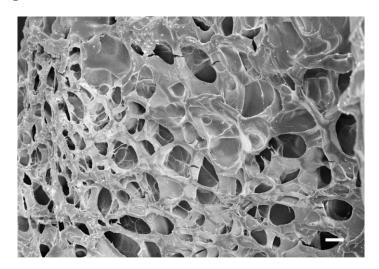
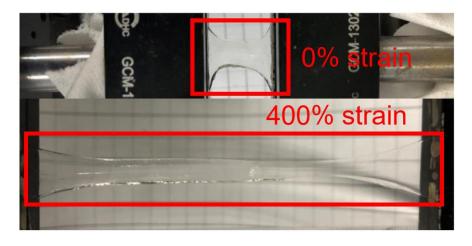
Supplementary Information

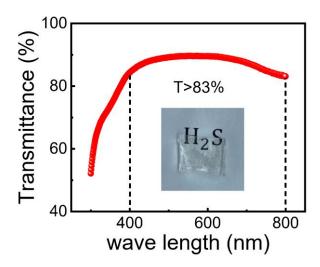
Design of stretchable and self-powered sensing device for portable and remote trace

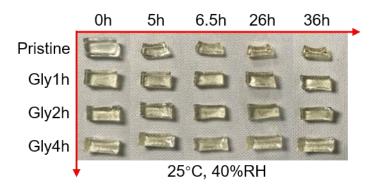

biomarkers detection

Wenxi Huang¹,† Qiongling Ding¹,† Hao Wang¹,† Zixuan Wu¹, Yibing Luo¹, Wenxiong Shi², Le Yang³, Yujie Liang⁴, Chuan Liu¹, and Jin Wu¹*

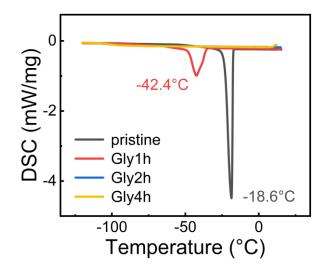

¹State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China. ²Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China. ³Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, Guangzhou, Guangdong, 510055, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou, 510080, Guangdong, China. ⁴Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, Guangzhou, Guangdong, 510055, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou, 510080, Guangdong, China. *email: wujin8@mail.sysu.edu.cn

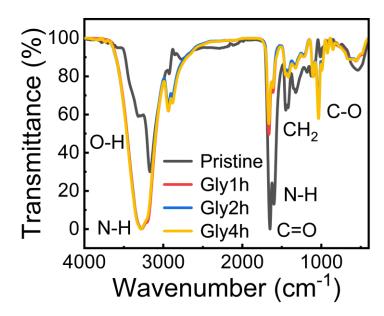
†These authors contributed equally to this work.

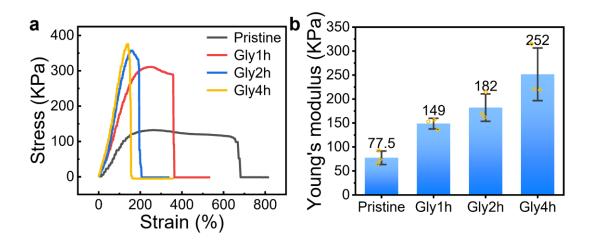

Supplementary Figures


Supplementary Figure 1. Scanning electron microscopy (SEM) image of double network (DN) hydrogel. The scale bar is $10 \ \mu m$. The experiment was repeated 3 times independently with similar results.

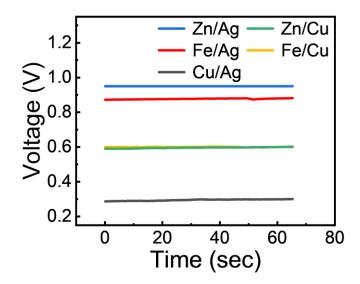
Supplementary Figure 2. Photographs of pristine DN hydrogel (DNH) at 0% and 400% tensile strains.

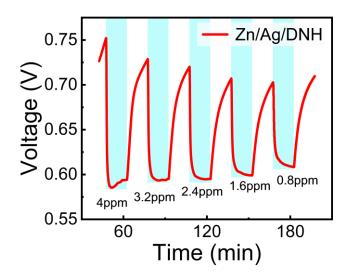

Supplementary Figure 3. Transmittance spectra of pristine DNH. Inset is the photograph of a piece of pristine DNH placed on a word "H₂S".

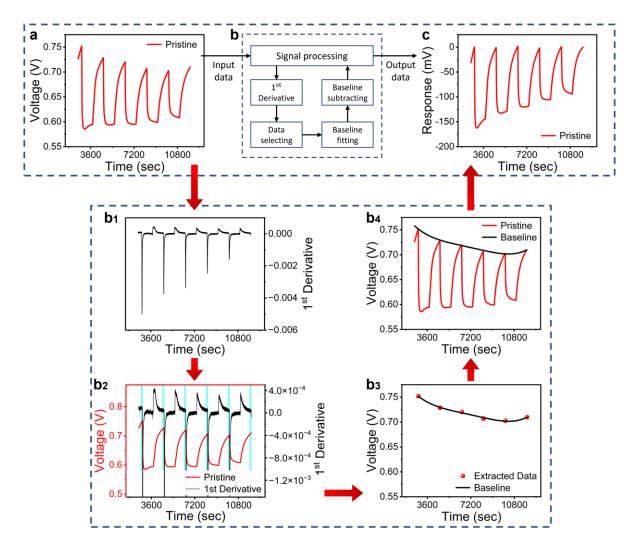

Supplementary Figure 4. Photographs showing the morphology evolutions of pristine DNH and organohydrogels (DNOs) when stored at 25°C, 40% relative humidity (RH) for a series of time.


Supplementary Figure 5. Relative weight change of pristine DNHs and DNOs when stored at 25°C, 40% RH for a series of time. n = 3 for each group. The error bars denote standard deviations of the mean.

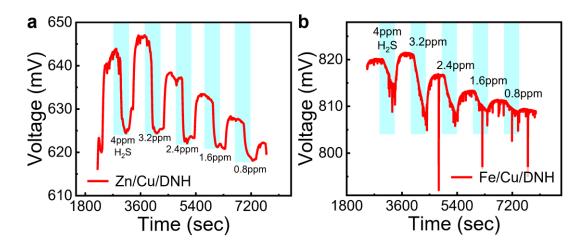
Supplementary Figure 6. Differential scanning calorimetry (DSC) spectra of pristine DNH and DNOs obtained by soaking in glycerol (Gly) for different time.

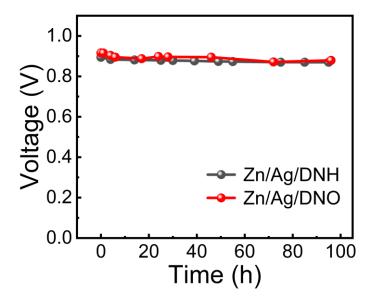

Supplementary Figure 7. Fourier transform-infrared (FTIR) spectra of pristine DNH and DNOs obtained by soaking in Gly for different time.


Supplementary Figure 8. Mechanical properties of pristine DNH and DNOs obtained by soaking in Gly for different time. a stress-strain curves; b Young's modulus. n = 3 for each group. The error bars denote standard deviations of the mean.

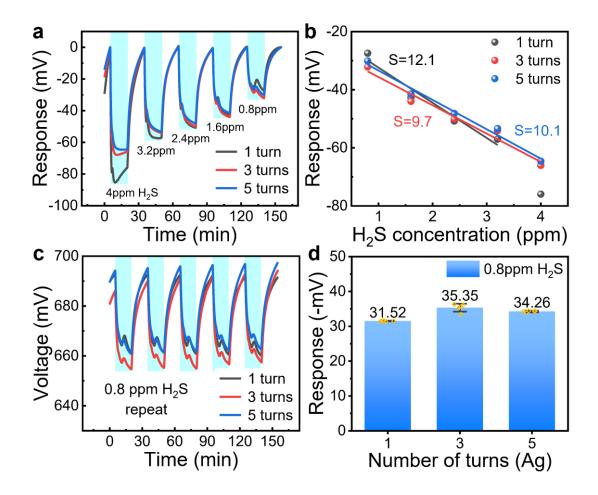

Supplementary Figure 9. A physical picture of the self-powered sensor (Zn/Ag/DNH).

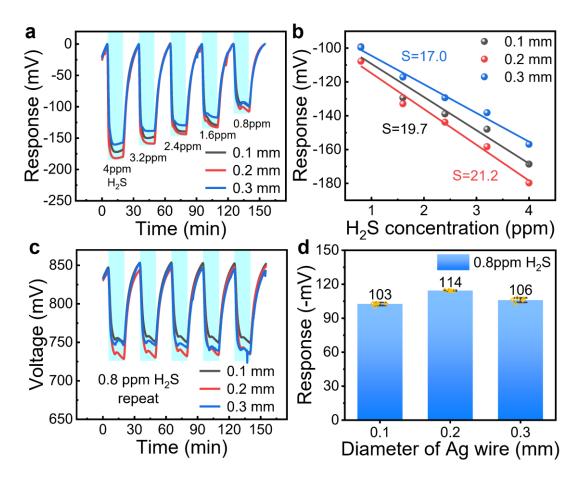
Supplementary Figure 10. OCV of battery-sensor complexes with different metal electrodes.

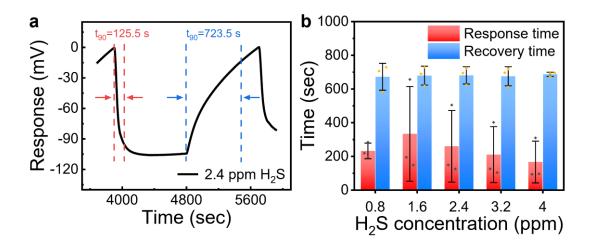

Supplementary Figure 11. Dynamic change in the Open-circuit voltage (OCV) of the device with Zn-DNH-Ag structure to H_2S gas with reduced concentration from 4 to 0.8 ppm.

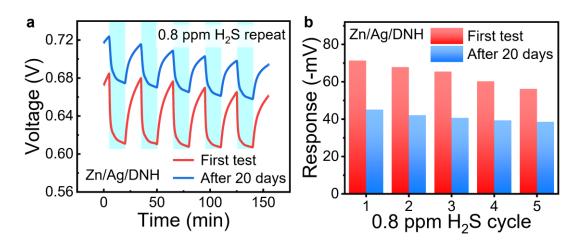

Supplementary Figure 12. Baseline correction. a The original OCV of Zn/Ag/DNH sensor to H₂S before baseline correction. b The procedure of baseline correction: b₁ The 1st derivative curve of the voltage in a. b₂ The original dynamic OCV and its 1st derivative curve of Zn/Ag/DNH sensor to H₂S. b₃ The extracted data and corrected baseline of dynamic OCV. b₄ The baseline correction of the dynamic OCV to H₂S. c Corrected response curve of Zn/Ag/DNH sensor to H₂S.

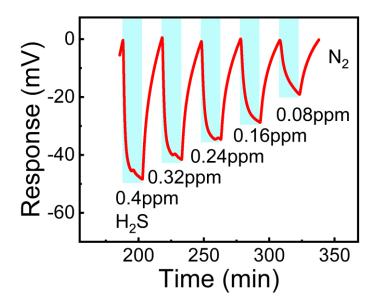
The process of baseline correction is as follow. Firstly, the first order derivative of the original OCV data was obtained ($\mathbf{b_1}$). Secondly, the original data points whose corresponding first derivative values were located in the recovery period and were closest to 0 were selected (marked in cyan in $\mathbf{b_2}$). Then, the extracted data were used for polynomial fitting to obtain the

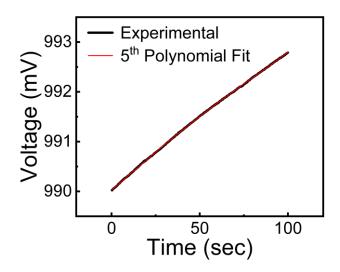

baseline (b_3) . Lastly, the corrected response curve was obtained by subtracting the baseline from the original dynamic OCV (b_4) .

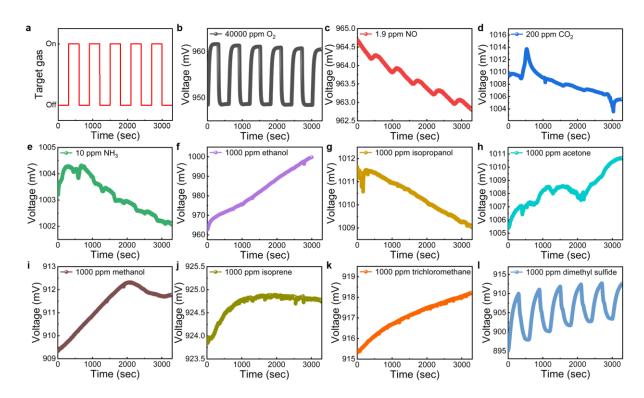

Supplementary Figure 13. Dynamic OCV change of different sensors made of different electrode materials to H_2S gas with reduced concentration from 4 to 0.8 ppm. a Zn/Cu/DNH; b Fe/Cu/DNH.

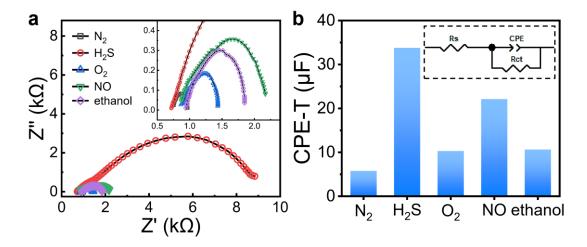

Supplementary Figure 14. OCVs of Zn/Ag/DNH and Zn/Ag/DNO sensors were intermittently recorded over 96 h, showing the stability of the OCV.

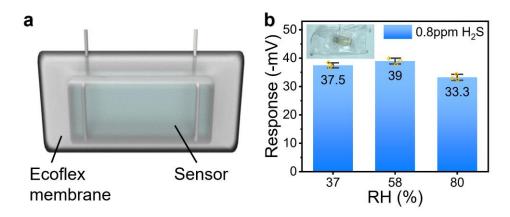

Supplementary Figure 15. H₂S sensing properties of the Zn/Ag/DNO sensor with different numbers of Ag wire turns (diameter: 0.05 mm). a Dynamic responses to H₂S gas with reduced concentration from 4 to 0.8 ppm after baseline corrections. **b** Sensitivity derived from data in **a**. **c** Dynamic OCV change of the sensor in cyclic tests of 0.8 ppm H₂S. **d** Response histogram extracted from **c**. n = 5 for each group. The error bars denote standard deviations of the mean.

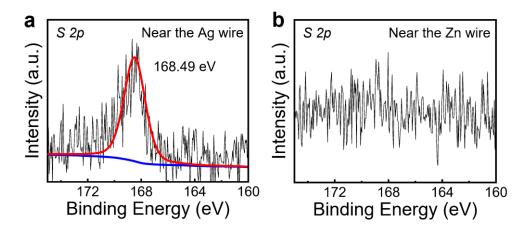

Supplementary Figure 16. H₂S sensing properties of the Zn/Ag/DNO sensor with different diameter of Ag wire. a Dynamic responses to H₂S gas with reduced concentration from 4 to 0.8 ppm after baseline corrections. b Sensitivity derived from data in a. c Dynamic OCV of the sensor in cyclic tests of 0.8 ppm H₂S. d Response histogram extracted from c. n = 5 for each group. The error bars denote standard deviations of the mean.

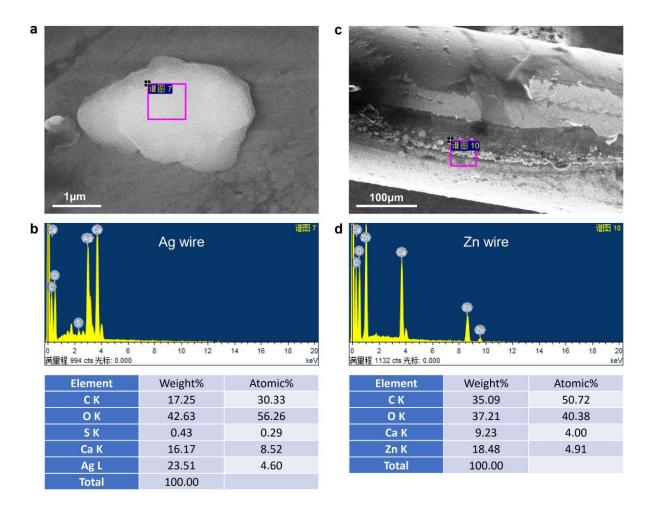

Supplementary Figure 17. Response/recovery time of Zn/Ag/DNO sensor. a Analysis of response/recovery time to 2.4 ppm H₂S. The curve is a segment extracted from Fig. 2c. b Response/recovery time of sensor to varying concentrations of H₂S. n = 3 for each group. The error bars denote standard deviations of the mean.

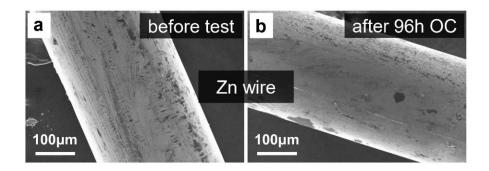

Supplementary Figure 18. Repeatability and stability of Zn/Ag/DNH sensor. a Dynamic OCV and b response histogram of Zn/Ag/DNH sensor to 0.8 ppm H₂S cycling for the first time and after 20 days of placement.

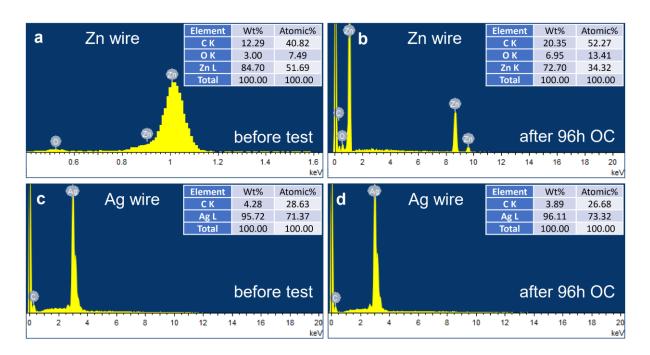

Supplementary Figure 19. Dynamic response curves of Zn/Ag/DNO to H_2S gas with relatively low concentrations (from 0.4 to 0.08 ppm).

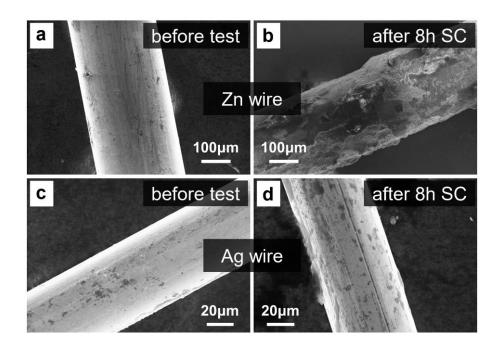

Supplementary Figure 20. Plots of the 5^{th} order polynomial fitting graphs of OCV of the sensor at the baseline before exposure to H_2S , aiming at calculating the noise level.

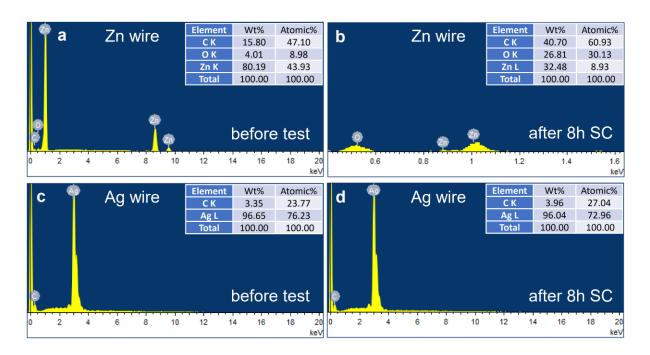

Supplementary Figure 21. Selectivity of Zn/Ag/DNO sensor. a Plot showing the process that controlled the periodic "on" and "off" of target gases to Zn/Ag/DNO sensor in (b-l). b-l OCV of the Zn/Ag/DNO sensor in the cyclic detection of b 40000 ppm O₂, c 1.9 ppm NO, d 200 ppm CO₂, e 10 ppm NH₃, f 1000 ppm ethanol, g 1000 ppm isopropanol, h 1000 ppm acetone, i 1000 ppm methanol, j 1000 ppm isoprene, k 1000 ppm trichloromethane, and l 1000 ppm dimethyl sulfide.


Supplementary Figure 22. Electrochemical impedance spectroscopy (EIS) analysis of the Zn/Ag/DNO sensor under different gas atmospheres. a Impedance spectra; b CPE-T values obtained by fitting. The insert is an equivalent circuit diagram of the Zn/Ag/DNO sensor.

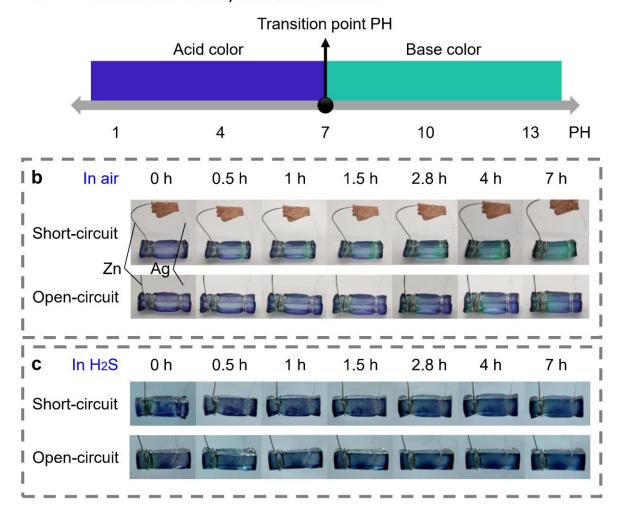

Supplementary Figure 23. Elimination of humidity interference on response. a Schematic diagram of Zn/Ag/DNO sensor with Ecoflex membrane encapsulation. **b** Response of the encapsulated sensor to 0.8 ppm H_2S under varying RH conditions (37%, 58%, 80%). Inset is a physical picture of the Zn/Ag/DNO sensor with Ecoflex membrane encapsulation. n = 3 for each group. The error bars denote standard deviations of the mean.


Supplementary Figure 24. X-ray photoelectron spectroscopy (XPS) analysis of hydrogel sample close to the electrodes after 10 h exposure to 2 ppm H₂S, showing *S 2p* data. a hydrogel sample near the Ag electrode; b hydrogel sample near the Ag electrode.

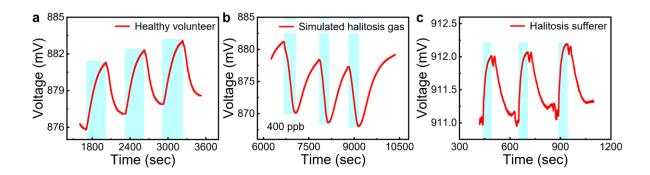

Supplementary Figure 25. SEM images and Energy dispersive spectroscopy (EDS) element analysis of Ag and Zn wires from the device after exposure to H₂S for 10 h. a SEM image of Ag wire; b EDS of Ag wire; c SEM image of Zn wire; d EDS of Zn wire. The experiment was repeated 3 times independently with similar results.


Supplementary Figure 26. SEM images before and after keeping the Zn/Ag/DNO in open-circuit (OC) state for 96 h. a Zn wire before test; b Zn wire after test. The experiment was repeated 3 times independently with similar results.

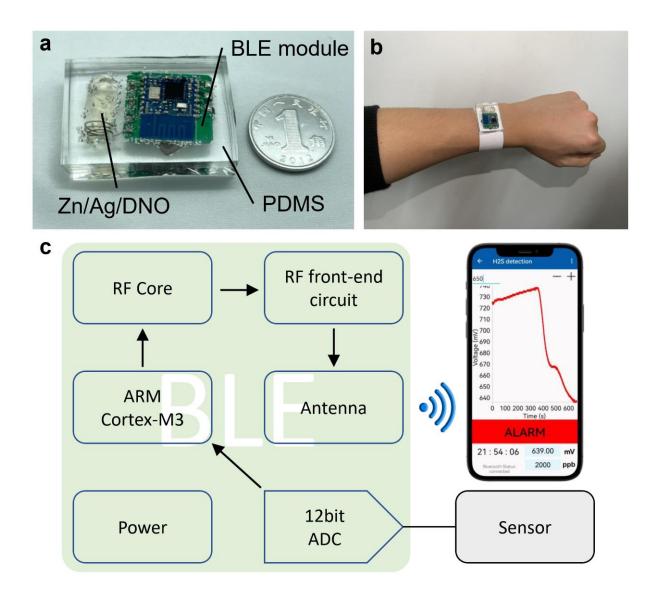
Supplementary Figure 27. EDS element analysis before and after keeping the Zn/Ag/DNO in OC state for 96 h. a Zn wire before test; b Zn wire after test; c Ag wire before test; d Ag wire after test.



Supplementary Figure 28. SEM images before and after keeping the Zn/Ag/DNO in short-circuit (SC) state for 8 h. a Zn wire before test; b Zn wire after test; c Ag wire before test; d Ag wire after test. The experiment was repeated 3 times independently with similar results.



Supplementary Figure 29. EDS element analysis before and after keeping the Zn/Ag/DNO in SC state for 8 h. a Zn wire before test; b Zn wire after test; c Ag wire before test; d Ag wire after test.


a Neutral red-Methylene blue indicator

Supplementary Figure 30. PH changes of hydrogels near Zn (left) and Ag (right) electrodes explored by Neutral red-Methylene blue indicator. a The color of Neutral red-Methylene blue indicator corresponding to PH. b-c Photographs showing the color evolutions of Zn/Ag/DNHs after being stained with Neutral red-Methylene blue indicator and kept in SC state or OC state, in air (b) and H₂S (1 ppm) atmospheres (c).

Supplementary Figure 31. Dynamic responses of the Zn/Ag/DNO sensor to the exhaled breath of a healthy volunteer/halitosis sufferer and simulated halitosis gas: a Exhaled breath of a healthy volunteer; b simulated halitosis gas; c Exhaled breath of a halitosis sufferer.

Supplementary Figure 32. **Real photographs and schematic of the wireless H₂S sensing system. a** Close-up of the sensing device. The size of a coin is larger than that of the hydrogel sensor and slightly smaller than that of the whole wireless sensing system. **b** Wearable demonstration of the sensing device. **c** Configuration of the H₂S sensing system consisted of a Zn/Ag/DNO sensor, a customized BLE module, and real-time monitoring App.

Supplementary Tables

The LOD can be expressed as:

$$LOD = \frac{3RMS_{Noise}}{Slope} \tag{1}$$

where RMS_{Noise} is the root mean square deviation of the noise from the dynamic OCV curve and Slope is the sensitivity of the sensor here. As for the Zn/Ag/Gly1h-DNO, the sensitivity was experimentally measured to be 25.6 mV/ppm and the RMS_{Noise} was calculated to be 0.006214 mV according to the data in this table. Thus, the theoretical LOD is calculated as 0.73 ppb.

Supplementary Table 1. The 5th order polynomial fitting data used to calculate the LOD of the sensors at the baseline before exposure to H₂S.

Time (s)	V_{i} - V	$(V_i-V)^2$	
310	-0.00376	1.41E-05	
320	5.43E-03	2.95E-05	
330	-0.00653	4.26E-05	
340	0.00325	1.06E-05	
350	0.00719	5.17E-05	
360	-0.00432	1.87E-05	
370	-0.00332	1.1E-05	
380	0.00912	8.32E-05	
390	0.00846	7.16E-05	
400	-0.00382	1.46E-05	

Supplementary Table 2. Comparison in the LOD, operating temperature, self-powered capacity, flexibility, maximal strain, and transparency of various H₂S sensors.

Sensing materials	LOD	Operating	Self-	Flexible	Maximal	Transparent
	(ppb)	temperature	powered		Strain	
		(°C)				
2D NbWO ₆ ¹	500	150	No	No	/	No
WO ₃ -coated SnO ₂	100	200	No	No	/	No
nanowires ²						
TiO ₂ thin films ³	100	100	No	No	/	No
CuO/In ₂ O ₃ ⁴	200	70	No	No	/	No
2D MoO ₃ nanoflakes ⁵	500	300	No	No	/	No
Cu-doped ZnO/RGO	136	24	No	No	/	No
nanocomposites ⁶						
null-Fe ₂ O ₃	50	300	No	No	/	No
nanoparticles ⁷						
SnO ₂ /rGO/PANI	50	25	No	Yes	0%	No
ternary						
nanocomposite ⁸						
MOF-5/CS/IL	1000	25	No	Yes	0%	No
membrane ⁹						
Co ₂ SnO ₄ -SE ¹⁰	100	510	No	No	/	No
Mesoporous SnO ₂ 11	0.5	92	No	No	/	No
porous ZnFe ₂ O ₄	1000	85	No	No	/	No
nanosheets ¹²						
Zn/Ag/DNO[This work]	0.73	-10~40	Yes	Yes	358%	Yes

Supplementary References

- Wang, J. et al. Ultrathin 2D NbWO₆ Perovskite Semiconductor Based Gas Sensors with Ultrahigh Selectivity under Low Working Temperature. *Adv. Mater.* 34, 2104958 (2022).
- 2. Hoa, T. T. N. et al. Highly selective H₂S gas sensor based on WO₃-coated SnO₂ nanowires. *Mater. Today Commun.* **26**, 102094 (2021).
- 3. Nagmani, Pravarthana, D., Tyagi, A., Jagadale, T. C., Prellier, W., Aswal, D. K. Highly sensitive and selective H₂S gas sensor based on TiO₂ thin films. *Appl. Surf. Sci.* **549**, 149281 (2021).
- 4. Li, S. et al. Metal-Organic frameworks-derived bamboo-like CuO/In₂O₃ Heterostructure for high-performance H₂S gas sensor with Low operating temperature. *Sens. Actuators B* **310**, 127828 (2020).
- 5. Bao, J., Zhang, Z., Zheng, Y. H₂S sensor based on two-dimensional MoO₃ nanoflakes: Transition between sulfidation and oxidation. *Sens. Actuators B* **345**, 130408 (2021).
- 6. Shewale, P. S., Yun, K.-S. Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H₂S gas sensor. *J. Alloys Compd.* **837**, 155527 (2020).
- 7. Li, Z. et al. A fast response & recovery H₂S gas sensor based on alpha-Fe₂O₃ nanoparticles with ppb level detection limit. *J. Hazard. Mater.* **300**, 167-174 (2015).
- Zhang, D., Wu, Z., Zong, X. Flexible and highly sensitive H₂S gas sensor based on in-situ polymerized SnO₂/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B 289, 32-41 (2019).
- 9. Ali, A., Alzamly, A., Greish, Y. E., Bakiro, M., Nguyen, H. L., Mahmoud, S. T. A Highly Sensitive and Flexible Metal-Organic Framework Polymer-Based H₂S Gas Sensor. *ACS Omega* **6**, 17690-17697 (2021).
- 10. Wang, C. et al. Mixed potential type H₂S sensor based on stabilized zirconia and a Co₂SnO₄ sensing electrode for halitosis monitoring. *Sens. Actuators B* **321**, 128587 (2020).
- 11. Song, B.-Y. et al. Highly selective ppb-level H₂S sensor for spendable detection of exhaled biomarker and pork freshness at low temperature: Mesoporous SnO₂ hierarchical architectures derived from waste scallion root. *Sens. Actuators B* **307**, 127662 (2020).
- 12. Gao, X., Sun, Y., Zhu, C., Li, C., Ouyang, Q., Chen, Y. Highly sensitive and selective H₂S sensor based on porous ZnFe₂O₄ nanosheets. *Sens. Actuators B* **246**, 662-672 (2017).