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Abstract

The implementation of large-scale containment measures by governments to contain the

spread of the COVID-19 virus has resulted in large impacts to the global economy. Here, we

derive a new high-frequency indicator of economic activity using empirical vessel tracking

data, and use it to estimate the global maritime trade losses during the first eight months of

the pandemic. We go on to use this high-frequency dataset to infer the effect of individual

non-pharmaceutical interventions on maritime exports, which we use as a proxy of eco-

nomic activity. Our results show widespread port-level trade losses, with the largest abso-

lute losses found for ports in China, the Middle-East and Western Europe, associated with

the collapse of specific supply-chains (e.g. oil, vehicle manufacturing). In total, we estimate

that global maritime trade reduced by -7.0% to -9.6% during the first eight months of 2020,

which is equal to around 206–286 million tonnes in volume losses and up to 225–412 billion

USD in value losses. We find large sectoral and geographical disparities in impacts.

Manufacturing sectors are hit hardest, with losses up to 11.8%, whilst some small islands

developing states and low-income economies suffered the largest relative trade losses.

Moreover, we find a clear negative impact of COVID-19 related school and public transport

closures on country-wide exports. Overall, we show how real-time indicators of economic

activity can inform policy-makers about the impacts of individual policies on the economy,

and can support economic recovery efforts by allocating funds to the hardest hit economies

and sectors.

Introduction

The emergence and spread of COVID-19, caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), has forced countries worldwide to implement Non-Pharmaceu-

tical Interventions (NPI) to reduce the spread of the virus [1–4]. These NPI, which include

among others international travel restrictions, business closures, prohibition of large-scale pri-

vate and public gatherings, and mandatory quarantines, have shown to effectively reduce the

rate of transmission of the virus [1, 3, 5]. As a consequence, however, such policies have had

large economic repercussions, both in terms of domestic industry output and international
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trade, due to diminishing production and reduced demand for some goods. For instance,

model-based estimates show that the global industry value-added may have dropped by 25–

40%, depending upon the scale and severity of the implementation of NPI [6].

Quantifying the costs and benefits of various NPI on the economy and global trade is neces-

sary to inform effective policy responses and to navigate the trade-off between slowing the

pace of the pandemic and limiting economic impacts [5, 7, 8]. However, monitoring the

extent, and understanding the underlying causes, of the economic disruption on a global scale

is hard for three reasons; (1) the traditional macroeconomic indicators (e.g. trade, industry

output) are often published at several months of delay, (2) their aggregate nature makes it hard

to decipher the importance of various impact mechanisms, and (3) macroeconomic indicators

are primarily available for high and upper middle-income countries, thereby limiting our abil-

ity to understand what is happening in low- and middle-income countries. Therefore, alterna-

tive, higher temporal frequency, proxy data of economic activity with a global extent could

help improve our understanding of the unfolding economic disruptions to economies globally

[5]. Moreover, one could leverage the cross-country heterogeneity in timing and severity of

NPI to examine the economic impacts of individual NPI across countries.

A growing body of literature has used high-frequency data (HFD), such as electricity con-

sumption [8, 9], air pollution [5, 10, 11], night-time light intensity [12] and human mobility

[13–15], to track the evolution of the pandemic on a country and global scale. In addition,

recent research has used HFD sources to quantify the effect of individual NPI on domestic eco-

nomic output [5, 8, 14]. For instance, Fezzi and Fanghella [9] used daily electricity consump-

tion data for Italy and found that the 3 weeks of severe lockdown reduced the national GDP by

almost 30%. Deb et al. [5] used a variety of HFD to estimate the individual impacts of NPI,

showing that workplace closures and stay-at-home orders had the largest economic costs.

However, proxies such as electricity consumption and human mobility are often hard to relate

directly to economic impacts, making it difficult to infer a causal relationship between NPI

and economic activity. In addition, these studies often only include countries for which these

HFD are available and rarely include countries in the Global South or island nations, making

it hard to generalise the results.

In this research, we present a high-frequency dataset of maritime trade flows derived from

empirical vessel tracking data, which we use to track the status of global maritime trade during

the first eight months of the pandemic. We do this by tracking vessel movements in almost

1200 ports globally in combination with a newly developed algorithm that allows us to estimate

trade flows based on this data. Maritime trade flows cover around 80% of the world’s trade in

terms of volume [16], and can hence be used as a first-order indicator of the status of economic

activity in a country and trade between countries. We then apply an econometric model to

estimate the impacts of specific NPI on exports by making use of the heterogeneity in the

diversity, timing and severity of NPI across countries. The newly derived dataset has a high

spatial (166 countries) and temporal (daily) resolution, which helps to track the impacts of the

COVID-19 outbreak across a large sample of countries, and provides a more comprehensive

picture of changes in economic activity compared to alterative HFD.

We estimate that, globally, maritime trade reduced by 7–9.6% during the first months of

2020, which is equivalent to around 225–412 billion USD. However, large sectoral and geo-

graphical disparities are found, with manufacturing sectors being hit the hardest, as well as

small island developing states and low-income economies suffering the largest relative losses.

We find a negative relationship, robust across different model specifications, between the

implementation of COVID-19-related school and public transport closures on country-wide

exports. Overall, we provide evidence of how the impacts upon global maritime trade are com-

plex and dependent on the trade-dependencies, sector-composition and NPI implemented.
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Our results underline that HFD indicators of economic activity can support governments and

international organisations in economic recovery efforts and channelling funds to the hardest

hit economies and sectors.

Method

Data and trade estimation

We derive estimates of port-level trade flows (imports and exports) for 1153 ports across 166

countries worldwide using the geospatial location and attributes of maritime vessels (from Jan-

uary 2019—August 2020). To do this, we use Automatic Identification System (AIS) data,

which provides detailed data on the location, speed, direction and vessel characteristics of all

trade-carrying vessels with an AIS transponder (that send information to terrestrial or satellite

receivers every few seconds-minutes) [17]. This data is obtained through a partnership with

the UN Global Platform AIS Task Team initiative, which aims to develop algorithms and

methodologies to make AIS data useful for a variety of fields and applications (traffic, eco-

nomic trade, fisheries, CO2 emissions).

We develop an algorithm (S1 Appendix) that estimates the trade flows based on the ingoing

and outgoing movements of maritime vessels (~3.2 million port calls across 100,000 unique

vessels) and their characteristics (e.g. dimensions, utilisation rate, vessel type), going on to dis-

aggregate these trade flows into specific sectors (11 sector classification adopted here). We end

up with daily sector-specific trade flow estimates on a port-level, which we aggregate to a coun-

try-scale to perform the country-wide impact analysis. This new algorithm significantly

advances previous work [18–20] by providing a global scale analysis and being able to provide

a sector decomposition.

We validate the results (S1 Appendix) by comparing the derived trade estimates to detailed

port-level trade data obtained for five countries (Japan, United Kingdom, United States, New

Zealand, Brazil). Moreover, we compare our estimates to country-wide maritime trade flows

obtained from UN Comtrade [21] mode of transport data for 27 countries.

Econometric model

The variation in trade losses across countries are driven by the differences in NPI introduced

by countries (in terms of timing, duration, and severity) [5], supply shortages to domestic sup-

ply-chains [22], demand reductions in trade-dependent economies [6], and other country spe-

cific characteristics (e.g. share of tourism, liberalized credit markets) [23]. NPI can negatively

influence industry output by affecting business operations (e.g. workplace closure, mobility

restrictions), or positively affect industry output through effectively containing the virus out-

break and thereby allowing industrial production processes and transportation of goods to

continue.

To study the implications of NPI on exports (which we use as a proxy of industrial output),

we match our daily, country-wide, estimates with data from the Oxford COVID-19 Govern-

ment Response Tracker (OxCGRT) [24]. Within OxCGRT, data is collected on the implemen-

tation and stringency of NPI across 160 countries. We utilise reduced-form econometric

techniques [25] to estimate the effect of different containment policies on exports across a bal-

anced sample of 122 countries (for which data is available). The choice of model (a panel

regression with fixed effects model) was chosen since the Hausman test [26] showed that omit-

ted country-specific variables are correlated with the explanatory variables (see S2 Appendix).

We express export change as the percentage change in detrended exports in 2020 compared to

2019 (S2 Appendix), which therefore controls for potential seasonality and trends in the data.

The time series is first smoothed using a 10-day moving average in order to remove the daily
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noise and weekly cycle, and better capture the underlying signal. A similar number of days to

smooth the time series has been applied in other studies using HFA [5, 10, 15, 22]. We further

control for several factors on a daily scale (see S2 Appendix for discussion on the control vari-

ables). First, we include the number of confirmed cases as a fraction of the population (Cases),

since the severity of the health crisis was found to influence differences in the extent of eco-

nomic output losses across countries [23]. Second, we include the reduction in demand in

trade-dependent countries as a control variable (Demand), as demand reductions, especially

when exporting countries are not yet imposing lockdowns, could lower domestic export [6].

Third, we account for the potential reduction in exports due to supply-shortages (Supply) by

accounting to what extent changes in imports might affect exports (due to the vertical speciali-

zation of domestic supply-chains, see Hummels et al. [27]). For instance, Cerdeiro and Komar-

omi [22] provide empirical evidence of the transmission of supply disruptions through

international maritime trade, which was particular apparent in the early stages of the pan-

demic. At last, we account for other endogenous factors that are likely to be serially correlated

with exports (which we control for by adding a lag of the export change) (Export lag). Along-

side the control variables, we add a country fixed effects to account for time-invariant country-

specific characteristics that affects exports and a time fixed effects to account for changes in the

global economy that drive changes in exports across countries. Reference is made to S2 Appen-

dix for a more detailed description of the econometric model.

From the OxCGRT [24], we obtained information on nine NFI that potentially affect eco-

nomic activity: C1—School closing; C2—Workplace closing; C3—cancel public events; C4—

Restrictions on gatherings; C5—Close public transport; C6—Stay at home; C7—Restrictions

on internal movement; C8—International travel controls; H2—Testing policy. We scale the

severity of the policies on a scale between 0 and 1, thereby assuming a linear relationship

between maritime exports and the severity of policies. Moreover, we create a composite strin-

gency index (Stringency) of all policies (C1-C8) by adding all individual policies together and

rescaling the index between 0 and 1.

Given that some non-intuitive choices had to be made for the model specification, we per-

form a sensitivity analysis of various assumptions made to make our parameter value choices

transparent and to test the robustness of the results. We include three sensitivity tests: (1) the

number of days used to smooth the time series (10, 7 or 3 days), (2) the time lag of the export

change adopted (3, 5 or 7 days), and (3) the inclusion of different time fixed effects (day, week,

month). Moreover, we perform two additional robustness checks. The first one is by imple-

mentation the lagged effects of NFI on export (no lag, 5 days, 10 days), as it might be that intro-

ducing NPI affects export in a lagged manner. Second, we are concerned about the possible

multicollinearity between NPI, because the implementation of NPI is often done simulta-

neously. As an alternative, we introduce the individual NPI one at a time in the model, similar

as done in Deb et al. [5], which, despite introducing omitted variables bias, helps to check the

robustness of the results. More details can be found in S2 Appendix.

Results

Model validation

We find a good fit between the values predicted by our algorithm and the reported trade flows

on a port-level (correlation coefficient between 0.52–0.96) and a country-level (correlation

coefficient between 0.79–0.98), with a general overestimation for smaller ports, and ports and

countries with large trade imbalances (e.g. small islands). For the external validation data, we

find correlation coefficients of 0.84–0.86 for the aggregated trade data and 0.73–0.78 for the

sector-specific trade data (on a country level). Again, smaller trade flows are harder to predict.
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The accuracy of the method is also found to be dependent on the coverage of information in

the AIS data (some attributes are manually put in), especially information on the vessel draft,

which is less frequently reported in developing countries.

Port-level trade flows

In the first eight months of 2020, the number of port calls across all ports reduced by 4.4%

compared to the same months in 2019. Fig 1A shows the average change in total trade (imports

+ exports) in terms of volume (in million tonnes, MT) over the months January-August. The

vast majority of ports have experienced a decline in total trade, although a number of ports in

Brazil, the Gulf of Mexico region, the Middle-East, Australia, and parts of South-Korea and the

Philippines have seen an increase in trade in 2020 relative to 2019. The top 20 port with the

largest changes in volume in terms of total trade, imports and exports are included in Table 1.

The ports with the largest absolute changes in volume are the ports of Ningbo (China, -68.5

MT), Rotterdam (Netherlands, -43.2 MT), Shanghai (China, -32.5 MT), Wuhan (China, -21.6

MT) and Tubarao (Brazil, -20.7 MT). The largest changes in imports are found for the ports of

Ningbo (China, -43.5 MT), Rotterdam (Netherlands, -40.1 MT), Shanghai (-22.4 MT), Zhou-

shan (China, -22.4 MT) and Amsterdam (Netherlands, -12.2 MT). These ports, and the other

ports in the list, function as major gateway ports for a country to import final products (New

Fig 1. Port-level trade losses over time. The geographical location and magnitude of trade losses for Jan-Aug 2020 compared to 2019, including the average over the

eight months and the losses per month. Green = positive change, red = negative change. The subplots show the cumulative change over latitude and longitude for imports

(dark blue) and exports (dark red). This figure was generated using the ‘Geopandas’ package (https://geopandas.org) and Python Programming Language (version 3.7).

The underlying basemap is derived from ‘Natural Earth’ global vector data (https://www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0248818.g001
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York-New Jersey, Rotterdam), or are essential for specific supply-chains, such as textiles and

electronics manufacturing (Shanghai, Ningbo, Zhoushan), steel and paper manufacturing

(Ghent, Amsterdam, Rizhou), car manufacturing (Yokohama) and raw materials (coal imports

for Krishnapatnam). The largest export changes are found for the ports of Ningbo (China,

-25.0 MT), Tubarao (Brazil, -17.1 MT), Novorossiysk (Russia, -11.5 MT), Wuhan (China,

-10.8 MT), Beaumont (USA, -10.6 MT) and Dampier (Australia, -10.2 MT). These ports, and

the other top 20 ports with the largest export losses, are all important export ports for global

supply-chains, including the exports of iron ore (Dampier, Tubarao), coal (Haypoint), oil and

refined petroleum products (Puerto Bolivar, Fujairah, Beaumont and Novorossiysk) and

manufacturing products (Ningbo, Wuhan and Shanghai).

Fig 1B–1M show the changes in total trade per month for all ports and the cumulative

changes in trade over latitude and longitude. In January, losses are predominantly pronounced

in China that extended their Lunar New Year holiday [28], among other measures, resulting in

output losses to the Chinese industry. This resulted in a direct demand shock, in particular for

the export of raw materials (e.g. iron ore, copper, nickel) that China predominantly imports

[29]. This can be observed from the large negative losses found in the large export ports of Bra-

zil. In February, ports in Europe experienced their first drop in imports (blue line top plot),

while export losses are still concentrated in Asia. This import drop in Europe coincided with

the transit time from China to Europe, which is around three weeks. The export drop is, along-

side Brazil, also visible in the main iron ore exporting ports in Australia (Port Hedland and

Port Walcott) and South Africa (Port of Richards Bay) that both supply iron ore to the Chinese

industry. In March, exports temporally recovered, while imports dropped in many parts of the

world, mainly to due to initiation of lockdowns in economies outside Asia. In particular,

Table 1. Largest absolute trade losses on a port-level.

Total trade Imports Exports

Rank Port iso3 Change (MT) Port iso3 Change (MT) Port iso3 Change (MT)

1 Ningbo CHN -68.5 Ningbo CHN -43.5 Ningbo CHN -25.0

2 Rotterdam NLD -43.2 Rotterdam NLD -40.1 Tubarao BRA -17.1

3 Shanghai CHN -32.5 Shanghai CHN -22.4 Novorossiysk RUS -11.5

4 Wuhan CHN -21.6 Zhoushan CHN -13.8 Wuhan CHN -10.9

5 Tubarao BRA -20.7 Amsterdam NLD -12.2 Beaumont USA -10.6

6 Zhoushan CHN -18.8 Rizhao CHN -11.3 Dampier AUS -10.2

7 Amsterdam NLD -17.4 Wuhan CHN -10.7 Shanghai CHN -10.1

8 Shekou CHN -14.2 Mina Al Ahmadi KWT -9.5 Haypoint AUS -9.2

9 Hong Kong HKG -12.3 Vlissingen NLD -8.5 Lumut MYS -7.6

10 Vlissingen NLD -12.2 Zhanjiang CHN -7.6 Shekou CHN -7.5

11 Singapore SGP -12.1 Umm Said QAT -7.4 Tianjin CHN -7.3

12 Rizhao CHN -11.7 Yokohama JPN -7.3 Fujairah ARE -7.2

13 Novorossiysk RUS -11.7 Ghent BEL -7.1 Tangshan CHN -6.3

14 Lumut MYS -11.6 Singapore SGP -6.8 Xiamen CHN -6.1

15 Dampier AUS -10.8 Hong Kong HKG -6.7 Itaqui BRA -5.8

16 Yokohama JPN -9.9 Shekou CHN -6.7 Bohai Bay CHN -5.7

17 Haypoint AUS -9.7 Krishnapatnam IND -6.7 Puerto Bolivar COL -5.7

18 Beaumont USA -9.5 Magdalla IND -6.6 Hong Kong HKG -5.6

19 Ghent BEL -9.4 Port of Le Havre FRA -6.4 Primorsk RUS -5.5

20 Zhanjiang CHN -9.1 New York-New Jersey USA -6.0 Richards Bay ZAF -5.4

The top 20 total trade, imports and export losses on a port-level expressed in million tonnes (MT). The losses cover the period Jan-Aug 2020 compared to Jan-Aug 2019.

https://doi.org/10.1371/journal.pone.0248818.t001
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India, Malaysia, Singapore, USA West Coast and Mexico saw a large drop in trade in March.

In April, trade partly recovered in the Northern Hemisphere, while in May the second drop in

global trade hits the global economy, as a widespread reduction in demand and supply ripple

through the economy. Losses are again pronounced in China and Western Europe, leading to

the lowest total import and exports changes on a global scale. In June, July and August, a par-

tial recovery is visible for some ports, while the Middle-East, Eastern Australia, Japan and

Western Europe (in particular Belgium and the Netherlands) show large losses. For the Mid-

dle-Eastern countries, the collapse of the oil market has contributed to the large trade losses

(which are predominantly exports losses). In August, signs of recovery (especially imports) are

visible for the Philippines, India, South Africa, Brazil and Argentina, and parts of the Mediter-

ranean, while other countries are still experiencing large losses.

Geographical disparity

Fig 2A and 2B show the country-aggregated relative changes in imports and exports, with the

top 20 largest negative (relative) changes included in Table 2 and largest negative absolute

changes in S1 Table. The top 20 largest total trade losses range between 17–36%. The largest

percentage change in imports are associated with small economies such as Turks and Caicos

Islands, the Caribbean Netherlands, Bahrain, Anguilla, Federated States of Micronesia and

Madagascar (all between 28–37% reduction). Most of the countries with the largest import

losses are Small Island Developing States, which are characterised by having large import-

dependencies due to their small domestic economies, being reliant on maritime trade flows for

trade, and importing large amount of goods to support the tourism sector that constitutes a

large share of the country’s GDP [30]. With the tourist industry collapsing due to the COVID-

19 outbreak [31], the imports are expected to drop significantly, explaining the widespread

reductions observed. Other countries, like a number of countries in Africa, Myanmar, Oman,

Philippines, the Baltic States and Sweden have increased their imports, likely due to the

increased need for food and medical supplies in developing nations or increased household

consumption in some developed countries. In terms of exports, the largest relative losses are

found for Libya, New Caledonia, Guinea-Bissau, Northern Mariana Islands, Cape Verde and

Sudan (all between 50–78% reduction). These countries include many raw materials exporting

countries that have suffered from the demand shock across the world, in particular through

trade dependencies with Europe, China and the United States [32]. Moreover, many low

income countries had to pro-actively lockdown economies to protect their health care system,

Fig 2. Country-level relative trade losses. The relative trade losses for Jan-Aug 2020 compared to 2019 expressed in percentage change. Grey countries indicate no data

available. This figure was generated using the ‘Geopandas’ package (https://geopandas.org) and Python Programming Language (version 3.7). The underlying basemap

is derived from ‘Natural Earth’ global vector data (https://www.naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0248818.g002
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or are engaged in economic activities that are less able to be done remotely [32, 33]. Some

countries have increased their exports, such as India, Myanmar, Vietnam and Philippines,

potentially because of production shifts of manufacturing goods to these countries when fac-

tory shut down in China [34]. Moreover, exports grew in Argentina, mainly due to booming

exports of food products (e.g. soybeans, beef) to the United States and China [35], and in Tan-

zania, which increased its exports of gold and food (e.g. nuts) and textile products (e.g. cotton)

[36].

Using the World Bank income classification (2019–2020), we test whether high and upper

middle income countries have experienced more severe impacts than low and lower middle

income countries. Without excluding outliers from the data, we find a significant difference

(two-sided t-test with p>0.05) between both income groups for exports and imports, with

high and upper middle income countries having higher export losses. Hence, although the

high and upper middle income countries have higher mean export losses, the most extreme

export losses and gains are found for low and lower middle income countries.

Time series of total and sector-specific trade changes

The total trade losses are not uniform across sectors. Fig 3 shows the estimated total trade

losses over time (Fig 3A) together with the trade losses for the 11-sector classification consid-

ered. The total trade losses are found to be between -7.0% and -9.6% (mean -8.3%), which is

equal to around 206–286 MT in volume losses and up to 225–412 billion USD in trade value

(uncertainty due to differences in total import and export losses and due to the volume to

Table 2. Largest relative trade losses on a country-level.

Total trade Imports Exports

Rank Country Change (%) Country Change (%) Country Change (%)

1 Anguilla -35.6 Turks and Caicos Islands -36.9 Libya -77.8

2 Libya -34.3 Bonaire, Saint Eustatius and Saba -35.9 New Caledonia -64.9

3 Federated States of Micronesia -33.5 Bahrain -31.3 Guinea-Bissau -55.6

4 Cape Verde -30.6 Anguilla -30.7 Northern Mariana Islands -54.9

5 Peru -28.3 Federated States of Micronesia -29.8 Cape Verde -53.7

6 Bonaire, Saint Eustatius and Saba -26.8 Madagascar -28.4 Sudan -49.4

7 Malta -26.2 Timor-Leste -26.0 Montenegro -45.1

8 Eritrea -26.1 Malta -25.7 Eritrea -44.6

9 Madagascar -25.1 Grenada -22.4 Dem. Republic Congo -44.3

10 Montenegro -24.9 Belize -22.3 Vanuatu -40.0

11 Turks and Caicos Islands -24.8 Iran -21.8 Kenya -39.6

12 Vanuatu -24.4 Seychelles -21.5 Peru -39.2

13 Seychelles -23.7 French Polynesia -21.1 Federated States of Micronesia -38.4

14 Timor-Leste -23.3 Aruba -19.8 American Samoa -34.9

15 Northern Mariana Islands -22.2 Vanuatu -19.4 Albania -32.6

16 French Polynesia -21.1 Iraq -19.3 Seychelles -28.0

17 Iraq -20.1 Kuwait -19.0 Malta -27.2

18 New Caledonia -19.3 Macau -18.3 Yemen -25.8

19 Bulgaria -19.1 Bulgaria -17.4 Romania -25.6

20 Romania -17.6 Cape Verde -17.2 Saint Vincent and the Grenadines -23.7

The total trade, imports and export losses on a country-level expressed in million tonnes (MT). The losses cover the period Jan-Aug 2020 compared to Jan-Aug 2019.

https://doi.org/10.1371/journal.pone.0248818.t002
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value conversion, see S1 Appendix). The time series show (Fig 3A) a clear initial drop in

trade in the first three months, after which trade partly recovers, followed by a second,

more pronounced, drop in trade. In late August 2020, a sign of economic recovery is not yet

visible.

Some supply-chains have been more resilient than others. The most resilient sectors are

found to be Textiles and wearing apparel (-4.1%), Food and beverages (-5.8%), Other

manufacturing (-6.0%) and Wood and paper (-6.3%). The times series of Textiles and wearing

apparel and Other manufacturing show, however, a large drop in exports in the early stages of

the pandemic, mainly associated with production in China and other Asian economies (e.g.

Bangladesh, Malaysia), followed by a gradual recovery and a less steep second drop. The Wood

and paper and Food and beverages sectors have been more stable throughout pandemic out-

break, as supply-chains were not significantly disrupted, and demand for products only gradu-

ally declined, followed by signs of a recovery at the end of August. The largest relative changes

are found for the Fishing sector (-9.5%), Mining and quarrying (-9.0%), Manufacturing of

electronics and machinery (-8.8%), and Manufacturing of transport equipment (-11.8%). The

drop in fishing products peaked late in the pandemic with a clear recovery in July and August.

The time series of the mining and quarrying sector shows a more complex picture with a sharp

drop in the beginning of the pandemic, as demand for raw materials decreased in Asia, fol-

lowed by a steep increase in trade to restock inventories, after which a total collapse of the mar-

ket can be observed, mainly associated with reduced demand for oil. For the two

manufacturing sectors, the large losses are the result of significant supply-chain disruptions

that caused upstream production processes to halt due to a shortage in supplies [37]. In partic-

ular the Transport manufacturing industry, characterised by just-in-time logistic services and

highly specialised production processes, experienced a gradual disruption throughout the first

few months, after which trade declined more than 20% in May, June and July.

Fig 3. Sector-specific losses over time. The change in daily global total trade as a fraction of the average daily trade (over

2019). The dark blue line represent imports, the dark red line represent exports, whereas the grey line indicate total trade

(import + exports). Sector 1: Agriculture; Sector 2: Fishing; Sector 3: Mining and quarrying; Sector 4: Food and beverages;

Sector 5: Textiles and wearing apparel; Sector 6: Wood and paper; Sector 7: Petroleum, chemical and non-metallic mineral

products; Sector 8: Metal products; Sector 9: Electrical and machinery; Sector 10: Transport equipment; Sector 11: Other

manufacturing.

https://doi.org/10.1371/journal.pone.0248818.g003
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Impact of non-pharmaceutical interventions on export

The results of the panel regression model are included in Table 3. As described in the method-

ology, the base model (Model 1 and 2) includes country and time (day) fixed effects and daily

control variables for the number of confirmed cases as a fraction of the population (Cases),

demand reduction in trade dependent countries (Demand), the potential supply disruptions

through changes in import that are used for exports (Supply), and potential other factors that

are autocorrelated with the change in exports (Export lag).

The effect of the composite index on daily export change is strong, and statistically signifi-

cant (p< 0.01), with a 10% increase of the index resulting in a -0.40% change in exports

(Model 1). The influence of NPI on exports is mixed with some measures showing a negative

impact while others showing a positive impact (Model 2). Negative impacts are found for

school closing (C1, -3.97%, significant at p< 0.01), workplace closure (C2, -2.89%, significant

at p< 0.05), restrictions on public gatherings (C4, -2.38%, significant at p < 0.10), and closing

of public transport (C5, -3.86% significant at p< 0.01). Surprisingly, a positive effect is found

for stay at home requirements (C6, +3.86%, significant at p< 0.05), restrictions on internal

movement (C7, +2.73%, significant at p < 0.05) and restrictions on international travel (C8,

+3.45%, significant at p<0.01). Additionally, we run a model (Model 3 and 4) which include

only the days where the outbreak become significant in a country (which we define as having

at least 50 confirmed cases). The coefficient of the composite index is found to be slightly

higher (-4.73% relative to -4.00%, both significant at p< 0.05). For the individual NPI, the

effect of school closures, restrictions on public gatherings, closures of public transport and stay

at home policies becomes larger, while the effect of workplace closures, restrictions on internal

Table 3. The results of the various regression models.

Model1 Model2 Model3 Model4

Parameter Beta Beta Beta Beta

Composite -4.003�� -4.726��

C1 -3.968��� -7.212���

C2 -2.891�� -0.884

C3 0.012 0.547

C4 -2.375� -3.431��

C5 -3.864��� -5.857���

C6 3.857�� 7.781���

C7 2.729�� 1.896

C8 3.347��� 2.602

H2 0.960 -0.166

Demand -0.021 -0.026 0.021 0.013

Cases -0.167�� -0.179��� -0.658��� -0.682��

Supply 0.068��� 0.068��� 0.061��� 0.062���

Export lag 0.373��� 0.372��� 0.363��� 0.360���

R2 0.348 0.350 0.354 0.357

R2-adjusted 0.337 0.339 0.339 0.342

F-statistic 32.41 31.77 24.46 24.10

The table shows the estimated beta coefficients and goodness of fit statistics for the six model specifications discussed.

�p < 0.1

��p < 0.05

���p < 0.01.

https://doi.org/10.1371/journal.pone.0248818.t003
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movement and restrictions on international travel diminishes becomes not significant. This

difference suggest that some policies particularly affected the economy when implemented

pro-actively (before the health crisis started), while it becomes less important when cases

become more prevalent in a country. For instance, 52 countries implemented pro-active work-

place closures before reaching 50 positive cases.

Next, we test the robustness of the results by changing a number of assumptions in the

model (see S2 Appendix for full details). First, we test whether the 10-day smoothing of the

time series affects the results by evaluating the results for a 7-day and 3-day smoothing period.

The results are shown in S2 Table 1 in S2 Appendix, and shows that the effect of the composite

index becomes less strong for a 7 day period and becomes not significant for a 3 day period

(although with similar values). For the individual NPI, the results for the closures of schools

and public transport, and restrictions on internal movement and international travel are

robust across models, while the other NPI become not significant. Hence, less smoothing of

the time series lowers the signal to noise ratio, making it generally harder to detect the influ-

ence of NPI. Second, we vary the lag of the export change (3 day, 5 day and 7 day), with the

results included in S2 Table 2 in S2 Appendix. Across all models, increasing the lag will

increase the effect of the composite index and the individual NPI, since the influence of other

endogenous factors becomes less strong (and more weight is attributed to the NPI). Therefore,

the results presented in Table 3 are considered the most conservative values. Third, we test

whether the inclusion of alternative time fixed effects (day, week and month) in the model

changes the result (see S2 Table 3 in S2 Appendix). The results do not change much, although

the composite index becomes larger and more significant.

For the first robustness checks, we test whether implementing the policies in a lagger man-

ner changes the result. We lag the policies 5 and 10 days and evaluate whether the estimated

coefficients become larger, which would indicate that the NPI indeed influence the export

dynamics in a lagged way (S2 Table 4 in S2 Appendix). For school closures, stay at home

requirements and restrictions on international travel, the effect becomes larger, suggesting

that the influence of these NPI takes days to materialize. For the second robustness check, we

contrast the coefficient of the NPI when included altogether or one at a time (S2 Table 5 in S2

Appendix). The negative coefficients of C1, C2, C4 and C5 are still found when including only

these policies (and significant at p< 0.01), whereas the positive effects of C6 and C7 become

small and not significant. The positive effect of C8 is found at p < 0.1. Thus, the interpretation

of the positive effects of C6-C8 should be done with caution.

Discussion and conclusion

We present a near-global analysis of maritime trade indicators based on empirical vessel track-

ing data, which we use as a high-frequency indicator of economic activity. We illustrate how

the implementation of NPI have resulted in large trade losses with a strong geographical and

sectoral heterogeneity, with individual NPI affecting the economy in different ways.

Our estimate of a 4.4% reduction in global ports calls for the first eight months of 2020 is

lower than the 8.7% predicted by UNCTAD for the first six months [38]. The main reason for

this difference is associated with the inclusion of different vessel types. Whereas we include

only the main trade-carrying vessels, the UNCTAD analysis also included passengers vessels

(66% of total port calls), which have seen the largest drop in port calls (-17% for passenger ves-

sels). Moreover, the sector-level trends we found are in line with the sector-level impacts

(based observed trade data of China, the European Union and the United States) for the first

quarter (Q1) of 2020 as presented in the UNCTAD analysis [38], that stated that in particular

the automotive industry (-8%), machinery (-8%), office machinery (-8%) and textiles and
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apparel (-11%) are particularly hit. Our analysis, which differs by only including maritime

trade (instead of total trade) and having a global scale (instead of three regions), found the

average losses in Q1 for the textiles and apparel (Sector 5), electrical equipment and machinery

manufacturing (Sector 9), transport equipment (Sector 10) and other manufacturing (Sector

11) to be respectively 6.2%, 9.2%, 6.5% and 8.4%. The trade losses we estimate (225–412 billion

USD for the first eight months) are considerably lower than reported in the modelling frame-

work of Lenzen et al. [39], who estimated the trade losses for the first five months of 2020 to be

536 billion USD. Again, part of this difference is due to the coverage of countries (they provide

a full global analysis) and modes of transport (all modes compared to maritime only). Still,

input-output based analysis, as done in Lenzen et al. [39], often fail to consider adaptative

behaviour in the global economic system, which can dampen economic impacts [40]. Our

result of a contraction of almost 10% of maritime trade is also in line with the most recent

UNCTAD trade report [41] that showed that during the first three quarters of 2020, global

trade (in value terms) decreased by 8%, with the largest hit to trade in Q2 of 2020.

The results of the econometric model provide an alternative view to previous studies that

have evaluated the effect of NPI on the spread of the virus [1, 2, 4, 42] and the economy [5, 8].

We find clear evidence of the negative impacts of NPI on changes in daily exports, with a 10%

increase in the overall stringency value resulting in an approximate 0.40% decrease in daily

maritime exports. In particular, we find evidence that closures of school, workplaces and pub-

lic transport had a negative effect on daily exports, whereas stay at home policies, restrictions

on internal movements and international travel controls have resulted in a positive effect on

daily exports. The stark negative effect of school closures, robust across model specifications, is

in line with previous model-based estimates that showed that school closures, resulting in a

large forced absenteeism by working parents, have large impacts on the economy. For

instance, a study [43] showed that school closures of 12–13 weeks in the United Kingdom

would result in a 0.2–1% drop in national GDP, whereas another study [44] showed that a

8-week school closure in the United States could result in losses of up to 3% of GDP. Looking

at the relative effect of different NPI, our results are in partial agreement with Deb et al. [5],

who used nitrogen emissions as an indicator of industrial output, and found that workplace

closures and closures of public transport had the largest influence on the drop in emissions,

followed by cancellation of events and school closures. However, direct comparison with these

results should be taken with caution, as the causal mechanisms may differ. For instance,

changes in nitrogen emissions primarily reflect emissions from heavy industry and transporta-

tion, while changes in maritime exports reflect industrial activity across all sectors. The large

drop in emissions from the cancellation of events, for instance, is most likely associated

reduced emissions from transport to and from events, but might not necessarily affect indus-

trial exports much (as we find no evidence that this influenced exports). Similarly, school clo-

sures, stay at home requirements and restrictions on internal movements had the highest

effect on changes in mobility across Europe, as shown in Santamaria et al. [15], which can also

be attributed to different causal pathways. We find that pro-active business closures (before

cases were high in a country), had a negative effect on exports, but its effect becomes insignifi-

cant when case rates are high in a country. This could be related to the fact that many countries

(in particular countries with below-average GDP/capita) had to pro-actively close workplace

to protect their health system. More specifically, 75% of low-income countries and 62% of

lower-middle income countries in our sample had to implement such pro-active workplace

closures, compared to 30% of high-income countries. This is in agreement with Furceri et al.

[23] who found that countries with lower GDP/capita had higher output losses relative to the

extent of the health crises. The possible causal pathways resulting in positive effects (compared

to countries not imposing these NPI) of stay at home policies, restrictions on internal
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movements and bans on international travel are difficult to establish. One reason could be that

these policies helped containing the spread of the virus, while causing minimal disruptions to

economic activity, resulting in relative positive effects. Fezzi and Fanghella [9] also concluded

that pursuing a herd immunity strategy did not shield countries from economic impacts, in

line with our results. Moreover, Furceri et al. [23] find a link between the deaths per capita and

reduced industrial output, showing how implementing targeted policies to reduce the trans-

mission might protect the economy. Still, the positive effects should be further scrutinized, as

was shown in the second robustness check, before we can draw a definite conclusion on this.

Overall, all results should be interpreted with caution, as many factors could potentially

influence these causal relationships. For instance, temporal increases in maritime transport

during some periods of the pandemic could be driven by the large increase in trade of medical

supplies (e.g. PPE) and mode substitution from air to maritime [45], irrespective if policies

were imposed during these periods. Therefore, testing alternative economic indicators, such as

data on mobility, energy consumption and nitrogen emissions, as done in Deb et al. [5], can

help support these findings. Future work can refine our estimates by adding more economic

data when it becomes available, including extending the analysis to indicators of air, road and

rail transport. Moreover, the empirical estimates derived here can be used to constrain and val-

idate macro-economic impact models, as used in previous work [6, 39], in order to improve

the quantification of the total losses to industrial output as the pandemic unfolds.

In short, our analysis of the economic implications of introducing NPI into society can help

evaluate the cost-benefit of the different NPI, which may help governments construct effective

portfolios of policies as many countries enter a second or third wave of COVID-19 cases [46].

Moreover, we emphasize how real-time indicators of economic activity, such as maritime

trade, can help monitor the unfolding economic disruptions across spatial scales and support

governments and international organisations in their economic recovery efforts by allocating

funds to the hardest hit economies and sectors.
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