnostic features from EHRs that aim to represent Patients,

pRoviders, and their Interactions within the healthcare SysteM (PRISM features).

Results: We demonstrate that PRISM features and the generative PRISM classifiers are potent for estimating

disease probabilities and exhibit generalizable and transferable distributional characteristics across diseases

and patient populations. The joint probabilities we learn about diseases through the PRISM features via PRISM

generative models are transferable and generalizable to multiple diseases.

Discussion: The Generative Transfer Learning (GTL) approach with PRISM classifiers enables the scalable vali-

dation of computable phenotypes in EHRs without the need for domain-specific knowledge about specific dis-

ease processes.

Conclusion: Probabilities computed from the generative PRISM classifier can enhance and accelerate applied

Machine Learning research and discoveries with EHR data.
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INTRODUCTION

The continuing prevalence of Electronic Health Records (EHR) sys-

tems offers great promises for their secondary use in biomedical re-

search. EHR data can accelerate real-time translation of evidence-

based discoveries into everyday healthcare practice as we strive to-

wards rapid-learning health care systems.1,2 However, because

EHRs were not primarily designed for research and discovery, the

utility of EHRs for research is hindered by legitimate and known

data quality concerns.3–6 In its most recent publication, the Office of

the National Coordinator (ONC) for Health IT has identified

leveraging high-quality electronic health data for research as one of

its two overarching goals.7

In general, the truthfulness (or plausibility) of clinical records

stored in EHRs can be disputable to varying degrees.8 One of the

more challenging aspect of assessing EHR data quality is quantifying

the plausibility of diagnoses records. EHR records reflect a complex

set of processes that may not be direct indicators of patients’ “true”

health states at different time points, but rather reflect the clinical

processes, the patients’ interactions with the system, and the record-

ing processes.9–11 The existence of an International Classification of

Diseases (ICD) code for a disease in a patient’s electronic records
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does not necessarily mean that the patient truly has the disease. This

is an outstanding hurdle for a swift secondary use of EHR data to

address pressing public health issues.

The central idea in this study is to obtain a generalizable model

for scalable computation of probability of EHR disease records over

time. We present a computational approach that leverages the con-

cept of transfer learning to quantify the probability of diagnoses

records in the EHRs for a wide range of diseases. The Generative

Transfer Learning (GTL) approach involves developing generative

classifiers using a small set of disease-agnostic features from EHRs

that aim to represent Patients, pRoviders, and their Interactions

within the healthcare SysteM—we call these PRISM features. Using

EHR data on 18 diseases from the Mass General Brigham (MGB,

formerly known as Partners Healthcare) Biobank,12,13 we demon-

strate the competency, transferability, and generalizability of the

PRISM features and exhibit use cases of PRISM classifiers for com-

puting approximate disease labels and temporally updating disease

probabilities. The GTL approach introduced in this study allows for

validation of various EHR phenotypes without the need for domain-

specific knowledge about individual disease processes.

BACKGROUND

The closest related work to computing disease probabilities is EHR

phenotyping. To be able to make precise assumptions about the

presence (or lack there) of a disease, given the presence of its diagno-

sis record in the EHRs, we would need to perform EHR phenotyping

for all diseases. The key task in EHR phenotyping is to identify pa-

tient cohorts with (or without) certain phenotypes or clinical condi-

tions of interest.14,15 Approaches to electronic phenotyping include

rule-based methods, text processing, supervised/semi-supervised/

unsupervised phenotyping using statistical learning techniques, and

hybrid approaches.14,16 Computational phenotyping algorithms ba-

sically estimate, for each patient, the probability that they have the

disease, given certain phenotypic characteristics that are inferred

from a vector of medical records R. Most of the statistical learning

algorithms used in computational phenotyping apply discriminative

models (such as logistic regression) that aim to learn the explicit

hard/soft boundaries between different classes of Y in the data by di-

rectly modeling the conditional probability p yjrð Þ.
If we had computational or rule-based phenotyping algorithms

for all diseases, plausibility of EHR diagnosis records would not be

an issue. In most cases, however, phenotyping entails specialized

computational or rule-based algorithms that are often costly, require

expert involvement for curating phenotypic characteristics (vector

of features), and do not scale over a wide range of diseases.

Further, most phenotyping algorithms need labeled data for

training and testing. To soften this need, semi-supervised computa-

tional phenotyping relies on what is known as “silver-standard”

labels that are curated based on the statistical computation of phe-

notype probabilities. Different data types and methods are utilized

in computing phenotype probabilities from electronic medical

records, for example, using disease-specific anchor features. Anchors

are expected to signal positive when the phenotype is present, but

are often uninformative when the phenotype is absent.17,18

Clinical notes and structured data are popular sources of infor-

mation for mining disease-specific anchor features. For example,

Halpern et al.18,19 and Agarwal et al.20 mined clinical notes for spe-

cific anchor features, such as phrases, that described the phenotype

to compute probabilities. Yu et al.21–23 developed frameworks to

automatically generate a list of anchor phrases (and clinical codes)

from medical knowledge sources. Chiu and Hripcsak24 leveraged

the International Classification of Diseases, the 9th revision (ICD-9)

codes as surrogates to perform batch-phenotyping without anno-

tated phenotype labels. Wagholikar et al.25 proposed the polar label-

ing (PL) that utilizes the distribution of disease-specific ICD codes to

curate silver-standard labels, based on a threshold on the probability

distribution function. Nevertheless, because anchors are disease-

specific their selection/curation generally requires domain expertise

(or prior knowledge) and thus does not generalize to other pheno-

types. In this paper, we introduce a small set of disease-agnostic fea-

tures R ¼ ðR1; . . . ;RnÞ that aim to reflect the Patients, pRoviders,

and their Interactions within the healthcare SysteM (PRISM)—eg,

the number of distinct dates in which a diagnosis code was recorded

and the encounter type (inpatient, outpatient) for the diagnosis re-

cord. We argue and demonstrate that PRISM features can be used

for training generative PRISM classifiers to estimate disease proba-

bilities and are generalizable and transferable across disease and pa-

tient populations.

Our goal is to estimate the likelihood of disease Z in patient P at

time t1, given the diagnosis record R for the disease at t2 � t1. Let us

assume R represents a vector of records and Y is an outcome vari-

able (ie, Y ¼ 1 means diagnosis record is true), obtained from elec-

tronic health records. We model both the PRISM features R and the

target variable Y as random (ie, stochastic) variables with a joint dis-

tribution pðr; yÞ. The list and description of PRISM features are pro-

vided in Table 1. Unlike discriminative models that are the prevalent

modeling algorithms in computational phenotyping, generative

models make structural assumptions on the data that preclude over-

fitting. They aim to learn the distribution of different classes of Y in

the data, by learning the joint probability pðr; yÞ—ie, generative

models care about both pðy j rÞ and pðyÞ.26 Generative models,

therefore, can have a higher upside for the computing disease proba-

bilities due to their ability to learn from small gold-standard labeled

data.

We hypothesize that from PRISM features we can build genera-

tive PRISM classifiers that (1) can predict a target disease, and (2)

are transferable across diseases and patient populations. The second

hypothesis builds upon the transfer learning concept in Machine

Learning (ML) theory (here, “transfer learning” refers to exploiting

learning from one task to improve generalization on another task

through transfer of knowledge27,28)

METHODS

We test the study hypotheses through two approaches: supervised

self-learning (SSL) and supervised transfer learning (STL) using

PRISM features. We call the classifiers trained on PRISM features

the PRISM classifiers. To further evaluate the second hypothesis, we

expand the use case for the SSL and STL to curate silver standard

labels on larger patient populations for semi-supervised learning

(Figure 1).

Setting
The experiment described in this paper was carried out on electronic

health records data from the Mass General Brigham (MGB) Biobank

in Boston. The use of data for this study was approved by the Mass

General Brigham Institutional Review Board (2017P000282). To

test the study hypotheses, we use EHR data on a diverse set of 18

diseases: alzheimer’s disease (AD), atrial fibrillation (AFIB), asthma,

bipolar disorder (BD), breast cancer (BrCa), coronary artery disease
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(CAD), crohn’s disease (CD), congestive heart failure (CHF),

chronic obstructive pulmonary disease (COPD), epilepsy, gout, hy-

pertension (HTN), rheumatoid arthritis (RA), schizophrenia (SCZ),

stroke, type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus

(T2DM), and ulcerative colitis (UC). For each of the 18 diseases, a

patient in the cohort has at least one record of the diagnosis code for

the given disease and a gold-standard outcome label curated through

expert review of clinical narratives. The gold-standard data includes

labels for an average of 364 patients (ranging from 120 patients for

schizophrenia to 1181 patients for hypertension). We demonstrate

two use cases in this study. For the first use case, we also used unla-

beled data from the MGB Biobank on all 18 diseases, which includes

data from an average of 5732 patients—ranging from 1661 (AD) to

14 406 (CAD)—with at least one diagnosis code for the disease of

interest. Supplementary Table S1 provides detailed information

about data from each disease.

Self-learning
We conduct both supervised and semi-supervised self-learning (ab-

breviated as SSL and SSSL, respectively). In SSL, we start from a

small (on average, �360 entries) data set with “gold-standard”

labels (that were manually chart-reviewed) for a specific disease. For

patients with gold-standard labels, we extract PRISM features

from their medical records. We keep about half of these entries

(on average, �182) as part of a held-out test set and call the other

Table 1. An initial list of PRISM feature abbreviation and descriptions

abbreviation description

phenX #diagnosis record(s) for the phenotype

enc_denom #unique encounters for each patient

dx_denom #unique diagnosis codes for each patient

enchphen_denom #unique encounters between the first and last phenotype record

phenX_O #OUTPATIENT diagnosis record(s) for the phenotype

rx_denom #unique medication codes for each patient

different_dates #unique dates in which the diagnosis codes for the phenotype recorded

distinc_providers #unique provided who recorded the diagnosis codes for the phenotype

durate #months between the first and the last phenotype record

sex_cd patient gender

phenX_I #INPATIENT diagnosis record(s) for the phenotype

age_mean mean patient age at encounters when phenotype was recorded

age_min youngest patient age at encounters when phenotype was recorded

age_max oldest patient age at encounters when phenotype was recorded

phenx.rate growth rate in phenotype record ¼ phenX�1
enchpehndenom

. The feature aims to represent the growth in the phenotype record over time

oldness #months between the last record and the last phenotype record

phenX_E #ED diagnosis record(s) for the phenotype

Figure 1. Study design for evaluating the feasibility, generalizability, and transferability of PRISM classifiers.
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half the “train set A.” Train set C encompasses the rest (and vast

majority) of the data set from the same disease, which is unlabeled.

We compare two procedures:

• (Supervised self-learning, SSL) Train a generative model on train

set A and use it to label the test set.
• (Semi-supervised self-learning, SSSL) Train a generative model

on train set A and use it to compute probabilities and then curate

labels on train set C. The resulting labels are called silver-stan-

dard labels. We then train a (possibly different) generative model

on train set C with the silver-standard labels and use that to label

the test set.

More specifically, the training works as follows. To minimize

overfitting and redundancy between the features, we first run a

filter-type feature extraction method using joint mutual information

(JMI)29 as scoring criteria. The algorithm starts with a set S contain-

ing the top feature according to mutual information, then iteratively

adds to S the feature X maximizing the joint mutual information

score

JjmiðXÞ ¼
X

X�2S

IðXX�; YÞ

Here, IðZ; YÞ denotes the mutual information between random

variables Z and Y (a measure of the information shared by Z and

Y—it can be expressed as the entropy of Z minus the entropy of Z

given Y). The random variable XX� is simply the random variable

corresponding to the joint distribution of X and X�. In the end, we

select the top features that were added to the set S.

More precisely, suppose the features are ordered as

X1;X2; . . . ;Xn, with corresponding JMI score a1 � a2 � . . . � an

(the scores are increasing because of the sum in the JMI). We retain

features 1;2; 3; 4; . . . ; i, where i is least such that aiþ1 < ð1þ eÞai.

Here, e is a small positive number (we set it to e ¼ 0:1). In other

words, we always keep the first four features, and after that keep a

feature only if it increases the JMI score by a factor of at least

ð1þ eÞ.
The idea of using the joint mutual information score (as opposed

to just the mutual information) is that it also takes into account the

redundancy between the features: two features could each be highly

relevant on their own, but also be strongly correlated. Once the fea-

tures have been selected, we applied four generative models: Bayes-

ian generalized linear regression (logistic link and student-T prior

with one degree of freedom), linear and quadratic discriminant

(LDA and QDA) analyses, and Naı̈ve Bayes classifiers, to these data

to model pðy; rÞ and hence pðy j rÞ. We chose the four generative

models because they are well known, simple, and widely used.

Transfer learning
In the transfer learning approach, we again fix a single disease, d,

but use data for other diseases to train our model. Specifically, in ad-

dition to training set A (half the gold standard labels for disease d),

we have at our disposal the labeled data from all the other diseases

different from d. We call this second data set training set B. On aver-

age, the patient size for training set B was above 6000, which pro-

vided a major boost to the training task, with a potential caveat that

none of the labels were on the disease d.

We first start as in the previous setup by using joint mutual infor-

mation with training set A to identify the top features on disease d.

Call this set of features S.

We then identify the diseases for which these features also per-

form well. For this, we compute, for each disease d0 and each feature

X 2 S the Kullback-Leibler (KL) divergence Kd;d0 ;X between

pdðY j XÞ and pd0 ðY j XÞ. Here, pd, pd0 refer to probability computed

according to training set A for d and d0 respectively. The Kullback-

Leibler divergence is a well-known information-theoretic measure of

similarity between probability distribution—smaller divergence

means closer distributions, see for example Cover and Thomas

(2012).30

Once Kd;d0 ;X has been computed for each d0 6¼ d and each X, we

let Kd;d0 be the average of Kd;d0 ;X, for X 2 S. Say we have

Kd;d1
� Kd;d2

� Kd;d3
� . . . � Kd;d18

. Then we let training set C0

be training set C without the last k diseases in this list, where k is a

hyperparameter.

As before, we compare two approaches:

• (Supervised transfer learning, STL) Train a generative model

on train set C’ and use it to label a test set (labeled data for

disease d).
• (Semi-supervised transfer learning, SSTL) Train a generative

model on train set C’ and use it to predict disease probabilities

and curate silver-standard label on train set C (unlabeled data

for disease d). We then train a (possibly different) generative

model on train set C with the silver-standard labels and use that

to label the test set.

Classifier evaluation
For evaluating the classifiers, we compute classification performance

metrics from the held-out test sets. We use the area under the re-

ceiver operating characteristic curve (AUC ROC), as well as positive

and negative predictive values (PPV and NPV) computed at the op-

erating point 0.5. From the four classification algorithms, for each

disease and learning approach (self- or transfer learning), we chose

the best classifier using the AUC ROC and compare them with each

other.

Use cases
For completing the assessment of the second hypothesis (transfer-

ability of the PRISM classifiers to a larger patient cohort), we evalu-

ate a use case in which we utilize the supervised self- and transfer

learning PRISM classifiers for curating silver-standard labels in a

larger patient cohort. We use the supervised learning performance

metrics as a benchmark to evaluate the performance of the semi-

supervised learning with PRISM features. The idea here is that if a

PRISM classifier trained on silver-standard labels (semi-supervised

PRISM classifier) that were in turn curated from its corresponding

supervised learning PRISM classifier provides comparable perfor-

mance metrics on the test set, the silver-standard labels will have

comparable properties to gold-standard labels.

As a second use case, we evaluate the feasibility of applying the

self- and transfer learning PRISM classifiers to compute temporally

updated record probabilities for a wide range of chronic diseases.

For this use case, we update patient-level distribution of the PRISM

features and use the trained PRISM classifiers to compute a record

probability at each time stamp.

RESULTS

Overall, the classification performance metrics from the supervised

self-learning (SSL) support the overall competency of the PRISM

classifiers (ie, a classifier trained with PRISM features) to predict the
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target phenotype (Table 2). Compared with the state-of-the-art phe-

notyping results published in the literature, in eight of the 18 dis-

eases, the PRISM classifiers outperformed computational

phenotyping results, and in five disease the PRISM classifiers yielded

slightly lower AUC ROCs. In seven diseases, we were not able to

find computational phenotyping results in the literature. It is impor-

tant to remember that computational phenotyping algorithms lever-

age a large number of features that encompass clinical notes, as well

as diagnosis, medications, and laboratory records, often guided by

domain experts or existing knowledge. Keep in mind, these are

state-of-the-art, using many features, and clinical notes via NLP. As

we will demonstrate in feature selection results, PRISM classifiers

are trained on an average of seven general PRISM features.

To test the transferability of the PRISM features, we compared

the results between supervised self-learning (SSL) and supervised

transfer learning (STL). As illustrated in Table 1, across the 18 dis-

eases, supervised transfer learning (STL) improved the overall classi-

fication performance (AUC ROC) by about 1%. The delta in

positive and negative predictive values (PPC and NPV) computed at

operating point 0.5 was small with high divergence, meaning that

reliable judgement cannot be achieved. Regardless, the results sup-

port that the PRISM features are transferable across diseases. That

is, we can train a PRISM classifier from a group of diseases and use

it to predict a different disease with negligible change in predictive

power as compared with the self-learning.

Using the JMI feature selection also allowed us to draw a picture

of the relative importance of PRISM features. As illustrated in

Figure 2, the number unique encounters (enc_denom) and diagnosis

(dx_denom), the number of times the disease code was recorded in

an outpatient setting (phenX_O), the number of different dates (dif-

ferent_dates) and encounters (encphen_denom) the disease diagnosis

code was recorded, the number of distinct providers, and the

patient’s gender (sex_cd) were the most chosen PRISM features

across the 18 diseases. Unlike the general perception that the overall

diagnosis record (phenX) for a disease is predictive of the disease,

we found that, when controlling for the outpatient diagnosis record

(phenX_O), the overall count of all diagnosis records is unimportant

for a true inference about the existence of the disease. Similarly, we

Table 2. Supervised learning performance comparison between self and transfer learning

AUC ROC PPVa NPVa AUC ROC PPVa NPVa

� lit. 0.95831 lit.

AD 0.877 0.727 0.880 STL Epilepsy 0.955 0.938 0.756 STL

0.841 0.529 0.886 SSL 0.968 0.955 0.886 SSL

4% 37% �1% D �1% �2% �15% D
– lit. – lit.

AFIB 0.927 0.931 0.529 STL Gout 0.913 1.000 0.111 STL

0.931 0.808 0.909 SSL 0.981 1.000 0.222 SSL

0% 15% �42% D �7% 0% �50% D
0.94231 lit. 0.95231 lit.

Asthma 0.850 0.938 0.676 STL HTN 0.903 0.943 0.534 STL

0.832 0.938 0.676 SSL 0.887 0.885 0.718 SSL

2% 0% 0% D 2% 7% �26% D
0.87531 lit. 0.933–0.96121,31,32 lit.

BD 0.852 0.727 0.732 STL RA 0.973 0.704 0.981 STL

0.836 0.650 0.813 SSL 0.968 0.941 0.938 SSL

2% 12% �10% D 1% �25% 5% D
0.96231 lit. 0.85–0.91331,33 lit.

BrCa 0.965 1.000 0.611 STL SCZ 0.873 0.333 0.950 STL

0.959 0.933 0.750 SSL 0.808 0.333 0.930 SSL

1% 7% �19% D 8% 0% 2% D
0.896–0.9321,31,32 lit. – lit.

CAD 0.977 0.853 0.951 STL Stroke 0.875 0.786 0.813 STL

0.968 0.903 0.938 SSL 0.844 0.750 0.881 SSL

1% �6% 1% D 4% 5% �8% D
0.94–0.96322,31,32 lit. 0.98131 lit.

CD 0.972 1.000 0.816 STL T1DM 0.959 0.875 0.946 STL

0.966 0.935 0.879 SSL 0.994 1.000 0.931 SSL

1% 7% �7% D �4% �13% 2% D
0.72–0.8733–35 lit. 0.931,33 lit.

CHF 0.868 0.500 0.897 STL T2DM 0.947 0.902 0.884 STL

0.839 0.600 0.867 SSL 0.935 0.968 0.774 SSL

3% �17% 4% D 1% �7% 14% D
– lit. 0.87–0.97522,31–33 lit.

COPD 0.864 0.611 0.848 STL UC 0.949 0.813 0.931 STL

0.872 0.647 0.851 SSL 0.955 0.885 0.857 SSL

�1% �6% 0% D �1% �8% 9% D
aPositive/negative predictive values at operating point 0.5 mean D 1% 0% �8%

STL: Supervised transfer learningSSL: Supervised self-learning std D 3% 14% 17%

D is the performance delta between transfer learning and self-learning. Positive means transfer learning was better.

lit. represent AUC ROCs from the published state-of-the-art phenotyping research—to the best of our knowledge.
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also found that an in-patient diagnosis record is relatively unimpor-

tant for a true inference of underlying disease.

To complement the feature importance findings from JMI, we

also demonstrate the PRISM features’ regression coefficients

obtained from the Bayesian generalized linear models (Figure 3).

The coefficients allow us to understand how a PRISM feature associ-

ates with the true disease state. In a majority of the models, the num-

ber of times the disease code was recorded in an outpatient setting

(phenX_O) was negatively associated with the respective disease

outcome. The number of encounters (encphen_denom) in which the

disease diagnosis code was recorded was positively associated with

the diagnosis code being true. The higher the number of distinct pro-

viders who recorded the disease code, the higher are the chances

that the disease code is true. In contrast, the higher the number of

unique diagnosis and encounter records (which can be interpreted as

how sick a patient might be), the lower the chances that any diagno-

sis record truly captures the existence of a disease in a patient.

As a concrete example, we review the PRISM regression coeffi-

cients for Crohn’s Disease (CD), which is classified to ICD-9-CM

category 555 (555.0, 555.1, 555.2, and 555.9). The significant

PRISM features ranked by regression coefficients (from largest to

smallest, in absolute values) for CD were: phenx.rate (1.11), dis-

tinct_providers (0.97), encphen_denom (0.94), dx_denom (-0.59),

and enc_denom (-0.32). phenx.rate aims to represent the increase

rate in the phenotype diagnosis record over time ( phenX�1
enchpehndenom

). Using

the PRISM features, we PRISM features, we were able to train su-

pervised self-learning (SSL) and transfer learning (STL) classifiers

that resulted in AUC ROC of 0.97, which can be compared to the

specialized computational phenotyping performances between 0.94

and 0.96 in the literature.22,31,32

Using the selected features for each disease in the transfer learning

step, we used the average Kullback-Leibler divergence to determine

the transferability of learning with PRISM classifiers from different

disease data sets. For example, if the self-learning models, identified

certain PRISM features for predicting hypertension (HTN), we evalu-

ated the transferability of labeled data from other diseases based on

the pre-set HTN PRISM features. Based on this information, we

found that data from alzheimer’s, schizophrenia, and bipolar disorder

were transferable to learning the fewest diseases. In contrast, data

from hypertension, chronic obstructive pulmonary disease (COPD),

crohn’s disease (CD), and asthma were transferable most (Figure 4).

Use case 1: curating silver standard labels
As the first use case, we evaluate the feasibility of using PRISM clas-

sifiers for curating silver-standard labels for various diseases. As de-

scribed in the methods, we evaluate this by computing the

performance delta obtained from the supervised learning (both self-

learning and transfer learning) with the respective semi-supervised

PRISM classier. The semi-supervised classifiers are trained based on

silver-standard labels that are curated from the probabilities com-

puted from the supervised learning classifiers—using 0.5 as the cut-

off for determining positives and negatives. Table 3 shows the

performance metrics for the semi-supervised learning as well as two

deltas. D1 is the delta between semi-supervised and supervised

Figure 2. PRISM features and their use in predicting diseases. *PRISM fea-

tures are listed on the left. The 18 diseases are listed on the right. The use of a

PRISM feature to predict a disease is identified with connecting line.

Figure 3. PRISM features’ regression coefficients for predicting different dis-

eases. *Regression coefficients from Bayesian generalized linear models.

564 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 3



learning performances in the transfer learning approach. D2 repre-

sents the delta between semi-supervised and supervised learning per-

formances in the self-learning approach. The mean and standard

deviation for each delta is also presented in Table 3.

Results show that, on average, the semi-supervised learning with

PRISM features using the silver-standard labels from the supervised

learning PRISM classifiers yield to classification performances that

are only marginally inferior in AUC ROC. The delta in predictive

and positive predictive values at the operating point 0.5 show that

while there was a drop in positive predictive values (taking standard

deviations into account), the negative predictive value is generally

improved. Overall, our findings demonstrated that PRISM features

can be scaled to transfer their phenotype prediction power to larger

cohorts through using their estimated disease probabilities to curate

silver-standard labels. We also compared the performance of semi-

supervised learning between the self-learning and transfer learning

classifiers (Supplementary Table S2). We found that, on average, the

classification performance in semi-supervised transfer learning

(SSTL) provides 2% (standard deviation of 5%) improvement over

semi-supervised learning based on labels curated from self-learning

classifiers (SSSL). The improvement was more notable in the positive

predictive values at the operating point 0.5.

Use case 2: computing updated record probabilities
As the second use case, we demonstrate the feasibility of applying

the self- and transfer learning PRISM classifiers to compute tempo-

rally updated record probabilities. Figure 5 presents examples of

probability estimates for Epilepsy (plot on the left) and Hyperten-

sion (plot on the right) for two individual patients. The patient-level

record probabilities are updated at each time stamp. In both exam-

ples, the patients had diagnosis records of the disease in their elec-

tronic health records. For the patient with a true hypertension

diagnosis, the models can show different time points where disease

probability passed over the 50% line.

This use case demonstrated that both self-learning and transfer

learning PRISM classifiers can be used to compute disease probabili-

ties at each time point operating on PRISM features that are updated

over time. In these two examples, the SSL models appeared to show

more gradual changes in the record probabilities, although this may

not be true in all cases. The STL model in Figure 5 illustrated a steep

increase (from 0 to 100) in the probability of the hypertension diag-

nosis record in a span of seven year (between 1998 and 2005) and

eight encounters for the given patient. This can indicate that most of

the phenotype records for hypertension for the given patient was

recorded between 1998 and 2005. We found that both models dem-

onstrated accurate predictions at the end point.

DISCUSSION

Over the past decade, billions have been spent to institute meaning-

ful use of electronic health record (EHR) systems. For a multitude of

reasons, however, EHR data are still complex and have ample qual-

ity issues, which make it difficult to leverage these data in order to

address pressing health issues. Reliability of diagnosis records in the

EHRs is questionable as they reflect healthcare processes and payer-

provider policies. This issue is especially agonizing during pandem-

ics such as COVID-19, when prompt responses are needed. Given

the reliability issues with the diagnosis codes, rapid discovery of po-

tential risk factors for any health outcome from the EHRs can be

difficult, requiring significant resources to perform cohort identifica-

tion on a long list of potential risk factors.

In this paper, we proposed a Generative Transfer Learning

(GTL) approach for estimating the probability of diagnosis records

in the EHRs using a small set of features we call PRISM features.

We demonstrated that PRISM features and the generative PRISM

classifiers are potent for estimating disease probabilities and exhibit

generalizable and transferable distributional characteristics across

diseases and patient populations. We characterize the GTL ap-

proach with PRISM features as a low-cost and disease-agnostic al-

ternative to the computational phenotyping approach that is often

expensive and disease-specific. The GTL approach allows for valida-

tion of various EHR phenotypes without the need for domain-

specific knowledge about specific disease processes.

Comparing with the state-of-the-art computational phenotyping

work published in the literature, we demonstrated that, with an av-

erage of seven PRISM features, the generative PRISM classifiers pro-

vided better classification performances in eight of the 18 diseases,

while having slightly worse performance in five diseases. It is impor-

tant to acknowledge that the AUCs used as points of comparison

from the literature may be based on patient populations with differ-

ent characteristics.

PRISM classifiers can be used for a variety of use cases. In the

first use case, we demonstrated the utility of the generative transfer

learning approach for curating silver-standard disease labels. Many

healthcare institutions are actively involved in chart reviewing EHR

data to facilitate development of Machine Learning algorithms. Yet,

due to the high costs of performing manual chart reviews, the

labeled data often encompass small numbers of patients, which

Figure 4. Transferability of labeled data for learning about other diseases us-

ing PRISM classifiers. *Training sets are identified on the left. Arrow means

that data from a certain disease was used in the training set for learning about

another disease (on the left).
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provide issues with overfitting, but are available on a broad set of

diseases. We showed that PRISM features from small set of labeled

data on different diseases can be leveraged to train a generative

PRISM classifier that can be used for curating silver standard labels

on many diseases. Such a capability will have a notable impact on

scaling up applied ML research using EHR data.

Because PRISM classifiers are computationally cheap to train

and generalizable, they can also be applied to computing patient-

level disease probabilities over time. In the second use case, we

showed that PRISM classifiers can be used to estimate disease prob-

abilities for all diagnosis codes with high accuracy. This will im-

prove the capacity to advance rapid cohort identification from EHR

data.

Overall, we demonstrated the generative PRISM classifiers are

generalizable and transferable across diseases and patient popula-

tions. Potential portability of these classifier across multiple institu-

tions remains to be evaluated in future research. Further, we

anticipate that the list of PRISM features will keep growing and po-

tentially can be tailored to medical ontologies in order to maximize

the sensitivity or specificity of the classification tasks on various dis-

eases. More research is also needed to study potential trend line dif-

ferences in the probability estimations demonstrated in use case 2.

Probabilities computed by the PRISM classifiers can be integrated

into the Informatics for Integrating Biology & the Bedside (i2b2)36

as a probability dimension, representing the confidence level of a

given condition. This would allow users to set a “confidence level”

for a specific condition and adjust the sensitivity and specificity of a

given i2b2 query depending on the specific use case.

CONCLUSION

We introduced a generative transfer learning approach using PRISM

features for computing probabilities of disease records in electronic

Table 3. Comparing supervised and semi-supervised learning performances

AUC ROC PPVa NPVa AUC ROC PPVa NPVa

AD 0.886 0.667 0.913 SSTL Epilepsy 0.960 0.909 0.857 SSTL

1% �8% 4% D1 1% �3% 13% D1

0.836 0.533 0.870 SSSL 0.959 0.923 0.968 SSSL

�1% 1% �2% D2 �1% �3% 9% D2

AFIB 0.914 0.925 0.739 SSTL Gout 0.925 1.000 0.286 SSTL

�1% �1% 40% D1 1% 0% 157% D1

0.890 0.949 0.750 SSSL 0.975 0.930 1.000 SSSL

�4% 17% �18% D2 �1% �7% 350% D2

Asthma 0.806 0.789 0.827 SSTL HTN 0.809 0.918 0.565 SSTL

�5% �16% 22% D1 �10% �3% 6% D1

0.748 0.733 0.717 SSSL 0.825 0.945 0.574 SSSL

�10% �22% 6% D2 �7% 7% �20% D2

BD 0.813 0.706 0.800 SSTL RA 0.962 0.714 0.917 SSTL

�4% �3% 9% D1 �1% 2% �7% D1

0.805 0.609 0.828 SSSL 0.932 0.704 0.981 SSSL

�4% �6% 2% D2 �4% �25% 5% D2

BrCa 0.962 0.933 0.750 SSTL SCZ 0.909 0.316 1.000 SSTL

0% 0% 0% D1 4% �5% 7% D1

0.919 1.000 0.688 SSSL 0.808 0.200 0.894 SSSL

�4% 17% �28% D2 0% �75% 10% D2

CAD 0.926 0.879 0.952 SSTL Stroke 0.905 0.708 0.921 SSTL

�5% 3% 0% D1 3% �10% 13% D1

0.973 0.829 0.950 SSSL 0.851 0.750 0.826 SSSL

1% �8% 1% D2 1% 0% �6% D2

CD 0.968 1.000 0.816 SSTL T1DM 0.961 0.833 0.914 SSTL

0% 0% 0% D1 0% �5% �3% D1

0.956 0.912 0.933 SSSL 0.988 0.833 1.000 SSSL

�1% �3% 6% D2 �1% �17% 7% D2

CHF 0.857 0.667 0.870 SSTL T2DM 0.913 0.973 0.872 SSTL

�1% 33% �3% D1 �4% 8% �1% D1

0.777 0.450 0.914 SSSL 0.892 0.923 0.867 SSSL

�7% �25% 5% D2 �5% �5% 12% D2

COPD 0.849 0.583 0.900 SSTL UC 0.926 0.926 0.912 SSTL

�2% �5% 6% D1 �2% 14% �2% D1

0.850 0.583 0.900 SSSL 0.964 0.917 0.838 SSSL

�2% �10% 6% D2 1% 4% �2% D2

D1 D2

average �1% 0% 14% average �3% �9% 19%

std 3% 11% 37% SSTL std 3% 20% 83% SSSL

D1 is the delta between semi-supervised and supervised learning performances in the transfer learning approach.

D2 is the delta between semi-supervised and supervised learning performances in the self-learning approach.
aNPV and PPV values are computed at operating point 0.5.
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health records. We showed that the joint probabilities we learn from

PRISM generative models about healthcare dynamics are transfer-

able and generalizable to multiple diseases. Comparing the relative

importance of PRISM features showed that, for example, when

stratifying phenotype records by encounter types, an outpatient re-

cord is more important than an inpatient record or an unstratified

record for a making inference about the underlying disease state. Be-

cause these models are inexpensive (ie, features are generalizable

and uniform, and algorithms are not computationally intensive),

this approach is scalable to compute disease probabilities for a wide

range of diseases. Probabilities computed from the generative

PRISM classifier can scale up applied Machine Learning research

and knowledge discovery with EHR data.
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