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SUMMARY

We address whether combinations with a pan-RAF inhibitor (RAFi) would be effective in KRAS 

mutant pancreatic ductal adenocarcinoma (PDAC). Chemical library and CRISPR genetic screens 

identify combinations causing apoptotic anti-tumor activity. The most potent combination, 

concurrent inhibition of RAF (RAFi) and ERK (ERKi), is highly synergistic at low doses in cell 

line, organoid, and rat models of PDAC, whereas each inhibitor alone is only cytostatic. 

Comprehensive mechanistic signaling studies using reverse phase protein array (RPPA) pathway 

mapping and RNA sequencing (RNA-seq) show that RAFi/ERKi induced insensitivity to loss of 

negative feedback and system failures including loss of ERK signaling, FOSL1, and MYC; 

shutdown of the MYC transcriptome; and induction of mesenchymal-to-epithelial transition. We 

conclude that low-dose vertical inhibition of the RAF-MEK-ERK cascade is an effective 

therapeutic strategy for KRAS mutant PDAC.

Graphical Abstract

In Brief

Ozkan-Dagliyan et al. apply a chemical screen and identify concurrent inhibition of RAF and ERK 

as the most potent combination that causes low-dose apoptotic death of KRAS mutant pancreatic 
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cancer. This vertical inhibition combination is resistant to loss of negative feedback mechanisms 

that reactivate ERK and potently suppresses diverse ERK-dependent processes.

INTRODUCTION

The genetic basis of pancreatic ductal adenocarcinoma (PDAC) is well established (Ryan et 

al., 2014), yet current standards of care comprise conventional cytotoxic drugs rather than 

targeted therapies. Among the four major genetic alterations in PDAC, only KRAS functions 

as an oncogene. Given the >95% KRAS mutation frequency in PDAC and substantial 

experimental evidence that KRAS is essential for PDAC maintenance (Collins et al., 2012; 

Ying et al., 2012), KRAS is the most attractive target for therapeutic intervention in this 

disease (Waters and Der, 2018).

Despite significant recent progress in developing direct inhibitors of mutant KRAS (Janes et 

al., 2018; Ostrem and Shokat, 2016), with two now under clinical evaluation, these are 

selective for KRASG12C, a mutant that is found infrequently (only ~2%) in PDAC (Cox et 

al., 2014). Inhibitors of KRAS effector signaling remain promising KRAS-targeted therapies 

(Papke and Der, 2017; Ryan and Corcoran, 2018). Of the multitude of effectors, substantial 

experimental studies and PDAC patient data support the key role of the RAF-MEK-ERK 

mitogen-activated protein kinase (MAPK) cascade in driving KRAS-dependent PDAC 

growth. Mutationally activated BRAFV600E can phenocopy mutant KRAS and drive the 

development of invasive and metastatic PDAC (Collisson et al., 2012), and BRAF mutations 

are found in ~50% of the rare PDAC that are KRAS wild type (WT) (TCGA, 2017). Further, 

an effector small interfering RNA (siRNA) screen demonstrated that KRAS-dependent 

cancers are driven largely by RAF (Yuan et al., 2018). These observations support the RAF-

MEK-ERK cascade as the key effector pathway driving KRAS-dependent PDAC. However, 

to date, therapeutic targeting of MEK in KRAS mutant lung cancer demonstrated limited to 

no efficacy in patients (Blumenschein et al., 2015; Jänne et al., 2017). Challenges to the 

effective use of inhibitors of ERK MAPK signaling include toxicity in normal cells (Blasco 

et al., 2011) and adaptive responses to inhibitor treatment, resulting in ERK reactivation and 

bypass of inhibitor action (Duncan et al., 2012).

Another challenge in targeting the ERK MAPK cascade is determining which level of the 

three-tiered kinase cascade will provide the most effective and long-term therapeutic 

response. At the top of the pathway are the three highly related RAF isoforms—ARAF, 

BRAF, and CRAF/RAF1—that exhibit distinct roles in RAS-driven cancers (Desideri et al., 

2015). BRAF-selective inhibitors caused paradoxical activation of ERK signaling in RAS 

mutant cancers (Hatzivassiliou et al., 2010; Poulikakos et al., 2010). Pan-RAF inhibitors 

(RAFis) overcome paradoxical activation and showed greater activity in KRAS mutant 

cancers (Peng et al., 2015; Yen et al., 2018). However, genetic deletion studies in Kras-

driven mouse models argue that pan-RAF inhibition may be limited by normal cell toxicity 

and that a CRAF-selective strategy may provide a tumor-selective therapy (Blasco et al., 

2011; Karreth et al., 2011). In contrast, Craf deficiency in a KrasG12D-driven PDAC model 

had no inhibitory effect on tumor development or progression (Eser et al., 2013). Thus, the 

role of specific RAF isoforms in KRAS-driven oncogenesis may be highly tissue selective.
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Recently, we addressed the limitations of RAFis and MEK inhibitors (MEKis) by using 

ERK1/2-selective inhibitors in KRAS mutant PDAC (Hayes et al., 2016). We found that 

ERK1/2 inhibition suppressed PDAC growth and that sensitivity correlated with ERK 

inhibition-mediated loss of MYC protein. In search of combinations to enhance the anti-

tumor efficacy of inhibitors of the RAF-MEK-ERK cascade, we identified inhibitors that 

target a spectrum of functionally diverse proteins that synergized with a pan-RAFi to cause 

apoptotic death. Surprisingly, the strongest synergistic and apoptotic activity resulted from 

concurrent inhibition of RAF and ERK, which was more effective than concurrent inhibition 

of either RAF and MEK or MEK and ERK and was particularly striking at low doses. We 

have delineated a multi-faceted mechanistic basis for the anti-tumor potency of this vertical 

inhibition of the ERK MAPK cascade.

RESULTS

ARAF, BRAF, and CRAF Contribute to Growth of KRAS Mutant Pancreatic Cancer

Previous studies evaluating the three RAF serine/threonine kinase isoforms suggested 

distinct tissue-specific dependencies in the development of KRAS-driven cancers, with Craf 

critical for Kras-driven lung cancer (Blasco et al., 2011; Karreth et al., 2011) but not 

pancreatic cancer (Eser et al., 2013). We previously determined that a panel of nine 

conventional KRAS mutant PDAC lines exhibited KRAS-dependent growth (Hayes et al., 

2016). To further address the role of RAF isoforms in the growth of KRAS mutant PDAC, 

we additionally verified the KRAS-dependent growth of four KRAS mutant cell lines 

established from patient-derived xenograft (PDX) PDAC tumors (Figures 1A, S1A, and 

S1B). Applying previously characterized small hairpin RNA (shRNA) vectors for selective 

suppression of ARAF, BRAF, or CRAF (Freeman et al., 2013), we found that suppression of 

any RAF isoform alone was sufficient to partially impair growth of all six KRAS mutant 

PDX PDAC cell lines (Figures 1A, S1C, and S1D), demonstrating that each RAF gene 

contributes to KRAS-dependent PDAC growth, with the general hierarchy of significance 

CRAF>BRAF>ARAF. This finding is similar to that made by McCormick and colleagues, 

where concurrent siRNA suppression of all three RAF genes was required to cause an 

equivalent suppression of growth of KRAS mutant cell lines as seen with KRAS suppression 

(Yuan et al., 2018).

This finding suggested that optimal inhibition of RAF in KRAS mutant PDAC will require a 

pan-RAFi. We utilized the pan-RAFi LY3009120, which displays potent nanomolar 

inhibition of all three RAF proteins in vitro (Peng et al., 2015). As observed previously 

(Hatzivassiliou et al., 2010; Poulikakos et al., 2010), the mutant BRAF-selective inhibitor 

vemurafenib caused dose-dependent paradoxical activation rather than inactivation of ERK 

in KRAS mutant PDAC cells (Figure S1E). In contrast, treatment with RAFi caused dose-

dependent inhibition of ERK, with IC50 values ranging from 0.20 to 2.37 μM (Figures 1B 

and S1F; Table S1A).

We next determined the effects of RAFi treatment on the growth of a panel of KRAS mutant 

PDAC cell lines (Figure 1C; Tables S1A, S1C, and S1D). Defining sensitivity as a GI50 of 

<2.5 μM, a concentration where pERK is suppressed, we observed that four cell lines were 

sensitive (GI50 0.20–2.41 μM), and five lines were resistant (GI50 > 2.5 μM) after 3 days of 
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treatment. However, after a 5-day treatment, only two lines remained resistant. Interestingly, 

sensitivity to RAFi did not correspond to sensitivity to either the MEK1/2-selective inhibitor 

selumetinib or the ERK1/2-selective inhibitor SCH772984 (Hayes et al., 2016) (Table S1A). 

These distinct sensitivities indicate that inhibition of the ERK MAPK cascade at different 

levels may not have equivalent consequences, although off-target activities of each inhibitor 

and other factors (e.g., mode of action, binding affinity) may contribute to these differences.

To identify a genetic basis for sensitivity and resistance to RAFi, we performed a CRISPR 

screen targeting the druggable genome in the presence of a sublethal (GI30) concentration of 

RAFi in a sensitive (Pa02C) and a resistant (Pa01C) PDAC line. We identified genes whose 

loss increased or decreased sensitivity to RAFi (Figures S1G–S1I). Shown in the heatmap 

are 45 genes where three or more short guide RNAs (sgRNAs) scored in the top 25% of 

ranked hits on average for each condition; for the majority of these, their loss increased 

RAFi sensitivity (Figure S1I). Among the 37 genes in that category are some identified 

previously to regulate sensitivity to MEKis/ERK inhibitors (ERKis) (e.g., HDAC7, PIK3CB, 
and PDGFRB) (Anderson et al., 2017; Sun et al., 2014). Surprisingly, ARAF was among the 

top 10% of hits (Figure 1D), with stable suppression of ARAF causing up to a 4-fold shift in 

GI50 in both RAFi-sensitive and RAFi-resistant PDAC cell lines (Figures 1E and S1J). 

Suppression of BRAF or CRAF also increased sensitivity to RAFi (Figure S1K). These 

results may reflect that non-kinase functions are not blocked by an ATP-competitive 

inhibitor of kinase activity.

Chemical Library Screen Identifies Synergistic ERK MAPK Vertical Inhibition 
Combinations

To determine if co-treatment with other signaling inhibitors could overcome RAFi de novo 
resistance, we utilized a 525-compound chemical library comprising approved or clinical 

candidate oncology inhibitors (Pemovska et al., 2013)(Table S1E) in a panel of 20 KRAS 

mutant human or mouse PDAC cell lines (Figure S2D). We applied both viability (CellTiter-

Glo) and cytotoxicity (CellTox Green) assays to identify drug combinations that enhanced 

RAFi growth inhibitory or cytotoxic activity, respectively. Combinations were identified as 

synergistic when the delta drug sensitivity score (DSS) [DSS (drug+RAFi) – DSS (drug 

alone)] was >5 or antagonistic when deltaDSS was ≤5 Pemovska et al., 2013). Synergy or 

antagonism identified in two or more cell lines is shown for cytotoxicity and viability assays 

(Figures 2A and S2A). Reflecting the genetic heterogeneity of PDAC (Waters and Der, 

2018), we observed significant cell line variability in drug sensitivity. The screens identified 

multiple chemically distinct inhibitors of the same functional class of proteins.

We focused on the RAFi combinations identified in the cytotoxic assay (Figure 2A). As 

expected, we identified multiple inhibitors of PI3K-AKT-mTOR signaling in the viability 

screen and to a significantly lesser degree in the cytotoxicity screen (Figures 2A and S2A) 

(Engelman et al., 2008). Multiple inhibitors of EGFR/HER2 receptor tyrosine kinases, 

HSP90, histone deacetylases, and microtubule organization were also able to cause cell 

death when combined with RAFi.

Unexpectedly, we found that cytotoxic RAFi combinations included MEKis or ERKis, but 

not RAFis. Similarly, combinations with the MEKi trametinib or the ERKi SCH772984 
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were with EGFR/HER2, pan-RAF, and ERK, but not other MEKis (Figure S2B), or with 

EGFR/HER2 inhibitors, pan-RAFis, and MEKis, but not other ERKis (Figure S2C), 

respectively. These findings suggest that for a vertical combination to be synthetic lethal, 

each inhibitor must target a distinct node of the RAF-MEK-ERK pathway (Figure S2E).

We performed Bliss analyses to determine whether the inhibitory activities of each 

combination were additive or synergistic; Bliss scores greater than 1.0 indicate synergy. 

Concurrent inhibition of RAF and ERK (designated RAFi/ERKi hereafter) not only caused 

cytotoxicity in RAFi-sensitive KRAS mutant PDAC lines in a dose-dependent manner, but 

also sensitized RAFi-resistant cells (Figures 2B and S3A). This combination was highly 

synergistic, with average synergy scores of 12.5 and 15.5 for Pa02C and Pa16C cell lines, 

respectively (Table S1F), particularly at lower concentrations of each inhibitor. In ERKi-

resistant Pa16C cells, the GI50 for RAFi alone was 839 nM, whereas it was only 5 nM when 

combined with a low dose of ERKi (80 nM) (Table S1D). Thus, 168-fold less RAFi was able 

to produce similar efficacy when used as a component of vertical pathway inhibition.

Interestingly, the ERKi screen did not identify BRAF-selective inhibitors (Figure S2C), and 

BRAF inihibitors (BRAFis) in combination with ERKis resulted in no significant 

enhancement in activity (Figure S3B; Table S1I). This result supports the requirement to 

inhibit all RAF isoforms to disrupt KRAS signaling to ERK (Figures 1A, S1C, and S1D).

Consistent with the requirement to target distinct nodes, ERKi did not synergize with the 

mechanistically distinct ERKi ulixertinib/BVD-523 (Figure S3C; Table S1J). On the other 

hand, a second pan-RAFi, lifirafenib/BGB-283, also synergized with ERKi (Figure S3D; 

Tables S1K and S1L). Similarly, RAFi also synergized with another ERKi, LY3214996 

(Figure S3E; Tables S1M and S1N). Finally, leveraging additional combinations with RAFi 

targeting different nodes of the MAPK pathway, we found that RAFi, in combination with 

either erlotinib (EGFRi) or trametinib (MEKi), also synergistically suppressed growth 

(Figures 2C and 2D; Tables S1G and S1H). In summary, synergistic cytotoxic growth 

suppression was seen only when the combinations involve inhibitors of distinct nodes of the 

pathway.

Since a common mechanism for resistance to MEKis involves reactivation of ERK (Lake et 

al., 2016; Morrison, 2012; Samatar and Poulikakos, 2014), we speculated that the RAFi/

ERKi combination is more effective than the RAFi/MEKi combination, in part due to 

resistance to ERK reactivation. To address this possibility, we applied MIB/MS (multiplexed 

kinase inhibitor beads and mass spectrometry) kinome profiling, a kinome-wide unbiased 

method that has been used to monitor drug-induced compensatory signaling activities 

(Duncan et al., 2012). The kinase activity/expression changes caused by 72-h RAFi/ERKi or 

RAFi/MEKi showed near-identical profiles (Figures S3F and S3G). However, RAFi/ERKi 

but not RAFi/MEKi showed strong suppression of ERK1/2 activities. Immunoblot analyses 

also showed that the RAFi/ERKi combination caused greater suppression of ERK signaling 

and phosphorylation of the ERK substrate RSK (Figure S3H). Thus, the RAFi/MEKi 

combination showed greater resistance to ERK reactivation.
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RAFi/ERKi Treatment Suppresses ERK Signaling Despite Loss of Negative Feedback 
Inhibition

Immunoblot analyses of six PDAC cell lines verified that RAFi/ERKi synergistically 

reduced pERK levels (Figures 3C, S5C, and S5D) and that RAFi similarly synergized with 

the chemically distinct ERK1/2-selective inhibitor, LY3214996 (Figure S5E). To identify 

changes in signaling pathways and the resulting alterations in gene transcription that were 

quantitatively or qualitatively different upon combination treatment versus each inhibitor 

alone, we performed reverse phase protein array (RPPA) (Baldelli et al., 2017) pathway 

activation mapping (Figure 3A) and RNA sequencing (RNA-seq) analyses (Figure 3B). 

Together, these datasets show how RAFi/ERKi disrupted multiple signaling networks that in 

turn disrupted multiple transcription factor-driven transcriptomes (Figure S4).

RPPA-based pathway mapping revealed dynamic changes in protein phosphorylation and 

total protein components of signaling networks (Figure 3A; Tables S2A and S2B). These 

changes were much more robust upon concurrent treatment with RAFi/ERKi compared to 

the limited time-dependent alterations caused by either inhibitor alone. The combination 

suppressed ERK signaling (pRSK, MYC) more strongly than did single agents (Figure 3A). 

Additionally, RAFi/ERKi treatment strongly reduced SRC family kinase (SFK) 

phosphorylation and activation. SFK phosphorylation of ARAF and CRAF is a critical RAS-

mediated step in the activation of RAF kinase activity (Morrison, 2012). Decision tree 

analysis confirmed the significant alterations of these proteins (Table S2C). Finally, 

consistent with the growth inhibitory consequences, the RAFi/ERKi combination also 

reduced phosphorylation and activation of mitotic kinases Aurora and PLK1 (Figure 3A).

We applied MIB/MS and confirmed that 3-day treatment with RAFi/ERKi caused additive 

or synergistic alterations in kinase activity and/or expression compared to RAFi or ERKi 

alone (Figure S6A). While RAFi alone reduced activity/expression of BRAF but not ERK1 

or ERK2, and ERKi alone reduced ERK1 and ERK2 but not BRAF, the combination 

reduced both BRAF and ERK. Consistent with our previous observation that loss of MYC 

protein correlated with ERKi sensitivity, RPPA and MIB/MS revealed that the combination 

much more effectively reduced MYC protein levels (Figures 3A and S5C–S5E). Finally, 

MIB/MS also indicated that the combination reduced the activity/expression of Aurora and 

PLK1 (Figure S6A).

To compare the resulting gene transcription changes induced by RAFi/ERKi or each agent 

alone, we performed RNA-seq analyses after 4 or 24 h of treatment (Figure 3B). The 

strongest induction of gene transcription was of the interferon (IFN)-α/γ-related gene sets 

(Figure 3B; Tables S2D–S2I). This is consistent with a study of Kras-driven colon cancer, 

where Kras strongly downregulated IFN-α/γ gene sets, suppressing a T cell immune 

response (Liao et al., 2019). Consistent with the major role of the ERK MAPK effector 

pathway in driving KRAS-regulated gene expression, gene set enrichment analysis (GSEA) 

revealed that RAFi/ERKi suppressed genes upregulated by KRAS and increased expression 

of genes downregulated by KRAS (Figures 3B, S5A, and S5B). In particular, RAFi/ERKi 

strongly suppressed MYC transcription (Figure S6B) as well as potently silenced the 

expression of MYC-regulated genes (Figures 3B and S6C). RAFi/ERKi also robustly 

suppressed the expression of a second oncogenic transcription factor, FOSL1. Both MYC 
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and FOSL1 are well-validated drivers of KRAS-dependent PDAC growth (Vallejo et al., 

2017; Vaseva et al., 2018).

Previous studies showed that single-agent inhibition of any node of the RAF-MEK-ERK 

cascade is limited by the loss of negative feedback on the pathway, causing ERK reactivation 

(Lake et al., 2016; Morrison, 2012; Samatar and Poulikakos, 2014). Given its potent 

suppression of ERK signaling, RAFi/ERKi also robustly decreased inhibitory feedback on 

ERK. RPPA pathway mapping demonstrated that RAFi/ERKi increased phosphorylation at 

PAK phosphorylation sites on ARAF and CRAF that enhance RAF kinase activity (King et 

al., 1998) (Figure 3A). PAK signaling drives resistance to combined BRAF and MEK 

inhibition in BRAF mutant melanoma by causing ERK reactivation (Lu et al., 2017). 

Similarly, there was strong suppression of genes encoding diverse negative regulators of 

ERK signaling. These include proteins that directly dephosphorylate ERK (e.g., DUSP4–7) 

as well as proteins that inhibit RTK activation of RAS via its exchange factor SOS1 or that 

inactivate RAS via its negative regulator NF1 (e.g., SPRY2/4, SPRED1/2, respectively) 

(Figure S6B). To determine how RAFi/ERKi treatment was able to retain strong suppression 

of ERK signaling despite the extensive loss of negative feedback on ERK, we examined 

SHP2, essential for RTK activation of RAS and ERK (Ahmed et al., 2019). RAFi/ERKi 

treatment reduced SHP2 phosphorylation (Figure 3A) and suppressed transcription of the 

gene encoding SHP2 (PTPN11) (Figure S6D). RAFi/ERKi treatment also reduced 

phosphorylation of the SHP2 docking site on FRSα (Y436), an adaptor protein that links the 

fibroblast growth factor receptor (FGFR) RTK to SOS1 and RAS activation. FRSα is 

phosphorylated and inactivated by ERK feedback inhibition (Lax et al., 2002). Thus, 

downregulation of SHP2 contributes to the effectiveness of the RAFi/ERKi combination by 

creating insensitivity to the loss of ERK negative feedback.

RAFi/ERKi Treatment Decreases Cell Cycle Progression, Suppresses Protein Translation 
Signaling, and Increases Apoptosis

Pathway mapping at the levels of transcriptional control (RNA-seq), protein abundance 

(WB, RPPA, MIB/MS), and protein activity (RPPA, MIB/MS) all showed that the biological 

consequences of RAFi/ERKi treatment are due to multiple distinct mechanisms (Figure S4). 

RAFi/ERKi resulted in numerous changes that decreased the ERK-dependent events that 

facilitate G1 progression, including increased phosphorylation of p27KIP1, decreased 

expression of CCND1 (encoding cyclin D1) (Figure S6B), decreased phosphorylation of the 

RB tumor suppressor (Figure 3A), loss of E2F1 gene transcription (Figure S6D), and 

decreased transcription of E2F target genes (Figure S6E). RAFi/ERKi suppressed the genes 

normally upregulated during G2/M checkpoint progression more strongly than did either 

RAFi or ERKi alone (Figure S6E), and they suppressed the activities/expression of mitotic 

kinases that are critical regulators of the G2 to M transition (Figures 3A and S6E). 

Reflecting these activities was a time-dependent decrease in the proliferation marker Ki67 

(Figure 3A).

Pathway activation mapping also indicated that RAFi/ERKi synergistically suppressed 

mTORC1 signaling—which promotes protein translation, as indicated by reduced 

phosphorylation of mTORC1 substrates 4EBP1 and S6K—and of the S6K substrate 
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ribosomal protein S6 (Figure 3A). Strong suppression of mTORC1-stimulated gene 

expression was also seen with RAFi/ERKi (Figures 3B and S7F).

Further, RAFi/ERKi suppressed essentially all genes in the glycolytic pathway (Figure S6E), 

consistent with studies demonstrating that mutant KRAS drives increased transcription of 

glycolytic genes through ERK and MYC (Bryant et al., 2019; Ying et al., 2012). RAFi/ERKi 

also strongly suppressed genes involved in mitochondrial biogenesis, mitophagy, and 

impaired mitochondrial function (Figure S6E). Thus, RAFi/ERKi-mediated growth 

suppression involves the suppression of key metabolic processes.

Finally, pathway activation mapping also identified increases in markers of apoptosis caused 

by RAFi/ERKi; increased cleaved caspases 3, 6, and 7 and PARP; and increased expression 

of the pro-apoptotic proteins BIM and BAD (Figure 3A). RAFi/ERKi also more strongly 

increased the transcription of genes encoding pro-apoptotic proteins (e.g., HRK, BCL2L11 
[encoding BIM], PUMA, CASP1) and reduced the transcription of genes encoding pro-

survival proteins (BCL2L1 [encoding BCLXL], MCL1) than either single agent (Figures 

4A, S7A, and S7B). RAFi/ERKi-treatment-mediated increases in BIM and BAD were 

further verified by immunoblotting (Figure 4B). Induction of apoptosis was verified by flow 

cytometry analysis. Whereas RAFi or ERKi treatment alone did not significantly increase 

apoptosis over vehicle control (<10%), the percentage of apoptotic cells was more than 

tripled with RAFi/ERKi (Figures 4C, 4D, and S7C–S7E). Thus, RAFi/ERKi treatment 

impairs processes that promote cell proliferation and enhances processes that lead to cell 

death.

Combination RAFi/ERKi Treatment Stimulates Mesenchymal-to-Epithelial Transition

We noted from the RPPA analyses that combined RAFi/ERKi treatment increased E-

cadherin protein levels (Figures 3A and S8A), suggesting induction of the mesenchymal-to-

epithelial transition (MET) program. RAFi/ERKi treatment substantially increased E-

cadherin expression (2.4- to 7.3-fold) in four of six cell lines evaluated (Figures 5A, 5B, 

S8A, and S8B; Tables S3A and S3B), whereas RAFi or ERKi treatment alone did so to a 

lesser degree (Figure 5B). RAFi/MEKi or MEKi/ERKi treatment also increased E-cadherin 

expression. In contrast, BRAFi in combination with either ERKi or MEKi did not 

significantly increase E-cadherin expression. The limited change in vimentin transcription 

and protein levels upon RAFi/ERKi treatment (Figures 3B, 5A, 5B, and S8B) is consistent 

with a partial MET program.

The degree of E-cadherin increase correlated with the degree of pERK reduction, which was 

caused most effectively by combination RAFi/ERKi compared to treatment with any single 

inhibitor or other combinations. Increases in E-cadherin also correlated with induction of 

apoptosis (Figures 4B–4D and S7C–S7E). In the lines in which E-cadherin was upregulated, 

RAFi/ERKi also synergistically induced apoptosis. In contrast, in Pa01C cells, RAFi/ERKi 

did not alter E-cadherin levels (Figure S8B) and caused only a weak induction of apoptosis 

(Figures 4B and S7C–S7E). Finally, immunofluorescence analyses determined that RAFi but 

not ERKi treatment alone enhanced E-cadherin staining at cell peripheries and at cell-cell 

junctions, and combined RAFi/ERKi treatment caused the strongest upregulation of E-

cadherin (Figures 5C and S8C).
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We used RNA-seq and GSEA to identify the mechanistic underpinnings of MET induced by 

RAFi/ERKi. Expression of CDH1, which encodes E-cadherin, was increased by the 

combination (Figure 5D), consistent with reduced levels of several transcription factors that 

suppress CDH1 transcription (SNAI1, SNAI2, and ZEB1) (Derynck and Weinberg, 2019) 

(Figure 5D). Conversely, RPPA analyses showed that TGFβ/SMAD2, a well-established 

signaling pathway that drives EMT (epithelial-mesenchymal transition), was also reduced by 

RAFi/ERKi (Figure 3A). RAFi/ERKi caused a significant reduction in PLK1 activity 

(Figures S6A and 3A), a driver of EMT through ERK and FRA1 (Wu et al., 2016), with 

FRA1 also significantly reduced transcriptionally (FOSL1) by this combination (Figure 

S6B). Thus, induction of MET-like reprogramming, synergistically induced by RAFi/ERKi 

treatment, correlated with induction of apoptosis.

Concurrent Inhibition of Compensatory Signaling Enhances RAFi/ERKi Cytotoxicity

We next addressed two additional potential improvements in response to the combination. 

First, we determined if sequential treatment could be more effective than concurrent 

treatment. We compared low-dose sequential inhibitor treatment to low-dose concurrent 

treatment. For sequential treatment, cells were treated with the initial RAFi or ERKi for 3 

days, and then the other inhibitor ([RAFi + ERKi] or [ERKi + RAFi]) was added. In Pa02C 

cells, RAFi/ERKi resulted in 70% fewer cells than vehicle or either inhibitor alone (Figure 

6A). In contrast, sequential treatment in either order caused a much more limited decrease 

(~20%–25%). In Pa14C cells, whereas treatment with either RAFi or ERKi alone caused a 

~25% decrease, concurrent RAFi/ERKi treatment caused a near-complete suppression of 

proliferation (~95%). By comparison, RAFi followed by ERKi, or ERKi followed by RAFi, 

caused a ~75% or ~50% reduction, respectively. Thus, concurrent treatment was more 

effective than sequential inhibitor treatment.

Second, we determined if further concurrent inhibition of additional feedback mechanisms 

can further enhance RAFi/ERKi treatment in Pa02C cells, where there was room for 

improvement over the RAFi/ERKi combination (Figure 6A). We observed that RAFi/ERKi 

was associated with increased PAK activity. For example, RPPA demonstrated increased 

phosphorylation at the PAK phosphorylation site in CRAF (S338) (King et al., 1998) 

(Figures 3A and S4), and this was verified by immunoblotting (Figure 6B). Increased LIMK 

phosphorylation and activation, supported by increased phosphorylation at S3 of the actin-

severing LIMK substrate Cofilin (Figures 3A and 6B), was also consistent with upregulation 

of PAK activity. S3 phosphorylation inactivates Cofilin, stimulating actin polymerization 

(Kanellos and Frame, 2016), which is also consistent with the MET-associated changes 

(Derynck and Weinberg, 2019) that we observed. Immunofluorescence images revealed F-

actin rearrangement upon RAFi and/or ERKi treatment (Figure S8C). Thus, RAFi/ERKi was 

associated with increased PAK activation, likely through upregulation of RTK signaling 

(Rane and Minden, 2019). Therefore, we determined if adding the PAK inhibitor (PAKi) 

FRAX597 would further enhance RAFi/ERKi growth inhibition. PAKi treatment alone 

reduced pCRAF without affecting proliferation. However, the triple combination of RAFi/

ERKi/PAKi was able to nearly ablate proliferation (Figures 6A and S9A–S9C).
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Another potential compensatory activity is PI3K-AKT activation, which has been described 

in response to MEKi treatment. This also explains how concurrent PI3Ki can enhance ERK 

MAPK inhibitory activity (Figure 2A). Accordingly, RAFi/ERKi treatment of Pa02C cells 

increased AKT pS473, which was blocked by the AKT inhibitor (AKTi) MK2206 (Figure 

6B). Like PAKi, AKTi alone did not affect proliferation, but concurrent or sequential AKTi 

treatment caused more growth suppression than RAFi/ERKi treatment alone (Figures 6A 

and S9A–S9C). Thus, as with PAKi, the concurrent AKTi treatment blocked a compensatory 

activation mechanism and further enhanced RAFi/ERKi growth suppression.

Low-Dose RAFi/ERKi Vertical Inhibition Is Effective in KRAS Mutant Organoids and Tumor-
Bearing Rats

We next evaluated the activity of the RAFi/ERKi combination in other KRAS mutant cancer 

cell lines and in PDAC organoids and tumor-bearing animals. RAFi/ERKi also caused 

synergistic growth suppression in KRAS mutant colon and lung cancer cell lines (Figures 

7A and S10A). Extending these analyses to models that may better reflect patient tumor 

response, we observed strong synergistic growth inhibition due to the RAFi/ERKi 

combination in patient-derived KRAS mutant PDAC and CRC organoid models (Figures 7B, 

7C, S10B, and S10C).

Finally, we extended the analyses of the RAFi/ERKi combination to evaluate anti-tumor 

activity. Since RAFi has poor pharmacokinetics in mice, our analyses were limited to 

analyses of PDAC-cell-line-induced tumors in immune-compromised rats. For these 

analyses, we utilized three PDAC lines that showed different degrees of response to vertical 

inhibition combinations. HPAF-II cells exhibit strong synergistic growth suppression with 

RAFi in combination with ERKi, MEKi, and EGFRi (Figures S10E–S10G; Tables S1D and 

S1F–S1H). CFPAC1 cells were also responsive to vertical inhibition combinations, but to a 

lesser degree, and SW1990 cells showed very limited increased growth suppression with the 

combinations.

Whereas ERKi and RAFi alone simply reduced the rate of tumor growth in HPAF-II PDAC 

xenografts, the RAFi/ERKi vertical inhibition combination was able to induce tumor 

regression even at low doses and did so without statistically significant toxicity (Figure 7D). 

The target-based mechanism of tumor regression is supported by immunoblot analyses of 

remaining tumor tissue isolated 4 h after the last treatment (day 21), where the combination 

reduced ERK signaling more potently than did either inhibitor alone (Figures 7E and S10D). 

Analyses of CFPAC-1 also determined that RAFi/ERKi showed greater activity than each 

inhibitor alone (Figures S10H and S10I). In contrast, RAFi alone did not significantly 

reduce SW1990 tumor growth, whereas ERKi alone or in combination with RAFi shows 

comparable limited tumor reduction (Figure S10J). No significant toxicity was observed for 

both models, as indicated by maintained body weight (Figures S10H and S10J). Thus, the in 
vivo responses closely mirrored the different sensitivities of each cell line when evaluated in 

cell culture.
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DISCUSSION

Despite the essential role of the RAF-MEK-ERK cascade in KRAS-dependent PDAC 

growth, single-agent pharmacologic inhibition of this cascade has been ineffective due to the 

loss of ERK-dependent negative feedback inhibitory mechanisms that then cause ERK 

reactivation and drug resistance in cancer cells. Normal tissue toxicity has also been a 

limitation. To address these limitations, we applied a chemical screen to identify 

combinations that enhance the apoptotic activity of RAFi-MEKi-ER-Kis. While we 

identified multiple mechanistically distinct apoptotic combinations, surprisingly, the most 

potent combination was the concurrent inhibition of two distinct nodes of the three-tiered 

ERK MAPK cascade, where treatment with a pan-RAFi together with an ERK-selective 

inhibitor (RAFi/ERKi) exhibited the strongest synergistic activity.

Despite strong induction of compensatory signaling activities that can drive ERK 

reactivation, the RAFi/ERKi combination was able to cause synergistic suppression of ERK 

activation and system-wide disruption of ERK-dependent cellular processes, causing cell 

cycle arrest and apoptosis; loss of MYC-, E2F- and FRA1-dependent transcriptomes; 

impaired metabolism; and induction of MET. That the synergistic apoptotic growth 

suppression was strongest at lower inhibitor concentrations suggests that combined vertical 

inhibition of the ERK MAPK signaling circuitry can overcome the limitations seen with 

single-agent inhibition and lead to tumor regression rather than stasis at doses that can 

reduce normal tissue toxicity.

The concept of vertical inhibition of ERK MAPK was first demonstrated in BRAF mutant 

melanoma, where BRAFi/MEKi combinations are now approved. This combination strategy 

delays onset of resistance and reduces toxicity compared with BRAFi treatment alone, albeit 

without any reduction in the dosing compared with BRAFi treatment alone (Dummer et al., 

2018; Flaherty et al., 2012; Larkin et al., 2014; Long et al., 2014). Extending this concept 

further, it was shown that a triple RAFi/MEKi/ERKi combination, with each used in the 

combination at the maximum tolerated dose, further delayed the onset of resistance, 

exhibited stronger suppression of BRAF mutant tumors, and further reduced toxicity 

compared with the double-combination MEKi/ERKi (Xue et al., 2017).

Similar to our RAFi/ERKi vertical inhibition strategy, two recent studies showed that 

concurrent RAFi/MEKi treatment blocked ERK reactivation caused by MEKi treatment 

alone in KRAS mutant or WT cancer cell lines (Lamba et al., 2014; Yen et al., 2018). A 

third study showed that concurrent MEKi/ERKi treatment exhibited stronger inhibition of 

ERK and increased anti-tumor activity than either inhibitor alone (Merchant et al., 2017). 

While our study found that combined inhibition of any two distinct nodes of the EGFR-

RAF-MEK-ERK cascade is superior to any single-node treatment, our analyses support the 

RAFi/ERKi combination as the optimal combination. MEKis and ERKis are limited by 

CRAF reactivation, whereas RAFis and MEKis are limited by ERK reactivation; therefore, 

the RAFi/ERKi combination targets the two key reactivation nodes. We also determined that 

concurrent rather than sequential inhibitor treatment allowed more effective ERK inhibition 

and growth suppression. Finally, we demonstrated that triple combinations with a third 
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inhibitor that targets additional compensatory mechanisms (PAK or AKT activation) further 

enhance RAFi/ERKi activity.

To address a mechanistic basis for the synergistic and apoptotic growth suppression of the 

RAFi/ERKi combination, we applied RPPA and RNA-seq analyses to identify activities seen 

with RAFi/ERKi but not with each inhibitor alone. Together, these analyses identified a 

spectrum of ERK-dependent signaling activities and cellular processes driven more potently 

by RAFi/ERKi than RAFi or ERKi alone, where any one perturbation alone would be 

expected to significantly impair cancer cell proliferation. Perhaps most significant is the 

synergistic loss of a key ERK substrate, MYC, and the suppression of MYC-regulated gene 

transcription. We showed recently that the loss of MYC is a key basis for ERKi sensitivity in 

PDAC and that MYC suppression alone impairs PDAC tumorigenic growth (Hayes et al., 

2016; Vaseva et al., 2018).

RAFi/ERKi induced more robust suppression of ERK signaling than was achievable even by 

high-dose treatment with each inhibitor alone. Along with this, it also more robustly induced 

changes associated with a loss of ERK negative feedback mechanisms (Morrison, 2012; 

Samatar and Poulikakos, 2014), such as suppressing transcription of multiple DUSP family 

genes encoding protein phosphatases that dephosphorylate and inactivate ERK and 

activating RTKs that promote PAK-dependent phosphorylation and activation of CRAF. 

However, although these changes would be expected to reactivate ERK signaling, the 

combination nevertheless retained the ability to strongly suppress ERK signaling. Thus, 

another basis for the synergistic activity of RAFi/ERKi is insensitivity to the compensatory 

activation mechanisms that limit the effectiveness of RAFis, MEKis, or ERKis when used as 

single-agent therapies. An additional unexpected consequence of RAFi/ERKi was inhibition 

of SHP2, a key relay mechanism that connects RTK activation with downstream activation 

of RAS and ERK signaling. Recent studies showed that concurrent treatment with a SHP2 

inhibitor can negate the RTK-mediated compensatory activities that are stimulated by ERK 

MAPK inhibition and can synergistically enhance MEKi activity (Ahmed et al., 2019; 

Fedele et al., 2018; Mainardi et al., 2018; Ruess et al., 2018; Wong et al., 2018).

Concurrent RAFi/MEKi treatment also caused apoptotic cell death not seen with each 

inhibitor alone. A mechanistic basis for this was identified, where the combination showed 

stronger promotion of pro-apoptotic and suppression of pro-survival activities. Similarly, 

RAFi/ERKi synergistically caused G1 arrest through RB activation of loss of transcription 

of E2F-mediated gene expression. Together, these activities provide a basis for the ability of 

RAFi/ERKi to suppress PDAC growth at lower concentrations of each inhibitor. Thus, 

vertical inhibition of the ERK MAPK cascade may reduce the normal tissue toxicity seen 

with single-agent therapy and promote cytotoxic rather than cytostatic inhibition of cancer 

cell proliferation.

We also observed that RAFi/ERKi induced a partial MET program by transcriptional 

suppression of SNAI1/2 and ZEB1, the latter of which encodes a transcription factor 

suppressor of CDH1 transcription (Derynck and Weinberg, 2019). With enhanced CDH1 
expression promoting enhanced E-cadherin expression, a key driver of MET, RAFi/ERKi-

treated PDAC cells exhibit a transition from a mesenchymal to an epithelial state. Further, 
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we observed a trend in which MET was the strongest in the PDAC cell lines where RAFi/

ERKi caused the strongest induction of apoptosis. This relationship mirrors the earlier 

findings, where KRAS mutant cancer cell lines with a mesenchymal phenotype were those 

that escaped KRAS addiction, whereas KRAS mutant cell lines with an epithelial phenotype 

were susceptible to KRAS suppression-induced apoptosis (Singh et al., 2009). Similarly, 

McCormick and colleagues found that KRAS mutant cancer cells with an epithelial but not a 

mesenchymal phenotype exhibited ERK dependency (Yuan et al., 2018).

Our determination that the RAFi/ERKi combination caused both G1 arrest and apoptosis in 

cancer cells shows the ability of this combination to block tumorigenic growth and cause 

tumor regression. Additionally, we found that RAFi/ERKi may enhance an anti-tumor 

immune response. Whereas EPHA2 has been shown to suppress anti-tumor T cell immunity 

(Markosyan et al., 2019), kinome profiling upon RAFi/ERKi treatment revealed a reduction 

of EPHA2 expression/activity. Further, one of the strongest consequences of RAFi/ERKi 

was stimulation of IFN-α/γ genes, which would also stimulate a T cell immune response 

(Liao et al., 2019). Thus, RAFi/ERKi may cause potent anti-tumor activity both by 

suppressing tumor cell growth and by stimulating a host immune response. Our analyses 

showed that RAFi/ERKi caused tumor regression in immune-suppressed rats. We speculate 

that the RAFi/ERKi combination will elicit robust tumor regression in syngeneic PDAC 

mouse models where there is an intact immune system.

During our studies, a clinical trial evaluating LY3009120 in patients with advanced or 

metastatic cancer was terminated early based on the lack of sufficient clinical efficacy 

observed (NCT02014116), emphasizing the need to consider vertical inhibition combination 

approaches. One ongoing clinical trial is evaluating the pan-RAFi LXH254 in combination 

with either an ERKi or a MEKi in patients with advanced or metastatic KRAS mutant lung 

cancer or NRAS mutant melanoma (NCT02974725). This study will provide a clinical 

comparison of a RAFi/ERKi versus RAFi/MEKi combination.

In summary, while we identified inhibitors of diverse cellular components that enhanced the 

anti-tumor activity of a pan-RAFi, the most potent combination involved vertical inhibition 

of the RAF-MEK-ERK cascade that was effective at low doses. Our evidence shows that 

RAFi/ERKi, despite stimulating robust compensatory mechanisms that can drive ERK 

reactivation, is refractory to these mechanisms and consequently achieves pathway 

suppression at a level not achievable with each inhibitor alone. This concept is further 

supported by our triple combinations with inhibitors of PAK- or AKT-dependent 

compensatory mechanisms. This causes the loss of a spectrum of ERK-dependent cellular 

processes driven by aberrant gene transcription (G1 progression, pro-survival, EMT) that 

then promotes cancer cell death and tumor regression. Finally, since we found that RAFi/

ERKi was effective in KRAS mutant pancreatic, lung, and colorectal cancer cell lines, this 

combination may serve as a pan-KRAS mutant cancer therapy.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Requests for further information and reagents should be directed to and 

will be fulfilled by the Lead Contact, Channing J. Der (cjder@med.unc.edu).

Materials Availabilty—This study did not generate any new reagents.

Data and Code Availability—The accession number for the binary sequence 

alignment/map (BAM) files of RNA-seq data of cell lines MIA PaCA-2, Pa02C, Pa14C and 

Pa16C reported in this paper is [ENA] (the EMBL-EBI European Nucleotide Archive) 

PRJEB38063 (https://www.ebi.ac.uk/ena/, https://www.ebi.ac.uk/ena/data/view/

PRJEB38063). The file names containing “R” indicate RAF inhibitor treated samples, “E” 

indicate ERK inhibitor treated samples, “C” indicate combination treated samples and “V” 

indicate vehicle control. The file names containing “4” and “24” indicate treatment time of 4 

hours and 24 hours respectively.”

This study did not generate any unique codes.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—The patient-derived xenograft (PDX) human pancreatic cancer cell lines 

Pa01C, Pa02C, Pa03C, Pa04C, Pa14C and Pa16C were gifted by Dr. Anirban Maitra (MD 

Anderson Cancer Center). Conventional human pancreatic cancer cell lines (MIA PaCa-2, 

PANC-1, HPAF-II, CFPAC-1 and SW 1990), lung cancer cell lines (A549, NCI-H358 and 

SW900) and colorectal cancer cell line (SW620) were obtained from American Type Culture 

Collection (ATCC). PDX pancreatic and colorectal cancer cell lines were maintained in 

Dulbecco’s Modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS). HPAF-II, CFPAC-1 and SW 1990 pancreatic cancer cell lines were maintained in 

RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS). Lung cancer cell 

lines were maintained in RPMI medium supplemented with 10% FBS. Cell lines were tested 

for mycoplasma. Pancreatic cancer cell line identities were verified by Short Tandem Repeat 

(STR) analysis.

Patient-Derived Organoids—The human pancreatic cancer organoids were provided by 

Dr. David Tuveson (Cold Spring Harbor Laboratory). The patient-derived PDAC organoids 

hM1A KRASG12D and hT2 KRASG12R were cultured at 37°C in 5% CO2. Cells were 

seeded in growth factor reduced Matrigel (Corning) domes and fed with complete human 

feeding medium: advanced DMEM/F12 based WRN condition media (L-WRN (ATCC 

CRL-3276)), 1x B27 supplement, 10 mM HEPES, 0.01 μM GlutaMAX, 10 mM 

nicotinamide, 1.25 mM N-acetylcysteine, 50 ng/mL hEGF, 100 ng/mL hFGF10, 0.01 μM 

hGastrin I, 500 nM A83-01, 1 μM PGE2 and additionally 10.5 μM Y27632 (Boj et al., 

2015). Organoids were tested for mycoplasma. The patient-derived colorectal organoids 

OT227 KRASG13D, OT238 KRASG12D and OT302 KRASG12D were previously fully 

characterized in terms of genomic alterations by Schütte et al. (2017). CRC organoids were 

cultured in crypt culture medium (CCM) containing advanced DMEM/F12 (GIBCO) 
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supplemented with 1x GlutaMAX (GIBCO), 10 mM HEPES buffer (GIBCO), Penicillin/

Streptomycin (100 U/ml/100 μg/ml), 1 mM N-acetylcysteine (Sigma), 1x N2 Supplement 

(GIBCO), 1x B27 Supplement (GIBCO) and prepared with freshly added hFGF basic/FGF2 

(20 ng/ml) (Sigma) and hEGF (50 ng/ml) (Sigma).

Rats—All in vivo studies were performed in accordance with the American Association for 

Laboratory Animal Care institutional guidelines and approved by The Eli Lilly and 

Company Animal Care and Use Committee. HPAF-II, CFPAC-1 and SW1990 pancreatic 

cancer cells (ATCC cat#CRL-1997)) were cultured in MEM supplemented with 10% heat 

inactivated fetal bovine serum, sodium pyruvate, and nonessential amino acids. Cell lines 

were tested for mycoplasma and identity was confirmed by STR-based DNA finger printing 

and multiplex PCR (IDEXX-Radil). Logarithmically growing cells with < 7 passage from 

the thaw were used for implantation.

In all three studies (HPAF II, CFPAC1 and SW1990), 7-8 weeks old (120-145 g) female 

NIH Nude (NIHRNU-IVI) rats from Taconic Farms Inc were used.

Animal maintenance and care:

12 hr light/dark cycle, Temp: 68-75°C, Humidity: 30%–70% relative, 3-5 animals /cage, 

Bedding: Bed o cob, Filtered water, Feeding: Ad libitum, Feed: Standard chow

METHOD DETAILS

shRNA and Plasmid Transfections—The shRNAs targeting ARAF 
(TRCN0000000567, TRCN0000000568), BRAF (TRCN0000006290, TRCN0000006291), 

and CRAF (TRCN0000001065, TRCN0000001066) were provided Deborah K. Morrison 

(NCI), and shRNA targeting KRAS (TRCN0000010369) was provided by J. Settleman 

(Genentech). 0.9 × 106 HEK293T cells were seeded on T25 flasks and incubated overnight. 

To generate lentiviral particles, HEK293T cells were transfected with plasmids by using 

FuGENE6 (Roche) protocol. Vector (4 μg), pSPAX2 (3 μg) and pMD2.G (1 μg) plasmids 

were diluted in 400 μL Opti-MEM medium. Transfection reagent FuGENE6 (24 μl) was 

added into the diluted plasmid mixture and incubated for 15 min at room temperature. 

Transfection mixture was added onto HEK293T cells dropwise and incubated overnight. 

Transfection medium was replaced with DMEM with 20% FBS and incubated for 48 hr. 

Virus particles were collected. 106 cells were infected by 0.5 μL virus combined with 

polybrene (final concentration of 8 μg/μl) in 2 mL medium. The medium was replaced with 

complete medium (DMEM with 10% FBS) after 8 hr. Antibiotic selection was started after 

12-16 hr of incubation in complete medium. Upon 72 or 120 hr of antibiotic selection, cells 

were collected for immunoblotting, anchorage-independent colony formation, or 

proliferation assays.

To quantify anchorage-independent colony formation, 400-1000 cells per well (depending 

on the cell line) were seeded on 6-well plates and incubated for ≥ 10 days at 37°C until 

colonies were formed. Colonies were stained by crystal violet and quantified by ImageJ 

(version 2.0.0). Briefly, the 6-well plate images were converted to 8-bit images. The same 
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thresholding was applied to all the wells to subtract background. The mean intensities were 

normalized by dividing each value to the average intensity of its respective control well.

To quantify proliferation, 2×105 cells per well were seeded and incubated overnight at 37°C. 

The next day cells were treated with LY3009120 (0.3 μM), SCH772984 (0.04 μM), the 

PAK1 inhibitor FRAX-597 (0.5 μM), or the pan-AKT1/2/3 inhibitor MK-2206 (0.6 μM) 

alone or in various combinations as indicated in the figures for a total of 10 days. Cells were 

stained by crystal violet and quantified by ImageJ as described above.

Immunoblotting—The human pancreatic cancer cells were washed with ice-cold PBS, 

lysed with ice-cold 1% RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.01% SDS, 

0.5% sodium deoxycholate, 1% NP-40) supplemented with protease (Roche) and 

phosphatase (Sigma) inhibitors, scraped and incubated in cold tubes for 10 min on ice. Cell 

lysates were centrifuged at 18,213 x g (12,700 rpm) at 4°C for 10 min, and the supernatant 

was used for determining protein concentration by Bradford assay (Bio-Rad). Standard 

immunoblotting procedures were followed. Membranes were blocked in 5% BSA diluted in 

TBST (TBS with 0.05% Tween 20) for 1 hr.

Proliferation Assays—The cancer cells (103 per well) were seeded in 96-well plates, 

incubated overnight, and treated with small molecule inhibitors. Cells were treated with a 

pan-RAF inhibitor LY3009120 (0.01-2.5 μM) alone or in combination with ERK1/2 

inhibitor SCH772984 (0.04-1.25 μM, 72 or 120 hr), ERK1/2 inhibitor LY3214996 

(0.04-1.25 μM, 120 hr), MEK1/2 inhibitor trametinib (Mekinist) (0.125-4.0 nM, 120 hr), or 

EGFR inhibitor erlotinib (Tarceva) (0.01-2.5 μM, 120 hr). Cells were treated with ERK1/2 

inhibitor SCH772984 (0.04-0.16 μM) alone or in combination with mutant BRAF-selective 

inhibitor vemurafenib (Zelboraf) (0.01-2.5 μM), ERK1/2 inhibitor ulixertinib (BVD-523) 

(0.01-2.5 μM), or RAF family kinases and EGFR inhibitor BGB-283 (lifirafenib) (0.01-2.5 

μM) for 120 hr. Vehicle control DMSO was kept ≤ 0.01%. Cells were incubated at 37°C 72 

or 120 hr. Proliferation was measured by counting calcein AM (500 nM, 20 min) 

(Invitrogen) labeled live cells by using a SpectraMax i3x multimode detection platform 

(Molecular Devices). Bliss synergy scores were calculated using SynergyFinder (version 

1.6.1) package of R (version 3.5.1) environment. An R script was used to convert the 96-

well plate format data into SynergyFinder data table format. SynergyFinder data table 

includes the identifiers for inhbitiors, row and column numbers, the name of the inhibitors in 

a dose-response matrix, the concentration and its unit for each well, and the response, which 

is % inhibition in cell growth. SynergyFinder calculates a synergy score based on Bliss 

model (Bliss, 1939).

CRISPR/Cas9 Screen

Design and Cloning of the CRISPR Library: In order to assemble a library of druggable, 

cancer-relevant genes, we manually curated 2,240 genes from six broad domains of interest: 

chromatin modifiers (including epigenetic readers, writers, erasers), the full kinome, 

pathways responsible for mediating and repairing DNA damage, genes/proteins that 

represent the target of FDA-approved drugs for any indication, genes that are frequently 

mutated in cancer, and genes that comprise the pathways most frequently dysregulated in 
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tumorigenesis, tumor maintenance, and drug resistance. Beyond these genes of interest, we 

also selected 150 genes, chosen for their demonstrated dispensability or non-dispensability 

across a series of essentiality studies (Hart et al., 2014), to be used as control genes. We 

selected five constructs to represent each of these 2,390 genes, producing a subtotal of 

11,950 short guide RNA (sgRNA) constructs. Finally, we included 50 non-targeting control 

constructs for a total of 12,000 sgRNAs. All of the CRISPR constructs used in this library 

were selected from a previously characterized and published library (Wang et al., 2014). 

sgRNA inserts corresponding to the entire 12,000 sgRNA library were synthesized by 

CustomArray, Inc in the form:

GGAAAGGACGAAACACCGXXXXXXXXXXXXXXXXXXXXGTTTTAGAGCTAGAA

ATAGCAAGTTAAAATAAGGC. Where “X” denotes variable 20-mer sgRNA sequence 

unique to each construct. The resulting library was cloned using previously published 

methods (Shalem et al., 2014). In brief, the oligo pool was diluted 1:100 in molecular 

biology grade water and amplified using NEB Phusion Hotstart Flex with the following 

primers and PCR protocol:

Array F: 

TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAAC

ACCG

Array R: 

ACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAA

AAC

PCR protocol: 98°C/30 s, 18 × [98°C/10 s, 63°C/10 s, 72°C/15 s], 72°C/3 min. Resulting 

inserts were processed with Axygen PCR clean-up beads (ratio of 1.8 × starting volume; 

Fisher Scientific) and reconstituted in half the volume of molecular biology grade water. In 

parallel, the lentiCRISPRv2 vector (Addgene ID 52961) was digested with BsmBI (Thermo 

Fisher) at 37°C for2 hr. The product was run out for size-selection on a 1% agarose gel and 

the ~13 kB band was gel-extracted. Using 100 ng of BsmBI-cleaved lentiCRISPRv2 and 40 

ng of sgRNA oligo insert as substrates, a Gibson assembly reaction was performed (total 

volume of 20 μl, for 30 min, at 50°C). Following Gibson assembly, 1 μl of the product was 

electroporated into electrocompetent Lucigen 10G-elite cells, spread onto LB-ampicillin 

plates and incubated at 37°C for 16 hr. The efficiency of transformation was estimated by 

plating limiting dilutions on LB-ampicillin plates. Multiple electroporations were performed, 

producing an estimated 500,000 total colonies, sufficient to cover the entire library of 12,000 

constructs more than 40-fold. The colonies were collected in LB and plasmid extra was 

performed using a plasmid maxiprep kit (QIAGEN). DNA was used to make lentivirus.

CRISPR/Cas9 Library Lentivirus Generation and Infection: Lentivirus generation was 

performed as described previously (Martz et al., 2014). HEK293T cells were seeded in 15 

cm dishes and grown up to 50% confluency. Library plasmid (6.25 μg), psPAX2 (5.6 μg), 

pVSVg (0.625 μg) and transfection reagent FuGENE6 (Roche) was incubated for 30 min. 

The transfection mixture was added to the cells and incubated overnight. Harvest media 

(DMEM with 30% FBS) was added the next day and incubated for 48 hr. Virus particles 
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were collected and filtered through a 0.45 μm filter. Virus tittering was performed as 

described previously (Martz et al., 2014).

Human pancreatic cancer cell lines (5×105 per well) were seeded in 6-well plates and 

incubated overnight. Next day, virus was added at an MOI of 0.3. Upon puromycin 

selection, a day 2 sample is taken to ensure library representation and the remaining cells 

were seeded in 500 cm dishes. The cells were maintained in puromycin media for 10 days to 

achieve 1,000x coverage of the library. The cells were either treated with vehicle control 

DMSO (≤0.01%) or LY3009120 RAF inhibitor (GI20-30). The cells were collected after 2 

and 4 weeks, DNA was extracted with DNeasy Blood & Tissue Kit (QIAGEN) and prepared 

for sequencing.

Drug Sensitivity Resistance Testing (DSRT) Chemical Library Screen: The DSRT 

platform that has been described previously (Gautam et al., 2016; Pemovska et al., 2013) 

was adapted for the PDAC cell lines. 525 different oncological compounds were utilized in 

this study (Table S2J). The compounds were plated to white clear bottom 384-well plates 

(Corning #3712) in 5 concentrations in 10-fold dilution steps, thus covering an individually 

optimized 10,000-fold concentration range for each compound using an Echo 550 Liquid 

Handler (Labcyte). Cell killing 100 μM benzethonium chloride (BzCl2) and 0.1% dimethyl 

sulfoxide (DMSO) vehicle were used as positive and negative controls respectively. For the 

combination screenings, single concentration of RAFi (LY3009120), MEKi (trametinib), 

ERKi (SCH772984) in final concentrations of 2 μM, 25 nM, or 100 nM respectively, were 

added on top of 525 compound 5-concentrations plates using Echo 550. Pa01C, Pa02C, 

Pa03C, Pa04C, Pa14C, Pa18C and MDA-PATC53 were screened in combination with 

ravoxertinib whereas the remaining cell lines were screened in combination with 

SCH772984. All subsequent liquid handling was performed using a MultiDrop dispenser 

(Thermo Scientific). The pre-dispensed compounds were dissolved in 5 μL of culture media, 

containing viability and cytotoxicity measurement reagents, RealTime-Glo and CellTox 

Green (Promega), respectively and left on a plate shaker at room temperature for 30 min. 

Twenty μl cell suspension containing optimized number of cells per well were seeded in the 

drugged plates. After 72 hr incubation, the multiplexed cell viability (luminescence) and 

cytotoxicity (fluorescence) was recorded using a PheraStar plate reader (BMG Labtech). The 

raw luminescence and fluorescence data were analyzed in Breeze software, an in-house 

developed data analysis pipeline at Institute for molecular Medicine Finland (FIMM), to 

calculate the drug sensitivity scores (DSS) (Yadav et al., 2014). The drug combination 

selective effect was calculated as combination DSS minus single agent DSS, termed as 

“Delta DSS.”

Reverse Phase Protein Array (RPPA): Human pancreatic cancer cell lines MIA PaCA-2, 

Pa02C, Pa14C and Pa16C were seeded (2×105 cells per well) onto 6-well plates. The next 

day cells were treated with vehicle control DMSO (≤0.01%), LY3009120 RAFi (0.3 μM), 

SCH772984 ERKi (0.04 μM), or the combination of the two inhibitors for 15 min, and 1, 8, 

24 or 72 hr. Cells were lysed and processed as previously described (Baldelli et al., 2017). 

Coomassie Protein Assay Reagent kit (Thermo Fisher Scientific) was used to measure 

protein concentration, following the manufacturer’s instructions. 2X Tris-glycine SDS 
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sample buffer (Life Technologies) with 5% β-mercaptoethanol was used to dilute cell lysates 

to 0.5 mg/ml. Samples were boiled for 8 min and stored at −20°C until arrayed. An Aushon 

2470 automated system (Aushon BioSystems) (Pierobon et al., 2017) was used to 

immobilize cell lysates and the internal controls and print in technical replicates (n = 3) onto 

nitrocellulose-coated glass slides (Grace Bio-Labs). Sypro Ruby Protein Blot Stain 

(Molecular Probes) was used to quantify protein concentration in each sample, following the 

manufacturer’s instructions. Reblot Antibody Stripping solution (Chemicon) was used to 

pretreat the remaining arrays (15 min at room temperature). The arrays were washed with 

PBS and incubated in I-block (Tropix) for 5 hr before antibody staining (Baldelli et al., 

2017). Arrays were incubated with 3% H2O2, Avidin, Biotin (DakoCytomation), and an 

additional serum-free protein block (DakoCytomation) to reduce nonspecific binding of 

endogenous proteins. Staining was performed using an automated system (DakoCytomation) 

was used. Each slide was probed for 30 min with one antibody targeting the protein of 

interest, with 157 antibodies that target proteins involved in signaling networks that regulate 

cell growth, survival and metabolism were used to probe arrays (Table S2J). All antibodies 

used were validated as described previously (Signore and Reeder, 2012). Signal 

amplification was determined by using biotinylated anti-rabbit (Vector Laboratories) or anti-

mouse secondary antibody (DakoCytomation) and a commercially available tyramide-based 

avidin-biotin amplification system (Catalyzed Signal Amplification System, 

DakoCytomation). IRDye 680RD streptavidin (LI-COR Biosciences) fluorescent detection 

system was used. TECAN laser scanner was used to scan Sypro Ruby and antibody stained 

slides, and the images were analyzed using commercially available software (MicroVigene 

Version 5.1.0.0, Vigenetech) as previously described (Baldelli et al., 2015).

RNA Sequencing: The human pancreatic cancer cell lines MIA PaCA-2, Pa02C, Pa14C and 

Pa16C were seeded at ~50% confluency. The next day the cells were treated with the vehicle 

control DMSO (≤0.01%), LY3009120 (RAFi, 0.3 μM), SCH772984 (ERKi, 0.04 μM) or the 

combination of the two inhibitors for 4 or 24 hr. The cells were washed twice with ice-cold 

PBS and before scrape removal in ice-cold PBS. The cells were collected by centrifugation 

at 326 x g (500 rpm) at 4°C for 10 min, and the cell pellets were flash frozen by liquid 

nitrogen. Whole transcriptome libraries were generated from total RNA (50 ng) of the 

human pancreatic cancer cell lines by using Illumina’s Truseq RNA Sample Prep to perform 

RNA sequencing. Oligo(dT) magnetic beads were used to select Poly(A) mRNA, and 

TruSeq PCR Master Mix and primer cocktail were used to enrich the libraries. The Agilent 

Bioanalyzer and Invitrogen Qubit were used to clean and quantify the amplified products. 

The Illumina HiSeq 2500 was used to sequence the clustered flowcell for paired 100-bp 

reads by using Illumina’s TruSeq SBS Kit V3. Lane level fastq files were appended together 

if they were sequenced across multiple lanes. These fastq files were then aligned with STAR 

2.3.1 to GRCh37.62 using ensembl.74.genes.gtf as GTF files. Transcript abundances were 

quantified by HTSeq in total read counts per transcript.

MIB/MS: The human pancreatic cancer cell line MIA PaCA-2 was treated with the vehicle 

control DMSO (≤0.01%), LY3009120 (RAFi; 0.3 μM), trametinib (MEKi; 0.5 nM), 

SCH772984 ERKi (0.04 μM), or the combinations of RAFi/MEKi and RAFi/ERKi for 72 

hr. The samples were prepared as described previously (Duncan et al., 2012). Briefly, the 
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cells were processed on ice by using MIB lysis buffer [50 mM HEPES (pH 7.5), 0.5% Triton 

X-100, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 10 mM sodium fluoride, 2.5 mM 

sodium orthovanadate, 1X protease inhibitor cocktail (Roche), 1% phosphatase inhibitor 

cocktail 2 (Sigma-Aldrich), and 1% of phosphatase inhibitor cocktail 3 (Sigma-Aldrich)]. 

The cell lysates were sonicated (3 × 10 s) on ice and were collected by centrifugation 

(10,000 x g) at 4°C for 10 min. The supernatant was filtered through a 0.2 mm SFCA 

membrane. The lysates (~5 mg protein per experiment) were gravity-flowed over 

multiplexed kinase inhibitor beads (MIBs) (Sepharose conjugated to VI-16832, 

CTx-0294885, PP58, Purvalanol B, UNC8088A, UNC21474). MIBs were washed with high 

(1 M NaCl) and low salt (150 mM NaCl + 0.1% SDS) lysis buffers without the inhibitors. 

The samples were boiled with the elution buffer (100 mM Tris-HCl, 0.5% SDS, and 1% β-

mercaptoethanol, pH 6.8) at 100°C for 5 min to elute the bound kinases from MIBs. The 

eluted kinases (proteins) were concentrated with Amicon Ultra-4 (10K cutoff) spin columns 

(Millipore), purified by removing the detergent using methanol/chloroform extraction, and 

digested by sequencing grade Trypsin (Promega) overnight at 37°C. Hydrated ethyl acetate 

extraction was used to remove triton, and PepClean C-18 spin columns (Pierce, Thermo 

Scientific) were used to de-salt the digested peptides.

Biological triplicates of the MIB samples were analyzed by LC-MS/MS as described 

previously (Vaseva et al., 2018). Briefly, each sample was injected onto an Easy Spray 

PepMap C18 column (75 μm id × 25 cm, 2 μm particle size) (Thermo Scientific) and 

separated over a 2 hr method. The gradient for separation consisted of 5%–32% mobile 

phase B at a 250 nl/min flow rate, where mobile phase A was 0.1% formic acid in water and 

mobile phase B consisted of 0.1% formic acid in ACN. The Thermo QExactive HF was 

operated in data-dependent mode where the 15 most intense precursors were selected for 

subsequent HCD fragmentation (set to 27%).

Flow Cytometry: TACS® Annexin V-FITC Kit (BD Biosciences) was used to measure 

apoptosis according to the manufacturer’s instructions. Detached cells in the culture medium 

and the trypsinized cells were collected, mixed and centrifuged at 300 x g for 5 min at room 

temperature. The cells were washed with ice-cold PBS and incubated in Annexin V 

Incubation Reagent (1% Annexin V-FITC, 1X propidium iodide solution, in 1X calcium-

containing binding buffer) in the dark for 15 min at room temperature. Cell mixture was 

diluted 1:5 in 1X binding buffer. BD LSRFortessa flow cytometer was used to analyze the 

cells. FACSDiva v8.0.1 was used to collect and export 30,000 cells to be analyzed with 

Cytobank. A “cells” gate was generated to avoid small and large debris in the bottom right 

corner or off-scale on either axis by using a side scatter area (SSC-A) (y) versus forward 

scatter area (FSC-A) (x) dot plot. Propidium iodide area (PI-A) (y) versus fluorescein 

isothiocyanate area (FITC-A) (x) dot plot was used to measure apoptosis. Vehicle control 

DMSO (≤ 0.01%) treated cells were assigned as the healthy cell population by a quadrant 

gate (PI-A negative, FITC-A negative).

Immunofluorescence: Human pancreatic cancer cells Pa01C and Pa02C were plated on 10 

μg/ml fibronectin-coated glass coverslips and treated with DMSO (≤0.01%), LY3009120 

RAFi (0.3 μM), SCH772984 ERKi (0.04 μM), or the combination of the two inhibitors for 
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72 hr. The cells were washed twice with PBS, fixed in 3.7% formaldehyde (Fisher 

Scientific) for 10 min at room temperature, washed with PBS and permeabilized with 0.1% 

Triton X-100 (Sigma) for 5 min at room temperature. Non-specific signals were blocked 

using 2% BSA (Sigma) in PBS for 30 min at room temperature. Cells were incubated with 

the primary antibody (diluted in 2% BSA-PBS) for 40 min at room temperature, followed by 

three washes with PBS and incubation with the secondary antibody (diluted in 2% BSA-

PBS) for 45 min at room temperature. After washing three times with PBS, cells were 

mounted with Prolong Diamond antifade mounting media (Invitrogen). E-cadherin was 

visualized by anti-rabbit E-cadherin (clone 24E10; Cell Signaling, 1:100) followed by a 

goat-anti-rabbit Alexa Fluor-568 conjugated secondary antibody (Invitrogen, 1:200). 

Phalloidin conjugated with an Alexa 488 fluorophore (Invitrogen, 1:200) was used to 

visualize F-actin and DAPI (Invitrogen, 1:10000) was used to label the nucleus. Images were 

acquired in five random fields on an Olympus FV1000 confocal microscope using a 40x 

objective (1.2 zoom) and a maximally opened pinhole.

Organoid Viability Assay: PDAC organoids were dissociated and 3000 single cells per well 

were seeded in 150 μl of 10% growth factor reduced Matrigel (Corning) and 90% human 

organoid feeding media + 10.5 μM Y27632 (Selleckchem) into Poly(2-hydroxyethyl 

methacrylate) (SIGMA) coated 96-well clear flat bottom plates (Corning Ref. 3903). On the 

second day after seeding organoids were drugged with SCH772984 (0.04 μM to 0.63 μM) 

and LY3009120 (0.01 μM to 2.5 μM). Ten days after drugging, organoids were imaged with 

the Molecular Devices SpectraMax i3x MiniMax 300 imaging cytometer. After image 

acquisition organoid viability was accessed with CellTiter-Glo® 3D Cell Viability Assay 

(Promega) according to manufactures protocol on the SpectraMax i3x plate reader. 

Colorectal organoid cultures were immersed in 90% Matrigel (BD, Cat# 356231), plated 

onto 24-well plates in 20 ml drops per well and upon solidification overlaid with 500 μl 

CCM. For inhibitor experiments the organoids were harvested and trypsinized until single 

cell suspension was available for plating onto flat bottom 96-well format (Corning, Cat. No. 

3603) (outer wells filled with PBS only). Per well 1000-1500 single cell organoids were 

plated in a 6 μl Matrigel drop and 150 μl CCM was added to culture PD3D’s for two days 

prior inhibitor addition. The inhibitors were added to the CRC PD3D’s as specified using the 

Tecan 300D dispenser and incubated for 5 days prior monitoring of proliferation by 

microscopy (Exp1-3, Tecan Spark, Exp 4 and 5, Keyence BZ-X710) and CellTiter-Glo® 3D 

measurement.

Bliss synergy scores were calculated using SynergyFinder as described in “Proliferation 

assays.”

PDAC Xenograft Study: Five × 106 HPAF II (ATCC# CRL-1997), CFPAC-1 (ATCC# 

CRL-1918) or SW1990 (ATCC# CRL-2172) pancreatic cancer cells in a 1:1 Matrigel mix 

(HPAF-II and SW1990; 0.2 mL total volume) were injected subcutaneously into the right 

hind flank of 7- to 8-week old (125-150 g) female athymic NIH (NIHRNU-IVI) nude rats 

(Taconic Farms). After tumors reached 200-300 mm3, animals were randomized into groups 

of six. Both LY3214996/ERKi and LY3009120/RAFi were administered orally (gavage) in 

0.2 mL volume of vehicle (1%HEC/0.25% Tween 80/0.05% Antifoam) for 21 days. Tumor 
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volume and body weight are measured twice weekly. Tumor volume is estimated by using 

the formula: v = l x w2 × 0.536 where l = larger of measured diameter and w = smaller of 

perpendicular diameter.

QUANTIFICATION AND STATISTICAL ANALYSIS

Prism Software—GraphPad Prism (versions 7.0.4 and 8.0.2) built-in tests were used to 

analyze the data provided. For the boxplots and growth inhibition curves, data are the mean 

average of 3 independent experiments and error bars are represented as ± SEM (unless 

otherwise noted). p values are indicated on the graphs and the absolute values are denoted in 

the figure legends. All data presented are normalized to their respective vehicle control. 

Technical and biological replicates are as indicated in the figure legends.

ImageJ Software—ImageJ (version 2.0.0) software was used to analyze images 

(Schneider et al., 2012).

SynergyFinder—Bliss synergy scores were calculated using SynergyFinder (version 

1.6.1) R (version 3.5.1) package (Ianevski et al., 2017) as described in “Proliferation 

assays.”

Decision Tree and Forest Analyses—Decision tree and forest analyses were 

performed by using Sci-Kit Learn (version 0.20.3) in Python (version 3.6.3). RPPA dataset 

was grouped into five categories: vehicle control versus RAFi, vehicle control versus ERKi, 

vehicle control versus RAFi + ERKi, RAFi versus RAFi + ERKi, and ERKi versus RAFi + 

ERKi. RPPA dataset was further grouped into two categories as training and test data. 

Training (70% of RPPA dataset) and test data (remining 30% of RPPA dataset) comprise 

equal distribution of samples from the five categories described above. Decision trees were 

generated by using these training and test data. Accuracy for decision trees was above 80%.

For decision forest analysis, 70% of the data from each of the five categories (described 

above) were fit to a decision forest by a Random Grid Search to optimize for the best fitting 

forest based on F1 macro score (number of estimators between 300 and 500 and max 

features between 30 and 150). Once a model was obtained, accuracy on the test set was 

accessed (greater than 90% for all categories) and feature importance’s from the model were 

used to rank the most critical proteins.

CRISPR Analysis—CRISPR sequencing was performed at UNC (High-Throughput 

Sequencing Facility, Chapel Hill, NC) and Hudson Alpha (HudsonAlpha Genomic Services 

Laboratory, Huntsville, AL). Single-end sequencing (75 bp) was performed by using 

Illumina NextSeq 500 with ~10% PhiX (varied depending on the run). Read counts for 

individual samples were quantified using the protocol outlined in Shalem et al. (2014). 

Briefly, unaligned reads in FASTQ format were used to generate a Burrows-Wheeler index 

using the Bowtie build-index function. Reads were then aligned to the index using the 

Bowtie aligner, followed by the quantification of the number of reads per sgRNA. For each 

pair of samples (vehicle control and drug treated), guide constructs were removed if they 

were not identified in the vehicle control. Missing values in the treated samples were 

imputed with the mean value of all guide constructs for that gene in the treated sample. 
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Reads were then normalized between samples by converting them to a percentage of total 

reads per sample. The ratio of vehicle/treated for each construct yielded an “enrichment 

ratio” for the pair of samples per guide construct. To summarize results per gene, the average 

enrichment ratio (AER) was calculated for each gene among all constructs. Genes with a 

standard deviation in enrichment ratio greater than three were removed. Genes were rank 

ordered by their AER and assigned to bins according to their position in the ranked list. 

Genes were then given a value according to their bin assignment: top 10% sensitizers (bin 

value = 2), top 25% sensitizer, excluding top 10% (bin value = 1), top 10% antagonizer (bin 

value = −2), top 25% antagonizer, excluding top 10% (bin value = −1), neither sensitizer nor 

antagonizer (bin value = 0). Given the variability of genetic CRISPR-Cas9 screens (between 

samples and replicates), this bin placement method permitted greater comparability between 

sample pairs.

DSRT Chemical Library Screen Analysis—Inhibitors included in the screen were 

categorized by their known primary protein target (Gautam et al., 2016; Pemovskaet al., 

2013; Yadavet al., 2014). Cell lines and drugs were hierarchically clustered using average 

linkage and Euclidean distance; δDSS values are displayed.

Reverse phase protein array (RPPA) analysis—Antibody intensity values were 

imported into R (version 3.5.2) and missing values were imputed with the median intensity 

value for the respective antibody. Data were log2 transformed and the fold change over the 

median vehicle value was calculated for each antibody, factored by cell line and time point. 

Euclidean distance and average linkage were utilized for semi-supervised hierarchical 

clustering of log2 fold-change values for antibodies.

RNA Sequencing Analysis—Counts data were imported into R (version 3.5.2) and 

differential expression analysis was performed with the DESeq2 package (version 1.22.2) 

(Liberzon et al., 2015, 2011; Love et al., 2014; Mootha et al., 2003; Subramanian et al., 

2005). Significant hits were defined by an adjusted p value < 0.05. Gene set enrichment 

analysis (GSEA) was performed using the GSEA Desktop application (version 3.0, available 

at https://www.gsea-msigdb.org/gsea/index.jsp) and curated gene sets were obtained from 

MSigDB (v6.2, available at https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Specific 

gene sets are referenced in figure legends. GSEAPreranked was run using the DESeq2 test 

statistic as the weighted ranking factor for each comparison.

MIB/MS Analysis—Following MaxQuant processing of data and generation of Label-free 

quantification (LFQ) intensity values, data files were analyzed using R (version 3.5.2). A 

total of 207 kinases were identified with 191 present in > 50% of samples and containing 

two or more peptides. 27/191 kinases were missing one or more values after this filtering 

and these values were imputed. A normal distribution was modeled on the non-missing LFQ 

intensity values of the kinases containing missing intensity values. Imputed values were 

drawn randomly from this distribution. Following filtering and imputation, LFQ intensity 

values were log2 transformed and the fold change over the median vehicle value was 

calculated for each kinase. significant kinases between DMSO, ERKi, RAFi, and ERKi

+RAFi treatments were determined using one-way ANOVA (Benjamini-Hochberg adjusted 
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p value < 0.05). Euclidean distance and average linkage were utilized for unsupervised 

hierarchical clustering of log2 fold-change values for significant kinases.

Tumor Xenograft Statistical Analysis—The statistical analysis of the tumor volume 

data begins with a data transformation to a log scale to equalize variance across time and 

treatment groups. The log volume data are analyzed with a two-way repeated-measures 

analysis of variance by time and treatment using the MIXED procedures in SAS software 

(Version 9.3). The correlation model for the repeated-measures is Spatial Power. Treated 

groups are compared to the control group at each time point. The MIXED procedure is also 

used separately for each treatment group to calculate adjusted means and standard errors at 

each time point. Both analyses account for the autocorrelation within each animal and the 

loss of data that occurs when animals with large tumors are removed from the study early. 

The adjusted means and standard errors (s.e.) are plotted for each treatment group versus 

time. Analysis for tumor volume is based on log10 and spatial power covariance structure. P 

value is based on the comparison between two specific groups.

Tumor Xenograft Combination Analysis Method (Bliss independence)—First, 

the usual repeated-measures model is fit to log volume versus group and time. Then contrast 

statements are used to test for an interaction effect at each time point using the 2 specific 

treatments that are combined. This is equivalent to the Bliss Independence method and 

assumes that tumor volumes can, in theory, reach zero, i.e., complete regression. The 

expected additive response (EAR) for the combination is calculated on the tumor volume 

scale as: response (EAR) EAR volume = V1 * V2/V0, where V0, V1, and V2 are the 

estimated mean tumor volumes for the vehicle control, treatment 1 alone, and treatment 2 

alone, respectively. If the interaction test is significant, the combination effect is declared 

statistically more than additive or less than additive depending on the observed combination 

mean volume being less than or more than the EAR volume, respectively. Otherwise, the 

statistical conclusion is additive. In addition, a biologically relevant range of additivity can 

be defined as X% above and below the EAR volume. Typically, X would be 25 to 40%. 

Then a biological conclusion can be made for the combination as synergistic (greater than 

additive), additive, or less than additive if the observed combination mean volume is below, 

in, or above the interval of additivity.

There may be situations were stasis is the best expected response. In those situations, the 

Bliss method can be applied directly to the % delta T/C values to obtain an EAR percent 

response: EAR % delta T/C = Y1 *Y2/100, where Y1 and Y2 are the percent delta T/C 

values for the single-agent treatments. Currently, there is no statistical test to compare the 

observed % delta T/C in the combination group versus the EAR, but the biological criterion 

described above can be applied.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Vertical inhibition of the RAF-MEK-ERK cascade drives apoptotic cell death 

rather than cytostasis

• RAF+ERK inhibition induces powerful synergy, enabling effective treatment 

at low doses

• Concurrent RAF+ERK inhibition renders treated cells insensitive to 

compensatory ERK reactivation

• Concurrent RAF+ERK inhibition induces MET and silences the MYC-

dependent transcriptome
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Figure 1. Concurrent Inhibition of All RAF Isoforms Diminishes PDAC Growth
(A) PDAC cell lines were infected by lentivirus vectors encoding nonspecific (NS) control 

or distinct shRNAs targeting ARAF, BRAF, CRAF, or KRAS sequences. Colonies were 

stained by crystal violet ~10 days after plating. Data are presented as median. All p values 

shown are in comparison to the vehicle control for the individual graph. Adjusted p values 

are from Dunnett’s multiple comparison test. Adjusted p values: Pa01C (ARAF-sh1 = 

0.6792, ARAF-sh2 = 0.6726, BRAF-sh1 = 0.8883, BRAF-sh2 = 0.0592, CRAF-sh1 = *, 

0.0024, CRAF-sh2 = 0.6350), (KRAS-sh = ***, 0.0010). Pa02C (ARAF-sh1 = 0.7153, 

ARAF-sh2 = 0.0692, BRAF-sh1 = 0.8788, BRAF-sh2 = 0.1990, CRAF-sh1 = 0.0539, 

CRAF-sh2 = 0.2738), (KRAS-sh = **, 0.0068). Pa14C (ARAF-sh1 = ****, < 0.0001, 

ARAF-sh2 = ****, < 0.0001, BRAF-sh1 = *, 0.0103, BRAF-sh2 = ****, < 0.0001, CRAF-
sh1 = ****, < 0.0001, CRAF-sh2 = ****, < 0.0001, KRAS-sh = ****, < 0.0001). Pa16C 

(ARAF-sh1 = 0.9995, ARAF-sh2 = 0.7500, BRAF-sh1 = 0.9977, BRAF-sh2 = ****, < 

0.0001, CRAF-sh1 = ****, < 0.0001, CRAF-sh2 = ****, < 0.0001, KRAS-sh = ****, < 

0.0001). MIA PaCa-2 (ARAF-sh1 = 0.5520, ARAF-sh2 = **, 0.0051, BRAF-sh1 = 0.2316, 

BRAF-sh2 = **, 0.0076, CRAF-sh1 = **, 0.0086, CRAF-sh2 = **, 0.0098). PANC-1 
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(ARAF-sh1 = 0.3213, ARAF-sh2 = ****, < 0.0001, BRAF-sh1 = 0.0586, BRAF-sh2 = **, 

0.0025, CRAF-sh1 = ****, < 0.0001, CRAF-sh2 = ****, < 0.0001).

(B) PDAC cell lines were treated with RAFi (0.04–10 μM, 72 h). Cell lysates were 

immunoblotted to determine levels of the indicated proteins. Data are representative of three 

independent experiments.

(C) PDAC cell lines were treated with RAFi (0.01–2.5 μM, 72 h). Proliferation was 

measured by Calcein AM cell viability assay. Data are the mean average of three 

independent experiments. Error bars are shown as ± SEM.

(D) CRISPR screen. PDAC cell lines were infected with the CRISPR library and treated 

with vehicle control or RAFi (w2, 2 weeks; w4, 4 weeks; a and b indicate replicate samples). 

The enrichment score indicates either enrichment (red) or depletion (blue) of the indicated 

genes in cells treated with RAFi relative to vehicle control.

(E) Cell lines were infected by lentivirus vectors encoding NS or two distinct ARAF 
shRNAs (72 h) and treated with RAFi (0.01–2.5 μM, 120 h). Proliferation was measured by 

Calcein AM cell viability assay. Data are the mean average of three technical replicates. 

Error bars are shown as ± SEM. Summary of GI50 values.
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Figure 2. Identification of Synergistic Drug Combinations That Enhance ERK MAPK Inhibitor 
Cytotoxicity
(A) Cell lines were treated with a 525-inhibitor library with or without RAFi (2 μM, 72 h). 

Cell death was measured by CellTox Green. Drug sensitivity score (δDSS) was used to 

quantify inhibitor responses and plotted as red (>additive), blue (<additive) or white (no 

effect).

(B–D) Pa02C and Pa16C were treated with RAFi (0.01–2.5 μM) alone or in combination 

with ERKi (0.08–1.25 μM) (B), MEKi (0.25–4 nM) (C), or EGFRi (0.08–1.25 μM) (D) for 

120 h. Proliferation was measured by Calcein AM cell viability assay. Representative bliss 

synergy score heatmap for three independent experiments is shown (left). Red, synergy; 

green, antagonism; white, no effect. Averaged dose response curves of three independent 

experiments (with three technical replicates) are shown (right). Error bars are ± SEM. 

Synergyavg = average bliss synergy score.
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Figure 3. Concurrent RAF and ERKi Inhibition Disrupts ERK-Dependent Signaling and 
Cellular Processes
(A) RPPA analyses of PDAC cell lines treated with vehicle control, RAFi (0.3 μM), ERKi 

(0.04 μM), or the combination for multiple time points (0.25, 1, 8, 24 and 72 h). RAFi/

ERKi-treated PDAC cells were normalized to their respective vehicle control. Proteins with 

significant phosphorylation or expression changes at 72-h time point are plotted as fold 

changes. Red, increased fold change; blue, decreased fold change; white, no change.

(B) GSEA of the cell lines shown in (A). Enriched or depleted gene sets treated with RAFi/

ERKi compared to RAFi (upper graph) or ERKi (below graph) are shown (24 h).

(C) Pa16C cells were treated with vehicle control, RAFi (0.3 μM) and ERKi (0.04 μM) 

alone, or the combination (120 h). Cell lysates were immunoblotted to determine levels of 

pERK, total ERK, total MYC, and vinculin. Data are representative of three independent 

experiments.
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Figure 4. Concurrent RAF and ERK Inhibition Causes Apoptosis
(A) (left) Fold changes (log2) of RNA expression of pro-apoptosis and pro-survival genes as 

the averaged values of MIA PaCa-2, Pa02C, Pa14C, and Pa16C cell lines treated with RAFi/

ERKi (0.3 μM and 0.04 μM, respectively) and compared to RAFi (0.3 μM) (24 h). Error bars 

are shown as standard error. All p values shown are in comparison to the vehicle control for 

individual graph; p values are from Wald test. Adjusted p values: BAX (0.2971), BAK1 
(0.7226), BAD (*, 0.0332), BID (0.3363), BIK (0.2635), HRK (**, 0.003), BCL2L11 (****, 

1.49E-5), PUMA/BBC3 (*, 0.0221), CASP1 (0.3642), CASP2 (**, 0.0034), CASP3 
(0.6314), CASP4 (0.1526), CASP6 (0.5876), CASP7 (0.5114), CASP8 (0.9215), CASP9 
(0.2887), BCL2 (***, 0.0014), BCL2L1 (0.1569), MCL1 (0.9338), BCL2L2 (0.9080). 

(Right) fold changes (log2) of the transcripts of the cells treated with RAFi/ERKi (0.3 μM 

and 0.04 μM, respectively) and compared to ERKi (0.04 μM) (24 h). Error bars are shown as 

standard error. All p values shown are in comparison to the vehicle control for individual 

graph; p values are determined from the Wald test. Adjusted p values: BAX (***, 0.0003), 

BAK1 (0.4834), BAD (0.6736), BID (0.1958), BIK (0.2171), HRK (***, 0.0011), BCL2L11 
(****, 7.12E−6), PUMA/BBC3 (*, 0.0148), CASP1 (0.3406), CASP2 (*, 0.0250), CASP3 
(0.7561), CASP4 (*, 0.0229), CASP6 (*, 0.0615), CASP7 (0.1599), CASP8 (0.4119), 
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CASP9 (0.2582), BCL2 (****, 0.0001), BCL2L1 (**, 0.0032), MCL1 (0.7493), BCL2L2 
(0.9250).

(B) Pa01C, Pa02C, or Pa14C cells were treated with vehicle, RAFi (0.3 μM), ERKi (0.04 

μM), or the combination (72 h). Cell lysates were immunoblotted to determine levels of the 

indicated proteins.

(C) Percent apoptosis of Pa02C and Pa16C cells treated with the vehicle control, RAFi (0.3 

or 0.6 μM), ERKi (0.04 or 0.08 μM), or the combinations (120 h). Error bars are shown as ± 

SEM.

(D) Representative images of percent apoptosis of the cell lines in (C). Fluorescence-

activated cell sorting (FACS) analysis was used to measure apoptosis.
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Figure 5. Concurrent RAF and ERK Inhibition Induces Mesenchymal-to-Epithelial Transition
(A) Pa02C and Pa16C cells were treated with RAFi (0.3 μM), BRAFi (1 μM), MEKi (0.5 

nM), or ERKi (0.04 μM) alone or in combination as indicated (120 h). Cell lysates were 

immunoblotted to determine the levels of the indicated proteins.

(B) Expression levels of the proteins in (A) are plotted as fold changes. All the proteins are 

normalized to loading control and their respective vehicle control. Error bars are shown as ± 

SEM.

(C) Representative immunofluorescence images of Pa02C cells treated with vehicle, RAFi 

(0.3 μM), ERKi (0.04 μM), or the combination to visualize E-cadherin expression and 

distribution (72 h). Scale bar, 20 μm.

(D) Fold changes in RNA expression of epithelial and mesenchymal markers are plotted for 

the mean average of MIA PaCa-2, Pa02C, Pa14C, and Pa16C cell lines. Error bars are 

shown as standard error. p values shown are from Wald test and are in comparison to the 

vehicle control. Adjusted p values: CDH1 (*, 0.0252), CLDN1 (0.8818), TJP1 (0.7301), 

VIM (0.8465), CDH2 (0.3881), CTNNB1 (0.2445), SNAI1 (0.2542), SNAI2 (0.5672), 

ZEB1 (*, 0.0262).
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Figure 6. Concurrent Inhibition of Compensatory Signaling Enhances RAFi/ERKi Growth 
Inhibition
(A) Pa02C and Pa14C cells were treated with RAFi (0.3 μM), ERKi (0.04 μM), FRAX597 

(PAKi, 1 μM), or MK2206 (AKTi, 0.6 μM) alone or in combination (slash indicates 

concurrent inhibition; plus sign indicates sequential inhibition, inhibitor addition after 72 h). 

Remaining cells were stained with crystal violet after a total of 5 days. Data are the mean 

average of two independent experiments. Error bars are shown as ± SEM.

(B) Pa02C and Pa14C cells were treated as in (A) for a total of 5 days. Cell lysates were 

immunoblotted to determine the levels of the indicated proteins. Data are representative of 

two independent experiments.
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Figure 7. Vertical ERK MAPK Inhibition is Effective in Organoid and Rat Models of KRAS 
Mutant Cancers
(A) KRAS mutant cancer cell lines were treated with RAFi (0.01–2.5 μM) and ERKi (0.08–

1.25 μM) alone or in combination for 120 h. Proliferation was measured by Calcein AM cell 

viability assay. Representative bliss synergy score heatmaps for three independent 

experiments is shown (left). Red, synergy; green, antagonism; white, no effect. The averaged 

dose response curves of three independent experiments are shown (right). Error bars are ± 

SEM. Synergyavg = average bliss synergy score.

(B) KRAS mutant PDAC (10 days) and CRC organoids (5 days) were treated with RAFi 

(0.01–2.5 μM) and ERKi (0.04–0.63 μM) alone or in combination. Proliferation was 

measured by CellTiter-Glo 3D cell viability assay. Dose response curves and bliss synergy 

scores were calculated and represented as in (A).

(C) Representative images of PDAC organoid hM1A treated with the vehicle control DMSO 

or RAFi (0.16 μM) or ERKi (0.04 μM) alone or in combination (left). Scale bar, 200 μm. 

Representative images of CRC organoid OT238 treated with DMSO or RAFi (0.31 μM) or 

ERKi (0.04 μM) alone or in combination (right). Scale bar, 100 μm.
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(D) Relative tumor volume of the NIH nude rats with implanted HPAF-II cells were treated 

with RAFi (20 mpk, BID) alone or in combination with the ERKi LY3214996 (LY ERKi, 10 

mpk, QD) for 36 days (left). Body weight changes are shown (right). Error bars are shown as 

± SEM.

(E) Quantitation of blot analysis to determine levels of pRSK of tumor lysates (n = 5 animals 

per group). Error bars are shown as ± SEM.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-phospho-p44/42 MAPK (ERK1/2) (Thr202/
Tyr204)

Cell Signaling Technology Cat# 4370; RRID:AB_2315112

Rabbit polyclonal anti-p44/42 MAPK (ERK1/2) Cell Signaling Technology Cat# 9102; RRID:AB_330744

Rabbit polyclonal anti-phospho-AKT (Ser473) Cell Signaling Technology Cat# 9271; RRID:AB_329825

Rabbit polyclonal anti-Akt Cell Signaling Technology Cat# 9272; RRID:AB_329827

Mouse monoclonal anti-Vinculin Sigma-Aldrich Cat# V9131; RRID:AB_477629

Mouse monoclonal anti-c-K-Ras (Ab-1) (234-4.2) Millipore Cat# OP24; RRID:AB_2134115

Mouse monoclonal anti-A-Raf (A-5) Santa Cruz Biotechnology Cat# sc-166771; Lot# A2617; 
RRID:AB_2060508

Mouse monoclonal anti-Raf-B (F-7) Santa Cruz Biotechnology Cat# sc-5284; Lot# A0617; 
RRID:AB_626760

Mouse monoclonal anti-Raf-1 (E-10) Santa Cruz Biotechnology Cat# sc-7267; Lot# I0117; 
RRID:AB_628196

Rabbit polyclonal anti-phospho-MEK1 (Ser298) Cell Signaling Technology Cat# 9128; RRID:AB_330810

Mouse monoclonal anti-MEK1/2 (L38C12) Cell Signaling Technology Cat# 4694; RRID:AB_10695868

Rabbit monoclonal anti-c-Myc (D84C12) XP Cell Signaling Technology Cat# 5605; RRID:AB_1903938

Rabbit polyclonal anti-phospho-p90RSK (Thr359/Ser363) Cell Signaling Technology Cat# 9344; RRID:AB_331650

Rabbit monoclonal anti-RSK1/2/3 Cell Signaling Technology Cat# 9355; RRID:AB_659900

Rabbit monoclonal anti-p27 kip1 Cell Signaling Technology Cat# 3688; RRID:AB_2077836

Rabbit polyclonal anti-BAD Cell Signaling Technology Cat# 9292; RRID:AB_331419

Rabbit monoclonal anti-Bim (C34C5) Cell Signaling Technology Cat# 2933; RRID:AB_1030947

Rabbit monoclonal anti-E-Cadherin (24E10) Cell Signaling Technology Cat# 3195; RRID:AB_2291471

Rabbit monoclonal anti-vimentin (D21H3) XP Cell Signaling Technology Cat# 5741; RRID:AB_10695459

Rabbit polyclonal anti-phospho-FoxO1 (Thr24)/FoxO3a (Thr32) 
Antibody

Cell Signaling Technology Cat# 9464; RRID:AB_329842

Rabbit polyclonal anti-phospho-FoxO1 (Ser256) Cell Signaling Technology Cat# 9461; RRID:AB_329831

Rabbit monoclonal anti-FoxO3a (D19A7) Cell Signaling Technology Cat# 12829; RRID:AB_2636990

Rabbit monoclonal anti-phospho-c-Raf (Ser338) (56A6) Cell Signaling Technology Cat# 9427; RRID:AB_2067317

Rabbit polyclonal anti-phospho-Cofilin (Ser3) Cell Signaling Technology Cat# 3311; RRID:AB_330238

Rabbit polyclonal anti-Cofilin (D3F9) XP Cell Signaling Technology Cat# 5175; RRID:AB_10622000

Rabbit monoclonal anti-phospho-RSK1 p90 (T359 + S363) antibody 
[E238]

Abcam Cat# ab32413; RRID:AB_2181172

Anti-RSK1 Eli Lilly and Company Cat# 334G

Mouse monoclonal anti-phospho-p44/42 MAPK (ERK1/2) (Thr202/
Tyr204) (E10)

Cell Signaling Technology Cat# 9106; RRID:AB_331768

Rabbit monoclonal anti-p44/42 MAPK (Erk1/2) (137F5) Cell Signaling Technology Cat# 4695; RRID:AB_390779

Rabbit polyclonal anti-phospho-S6 Ribosomal Protein (Ser240/244) Cell Signaling Technology Cat# 2215; RRID:AB_331682

Mouse monoclonal anti-S6 Ribosomal Protein (54D2) Cell Signaling Technology Cat# 2317; RRID:AB_2238583

Mouse monoclonal anti-β-actin Sigma-Aldrich Cat# A5441; RRID:AB_476744

Bacterial and Virus Strains

DH5α Thermo Fisher Cat# 18258012

Biological Samples
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REAGENT or RESOURCE SOURCE IDENTIFIER

HPAF-II KRAS mutant PDAC rat xenograft tumor tissue Provided by Eli Lilly Star methods section of this paper

CFPAC-1 KRAS mutant PDAC rat xenograft tumor tissue Provided by Eli Lilly Star methods section of this paper

SW1990 KRAS mutant PDAC rat xenograft tumor tissue Provided by Eli Lilly Star methods section of this paper

Chemicals, Peptides, and Recombinant Proteins

BGB-283 (RAF family kinases and EGFR inhibitor) Selleckchem Cat# S7926

BVD-523 (ERK1/2 inhibitor) Provided by Biomed Biomed

Valley Discoveries Valley Discoveries

Erlotinib (EGFR inhibitor) Selleckchem Cat# S7786

FRAX-597 (PAK1/2/3 inhibitor) Selleckchem Cat# S7271

LY3009120 (pan-RAF inhibitor) Provided by Eli Lilly Provided by Eli Lilly

LY3214996 (ERK1/2 inhibitor) Provided by Eli Lilly Provided by Eli Lilly

MK-2206 (AKT1/2/3 inhibitor) Selleckchem Cat# S1078

SCH772984 (ERK1/2 inhibitor) Selleckchem Cat# S7101

Trametinib (MEK1/2 inhibitor) Selleckchem Cat# S2673

Vemurafenib (BRAF inhibitor) Selleckchem Cat# S1267

Critical Commercial Assays

CellTiter-Glo Luminescent Cell Viability Assay Promega Cat# G7570

RealTime-Glo MT Cell Viability Assay Promega Cat# G9711

CellTox Green Cytotoxicity Assay Promega Cat# G8741

TACS® Annexin V-FITC in situ apoptosis detection kit Trevigen, Inc. Cat# 4830

Deposited Data

CRISPR This paper Star methods section of this paper

Drug sensitivity resistance testing (DSRT) This paper Star methods section of this paper

Reverse phase protein array (RPPA) This paper Star methods section of this paper

RNA sequencing EMBL-EBI European 
Nucleotide Archive (ENA) 
database - https://
www.ebi.ac.uk/ena/

PRJEB38063

Multiplexed kinase inhibitor beads and mass spectrometry (MIB/MS) This paper Star methods section of this paper

Experimental Models: Cell Lines

Human: HPAC (pancreatic adenocarcinoma) ATCC Cat# CRL-2119, 
RRID:CVCL_3517

Human: MIA PaCa-2 (pancreatic ductal adenocarcinoma) ATCC CRM-CRL-1420, 
RRID:CVCL_0428

Human: PANC-1 (pancreatic ductal adenocarcinoma) ATCC Cat# CRL-1469, 
RRID:CVCL_0480

Human: Pa01C (pancreatic ductal adenocarcinoma) (Jones et al., 2008) (Jones et al., 2008)

Human: Pa02C (pancreatic ductal adenocarcinoma) (Jones et al., 2008) (Jones et al., 2008)

Human: Pa03C (pancreatic ductal adenocarcinoma) (Jones et al., 2008) (Jones et al., 2008)

Human: Pa04C (pancreatic ductal adenocarcinoma) (Jones et al., 2008) (Jones et al., 2008)

Human: Pa14C (pancreatic ductal adenocarcinoma) (Jones et al., 2008) (Jones et al., 2008)

Human: Pa16C (pancreatic ductal adenocarcinoma) (Jones et al., 2008) (Jones et al., 2008)

Human: A549 (lung adenocarcinoma) ATCC Cat# CCL-185, RRID:CVCL_0023

Human: NCI-H358 (minimally invasive lung adenocarcinoma) ATCC Cat# CRL-5807, 
RRID:CVCL_1559
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human: SW900 (squamous cell lung carcinoma) ATCC ATCC Cat# HTB-59, 
RRID:CVCL_1731

Human: SW620 (Colon adenocarcinoma) ATCC Cat# CCL-227, RRID:CVCL_0547

Human: HPAF-II (pancreatic adenocarcinoma) ATCC Cat# CRL-1997, 
RRID:CVCL_0313

Human: CFPAC-1 (pancreatic ductal adenocarcinoma, cystic fibrosis) ATCC Cat# CRL-1918, 
RRID:CVCL_1119

Human: SW1990 (pancreatic adenocarcinoma) ATCC Cat# CRL-2172, 
RRID:CVCL_1723

Experimental Models: Organisms/Strains

Human: hM1A PDAC organoid (Boj et al., 2015) (Boj et al., 2015)

Human: hT2 PDAC organoid (Boj et al., 2015) (Boj et al., 2015)

Human: OT227 CRC organoid (Schütte et al., 2017) (Schütte et al., 2017)

Human: OT228 CRC organoid (Schütte et al., 2017) (Schütte et al., 2017)

Human: OT302 CRC organoid (Schütte et al., 2017) (Schütte et al., 2017)

Rat: HPAF II PDAC model ATCC ATCC# CRL-1997

Rat: CFPAC-1 PDAC model ATCC ATCC# CRL-1918

Rat: SW1990 PDAC model ATCC ATCC# CRL-2172

Oligonucleotides

shRNA targeting sequence: ARAF #1 
CCGGCCAGCCAATCAATGTTCGTCTCTCG
AGAGACGAACATTGATTGGCTGGTTTTTT

(Freeman et al., 2013) TRCN0000000567

shRNA targeting sequence: ARAF #2 
CCGGGTAGAGGAGGTAGTGATGGAACTC
GAGTTCCATCACTACCTCCTCTACTTTTT

(Freeman et al., 2013) TRCN0000000568

shRNA targeting sequence: BRAF #1 
CCGGCCGCTGTCAAACATGTGGTTACTCG
AGTAACCACATGTTTGACAGCGGTTTTT

(Freeman et al., 2013) TRCN0000006290

shRNA targeting sequence: BRAF #2 
CCGGGCTGGTTTCCAAACAGAGGATCTCG
AGATCCTCTGTTTGGAAACCAGCTTTTT

(Freeman et al., 2013) TRCN0000006291

shRNA targeting sequence: CRAF #1 
CCGGGCTTCCTTATTCTCACATCAACTC
GAGTTGATGTGAGAATAAGGAAGCTTTTT

(Freeman et al., 2013) TRCN0000001065

shRNA targeting sequence: CRAF #2 
CCGGCGGAGATGTTGCAGTAAAGATCTC
GAGATCTTTACTGCAACATCTCCGTTTTT

(Freeman et al., 2013) TRCN0000001066

shRNA targeting sequence: KRAS #1 CAGTTGAGACCTTCTAATTGG (Singh et al., 2009) TRCN0000010369

Software and Algorithms

ImageJ version 2.0.0-rc-69/1.52n software (Schneider et al., 2012) https://imagej.nih.gov/ij/

DESeq2 package (version 1.22.2) (Love et al., 2014) https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

GSEA (version 3.0) (Subramanian et al., 2005) http://www.gsea-msigdb.org/gsea/
index.jsp

MSigDB (version 6.2) (Liberzon et al., 2015) https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp

Prism software (version 8.0.2) GraphPad https://www.graphpad.com/
scientific-software/prism/

Python (version 3.6.3) Python Software 
Foundation

https://www.python.org/

R (version 3.5.1) R Core Team (2013) http://www.R-project.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Sci-Kit Learn (version 0.20.3) (Pedregosa et al., 2011) https://scikit-learn.org

SynergyFinder (version 1.6.1) (lanevski et al., 2017) https://bioconductor.org/packages/
release/bioc/html/
synergyfinder.html
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