
Citation: d’Hose, D.; Mathieu, B.;

Mignion, L.; Hardy, M.; Ouari, O.;

Jordan, B.F.; Sonveaux, P.; Gallez, B.

EPR Investigations to Study the

Impact of Mito-Metformin on the

Mitochondrial Function of Prostate

Cancer Cells. Molecules 2022, 27, 5872.

https://doi.org/10.3390/

molecules27185872

Academic Editors: Olesya

A. Krumkacheva and Matvey Fedin

Received: 24 August 2022

Accepted: 7 September 2022

Published: 10 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

EPR Investigations to Study the Impact of Mito-Metformin on
the Mitochondrial Function of Prostate Cancer Cells
Donatienne d’Hose 1,†, Barbara Mathieu 1,†, Lionel Mignion 1 , Micael Hardy 2 , Olivier Ouari 2,
Bénédicte F. Jordan 1 , Pierre Sonveaux 3,4 and Bernard Gallez 1,*

1 Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de
Louvain (UCLouvain), 1200 Brussels, Belgium

2 Institut de Chimie Radicalaire UMR 7273, Aix-Marseille Université/CNRS, 13013 Marseille, France
3 Pole of Pharmacology and Therapeutics, Institut de Recherches Expérimentales et Cliniques (IREC),

Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
4 Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Research Institute, 1300 Wavre, Belgium
* Correspondence: bernard.gallez@uclouvain.be
† These authors contributed equally to this work.

Abstract: Background: Mito-metformin10 (MM10), synthesized by attaching a triphenylphospho-
nium cationic moiety via a 10-carbon aliphatic side chain to metformin, is a mitochondria-targeted
analog of metformin that was recently demonstrated to alter mitochondrial function and proliferation
in pancreatic ductal adenocarcinoma. Here, we hypothesized that this compound may decrease the
oxygen consumption rate (OCR) in prostate cancer cells, increase the level of mitochondrial ROS,
alleviate tumor hypoxia, and radiosensitize tumors. Methods: OCR and mitochondrial superoxide
production were assessed by EPR (9 GHz) in vitro in PC-3 and DU-145 prostate cancer cells. Reduced
and oxidized glutathione were assessed before and after MM10 exposure. Tumor oxygenation was
measured in vivo using 1 GHz EPR oximetry in PC-3 tumor model. Tumors were irradiated at the
time of maximal reoxygenation. Results: 24-hours exposure to MM10 significantly decreased the
OCR of PC-3 and DU-145 cancer cells. An increase in mitochondrial superoxide levels was observed
in PC-3 but not in DU-145 cancer cells, an observation consistent with the differences observed in
glutathione levels in both cancer cell lines. In vivo, the tumor oxygenation significantly increased
in the PC-3 model (daily injection of 2 mg/kg MM10) 48 and 72 h after initiation of the treatment.
Despite the significant effect on tumor hypoxia, MM10 combined to irradiation did not increase
the tumor growth delay compared to the irradiation alone. Conclusions: MM10 altered the OCR in
prostate cancer cells. The effect of MM10 on the superoxide level was dependent on the antioxidant
capacity of cell line. In vivo, MM10 alleviated tumor hypoxia, yet without consequence in terms of
response to irradiation.

Keywords: EPR; ESR; tumor oxygenation; tumor hypoxia; oxygen consumption; mitochondrial ROS;
oximetry; cancer; irradiation

1. Introduction

Mitochondria play a key role in cancer development. Many mitochondrial pathways,
including oxidative phosphorylation, fatty acid, and glutamine metabolism, are altered
in tumor cells, due to mutations in oncogenes and tumor suppressor genes. This results
in metabolic reprogramming that sustains rapid cell proliferation [1,2]. The inhibition of
mitochondrial function could potentially inhibit the proliferation of cancer cells and induce
cytotoxicity [3]. In this context, metformin, the most prescribed antidiabetic drug, has re-
ceived particular attention. At the origin, metformin was repurposed as an antitumor agent
due to studies that discovered an association between decreased incidence of pancreatic
cancer and metformin use in diabetic individuals [4–6]. It has been assumed that mitochon-
dria are the principal target of metformin. The effects of metformin on cancer progression
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were attributed to its ability to inhibit mitochondrial complex I leading to inhibition of mito-
chondrial respiration and bioenergetic reprogramming [7–11]. Although antitumor activity
was reported in rodents, concentrations of drugs required to achieve an antineoplastic
activity of metformin in humans would require much higher concentrations of the drug in
the serum than those obtained when treating patients for diabetes [4]. This observation led
to the development of mitochondria-targeted metformin analogues where metformin has
been anchored to the lipophilic cation triphenylphosphonium (TPP+) [6,11–13]. A series of
metformin analogues was synthesized, and it was found that Mito-metformin10 (MM10,
Figure 1), obtained by attaching TPP+ to metformin via a 10-carbon aliphatic side chain,
was about 1000 times more efficacious than metformin at inhibiting cell proliferation in
pancreatic ductal adenocarcinoma (PDAC) [12]. Using the Seahorse technology on pan-
creatic tumor cells, it was found that MM10 inhibited mitochondrial respiration [12]. In
addition, the blockade of the electron transport chain (ETC) led an increase in superoxide
production as revealed by fluorescence assays coupled to HPLC [12]. Finally, these authors
also found that MM10 enhanced the radiosensitivity of pancreatic cancer cells in vitro [12].
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Figure 1. Chemical structure of Mito-metformin10 (MM10). 

In the present study, we focused on the mitochondrial function of prostate cancer 
cells and the possible alleviation of tumor hypoxia to render tumors more sensitive to 
irradiation in vivo. The rationale relies on the observation that the presence of hypoxia is 
a poor prognostic factor in prostate cancer and promotes radioresistance [14–17]. Tumor 
hypoxia may theoretically be alleviated by increasing the oxygen delivery or by decreas-
ing the oxygen consumption rate (OCR) of cancer cells. A mathematical modelling sug-
gested that strategies designed to decrease OCR would be more efficient than the manip-
ulation of the oxygen supply [18]. Experimentally, several strategies designed to decrease 
the OCR of cancer cells succeeded in increasing the response to radiation therapy in tumor 
models, as reviewed in [19]. In this context, it has been described that metformin de-
creased the OCR and alleviate tumor hypoxia in HCT116 colorectal carcinoma, in POP-
092S colon adenocarcinoma [20] and in A549 in non-squamous cell lung carcinoma [21]. 
In the Colo205 colorectal cancer model, metformin decreased hypoxia but had no additive 
effect on radiotherapy efficacy [22]. Because MM10 was previously found more efficient 
than metformin in the PDAC model, we made the hypothesis that the use of MM10 could 
be efficient in reprogramming tumor cell metabolism, alleviate tumor hypoxia and sensi-
tize tumor cells to irradiation in prostate cancer where hypoxia is known as a major factor 
of resistance to radiation therapy. To study the effect of MM10 on the mitochondrial func-
tion and the tumor hypoxia, we used electron paramagnetic resonance (EPR) spectroscopy 
both in vitro and in vivo. The OCR was measured in vitro by measuring continuously the 
variation of the EPR linewidth of an oxygen sensitive soluble probe introduced in a sus-
pension of prostate cancer cells in a sealed capillary tube [23,24]. Compared to other meth-
ods, the assessment of OCR by EPR was found more sensitive and reproducible than elec-
trode-based or fluorimetric methods [24]. Compared to Seahorse XF technology that is 
performed on adherent cells, the OCR assessment by EPR method has the disadvantage 
of requiring cell detachment by trypsin or collagenase that may slightly alter the oxygen 
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In the present study, we focused on the mitochondrial function of prostate cancer
cells and the possible alleviation of tumor hypoxia to render tumors more sensitive to
irradiation in vivo. The rationale relies on the observation that the presence of hypoxia is
a poor prognostic factor in prostate cancer and promotes radioresistance [14–17]. Tumor
hypoxia may theoretically be alleviated by increasing the oxygen delivery or by decreasing
the oxygen consumption rate (OCR) of cancer cells. A mathematical modelling suggested
that strategies designed to decrease OCR would be more efficient than the manipulation of
the oxygen supply [18]. Experimentally, several strategies designed to decrease the OCR of
cancer cells succeeded in increasing the response to radiation therapy in tumor models, as
reviewed in [19]. In this context, it has been described that metformin decreased the OCR
and alleviate tumor hypoxia in HCT116 colorectal carcinoma, in POP-092S colon adenocarci-
noma [20] and in A549 in non-squamous cell lung carcinoma [21]. In the Colo205 colorectal
cancer model, metformin decreased hypoxia but had no additive effect on radiotherapy effi-
cacy [22]. Because MM10 was previously found more efficient than metformin in the PDAC
model, we made the hypothesis that the use of MM10 could be efficient in reprogramming
tumor cell metabolism, alleviate tumor hypoxia and sensitize tumor cells to irradiation in
prostate cancer where hypoxia is known as a major factor of resistance to radiation therapy.
To study the effect of MM10 on the mitochondrial function and the tumor hypoxia, we
used electron paramagnetic resonance (EPR) spectroscopy both in vitro and in vivo. The
OCR was measured in vitro by measuring continuously the variation of the EPR linewidth
of an oxygen sensitive soluble probe introduced in a suspension of prostate cancer cells
in a sealed capillary tube [23,24]. Compared to other methods, the assessment of OCR
by EPR was found more sensitive and reproducible than electrode-based or fluorimetric
methods [24]. Compared to Seahorse XF technology that is performed on adherent cells,
the OCR assessment by EPR method has the disadvantage of requiring cell detachment by
trypsin or collagenase that may slightly alter the oxygen consumption (except if cells are
loaded on microbeads) [25]. We also measured the mitochondrial superoxide production
in vitro by using Mito-TEMPO-H, a cyclic hydroxylamine able to detect reactive oxygen
species (ROS) in complex biological media [26–28]. In vivo, low frequency (1 GHz) EPR
spectroscopy was used to measure oxygen directly in tumor models as this method has the
unique capability to measure subtle variations in tissue oxygenation from the same site over
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long periods of time [29–31]. The radiosensitivity of prostate tumors was then checked by
applying the irradiation at the timing of a maximal increase in tumor oxygenation induced
by MM10 as identified by EPR oximetry.

2. Results
2.1. Ocr Is Decreased by MM10 in Prostate Cancer Cells

The OCR was measured in two prostatic cancer cells lines, PC-3 and DU-145. To assess
the OCR in the cancer cells, we performed in vitro EPR respirometry. The coefficient of
variation of the OCR measurements carried out in this study was 8.6%. We first tested
concentrations of 1 µM and 10 µM of MM10 for 2 h in PC-3 cells. No change in OCR
was observed after this short time exposure (Figure 2A,B). We also measured the OCR
when PC-3 cells were exposed to MM10 at 1 µM for 24 h and found out that OCR was
significatively decreased (Figure 2C). These measurements were also repeated on a different
prostatic cancer cell line, DU-145 cells. The basal OCR for untreated control DU-145 cells
was larger than for PC-3 cells, consistent with a higher oxidative metabolism for DU-145
cells. For the same concentration and timing (1 µM MM10 for 24 h), the decrease in OCR
was observed in DU145 cells (Figure 2D).
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Figure 2. Impact of MM10 on the oxygen consumption rate (OCR) of prostate cancer cells measured
by EPR respirometry. (A) Effect on OCR of PC-3 cells after 2 h exposure to MM10 (1 µM). (B) Effect
on OCR of PC-3 cells after 2 h exposure to MM10 (10 µM). (C) Effect on OCR of PC-3 cells after 24 h
exposure to MM10 (1 µM). (D) Effect on OCR of DU-145 cells after 24 h exposure to MM10 (1 µM).
Bars represent means ± SEM (% O2/min), (**) p < 0.01, (ns) non-significant ,Student’s t test, N = 3.

2.2. Mitochondrial Superoxide Production Is Increased after MM10 24 H Exposure in PC-3 but
Not in DU-145 Cells

Because an increased superoxide production may be the result of a dysfunction in the
mitochondrial electron transport chain (ETC) [32,33], we investigated the mitochondrial
superoxide production by in vitro EPR spectroscopy. The assay is based on the oxidation
of a hydroxylamine into a nitroxide. As several factors may contribute to the oxidation of
the probe, we used PEG-SOD to measure the contribution of superoxide to the formation
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of the nitroxide. Previous studies have indeed shown that the pre-incubation of cells in the
presence of PEG-SOD allows cellular uptake of the enzyme and intracellular scavenging of
superoxide [34]. When exposed to MM10 at the concentration of 1 µM for 24 h, the level
of mitochondrial superoxide was significatively increased in PC-3 cells (Figure 3A) but re-
mained unchanged in DU-145 cells (Figure 3B). We also noticed that the basal mitochondrial
superoxide production was much lower in DU-145 than in PC-3 cells.
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Figure 3. Impact of MM10 on mitochondrial superoxide level in prostate cancer cells measured by
EPR spectroscopy. Mitochondrial superoxide was measured using mitoTEMPO-H as EPR sensor.
Superoxide contribution to the signal was measured by making the difference between the signal
intensities recorded in the absence and in the presence of PEGSOD2. (A) Impact on mitochondrial
superoxide production of PC3-cells after 24 h exposure to MM10 (1 µM). (B) Impact on mitochon-
drial superoxide production of DU-145 cells after 24 h exposure to MM10 (1 µM). Bars represent
means ± SEM, (*) p < 0.05, (ns) non-significant, Student’s t test, N = 3.

2.3. DU-145 Cells Have Higher Glutathione Levels and Are More Resistant to Oxidative Stress
Than PC-3 Cells

The difference observed in superoxide production between the two cell lines prompted
us to measure the intracellular levels of glutathione. Interestingly, DU-145 cells presented a
higher concentration of total glutathione, GSHtot (glutathione in its reduced and oxidized
forms) than PC-3 cells (Figure 4). We also investigated the changes in GSH/GSSG ratio
(reduced glutathione on oxidized glutathione ratio) when cells were exposed for 24 h to
1 µM of MM10 to assess their response to oxidative stress. It revealed that the GSH/GSSG
ratio was significantly decreased in PC-3 (Figure 5A) cells but not in DU-145 cells (Figure 5B)
after MM10 exposure. We also observed that MM10 did not change the levels of GSHtot in
PC-3 (Figure 5C) and DU-145 (Figure 5D), contrarily to L-Buthionine-sulfoximine (L-BSO),
an inhibitor of glutathione biosynthesis used as positive control.
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Figure 5. Impact of MM10 on glutathione levels in prostate cancer cells. (A) Impact on GSH/GSSG
ratio of PC-3 cells after 24 h exposure to MM10 (1 µM). (B) Impact on GSH/GSSG ratio of DU-145
cells after 24 h exposure to MM10 (1 µM). (C) Impact on GSHtot level of PC3 cells after 24 h exposure
to MM10 (1 µM) or L-BSO (25 µM). (D) Impact on GSHtot level of DU-145 cells after 24 h exposure
to mito-metformin10 (1 µM) or L-BSO (25 µM). L-BSO is an inhibitor of glutathione biosynthesis
used as positive control. Bars represent means ± SEM (µM/mg of proteins), (*) p < 0.05, (**) p < 0.01,
(ns) non-significant, Student’s t test, N = 3.

2.4. MM10 Alleviates Tumor Hypoxia in the PC-3 Cancer Model

As we observed in vitro a significant decrease in OCR, we hypothesized that MM10
could lead to an increase in tumor oxygenation in vivo, as it was observed previously
for other compounds [23,35–37]. For the purpose, we measured the oxygenation in PC-3
tumors by in vivo EPR oximetry. We found out that PC-3 tumors were highly hypoxic
as the initial pO2 before treatment was lower than 2 mmHg (Figure 6). When mice were
treated daily with MM10 (IP injection, 2 mg/kg), a sharp increase in tumor oxygenation
was observed 24 h after treatment initiation and the tumor oxygenation remained higher
than basal pO2 up to 72 h (Figure 6).
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2.5. MM10 as a Potential Radiosentizer?

As hypoxia is a major factor of resistance to radiotherapy, we evaluated if MM10
could improve response to radiotherapy when irradiation was administered 1 day after the
initiation of MM10 treatment at the time of maximal reoxygenation. Despite the promising
results obtained in vitro and in vivo showing the inhibition of mitochondrial respiration
and alleviation of tumor hypoxia, the association of MM10 together with irradiation had
no additive effect on radiotherapy efficacy in comparison with irradiation treatment alone
(Figure 7).
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3. Discussion

The main result of the present study is that MM10 induced a mitochondrial dysfunction
in prostate cancer cells, as it was previously reported for pancreatic adenocarcinomas [12].
However, we can also highlight some similarities and differences between our observation
on prostate cancer models and the previous results obtained on pancreatic cancer models.

The inhibition of mitochondrial respiration observed was in the same range of concen-
tration (1 µM) after 24 h exposure in prostate cancer models (Figure 2) and in the PDAC
model [12]. In pancreatic adenocarcinoma cells, this interference with the ETC had impor-
tant consequences in terms of superoxide production, as revealed by fluorescent assays
coupled with HPLC [12]. Interestingly, in our EPR study, we observed that the level of
mitochondrial superoxide achieved after 24 h exposure to MM10 was strongly dependent
on the prostate cancer cell line. The level was significantly increased in PC-3 cells treated
by MM10 while it was not modified in DU-145 cells (Figure 3). This observation together
with a very low basal level of superoxide (before treatment) in the DU-145 cells suggested
that the antioxidant systems may be different in both cell lines. Therefore, we measured
the level of glutathione (total GSH and ratio GSH/GSSG). As anticipated, the basal level
of GSH was lower in DU-145 cells compared to PC-3 cells (Figure 4). As a consequence,
the exposure to MM10 led to a larger decrease in the ratio reduced GSH/oxidized GSSG
in the PC-3 model compared to the DU-145 model where it was not significant (Figure 5).
Of note, the exposure of cells to MM10 did not modify the level of total GSH, excluding
an interference of MM10 with the biosynthesis of glutathione. Altogether, such evidence
suggests that the response of cancer cells to the potential oxidative stress induced by MM10
is strongly dependent on their antioxidant capacity. Without excluding other antioxidant
systems, such as thioredoxins, peroxyredoxins, glutaredoxins, or superoxide dismutase,
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as illustrative examples, it suggests that the level of glutathione likely contributes to the
modulation of the response to MM10 exposure. Of note, despite the significant increase
in superoxide level in PC-3 tumor cells and the alteration of glutathione levels, MM10
treatment did not modify the tumor growth when used alone or in combination with
irradiation in this tumor model, contrary to previous observations made in pancreatic
adenocarcinomas [12].

Considering the alteration in tumor cell respiration, we anticipated that MM10 treat-
ment could change the concentration of oxygen in tumor models. EPR oximetry experi-
ments revealed a significant increase in tumor oxygenation after daily administration of
MM10 (Figure 7). The pO2 dramatically increased one day after treatment initiation. The
slight decrease observed after the initial peak is likely due to the decrease in perfusion
due to the persistent growth of the tumor. The identification of the time window of reoxy-
genation is essential for the optimal guidance of treatments targeting tumor hypoxia and
its consequences [38]. It may help to identify potential treatments, but also give rationale
for an appropriate scheduling of irradiation regimen [38,39]. It is well established that the
Oxygen Enhancement Ratio (i.e., the ratio of radiation dose to observe a same biological
effect) dramatically varies between 1 and 10 mmHg [38,40,41]. As the pO2 level increased
from 0–1 mmHg to 8–9 mmHg, we designed an experiment with irradiation at the time of
maximal reoxygenation. For most experiments done so far using this design, we got an
improvement of response using the combination of treatments (reviewed in [19]). However,
here, the association of MM10 together with irradiation had no additive effect in terms
of tumor growth delay compared to irradiation alone (Figure 7). The elucidation of the
reasons for the absence of radiosensitization observed in this tumor model will require
further investigation. One limitation of our EPR oximetry study is that it was based on
EPR spectroscopy and not EPR imaging. Previous studies have established that, using the
present protocol, the charcoal interrogates the oxygenation in a volume of approximately
10 mm3 inside the tumor [30]. We cannot exclude that a few hypoxic areas could still be
present after the MM10 treatment, remaining resistant to irradiation and be at the origin of
the recurrence. In the future, it would be interesting to evaluate this possible heterogeneity
of response using EPR imaging [42–46]. We should also keep in mind that oxygen, while
being very important, is not the sole factor affecting the response to irradiation. While
speculative at this stage, it could result from complex mechanisms, such as the activation of
DNA repair mechanisms or cell cycle adaptations in response to radiation. Another lesson
from the in vivo experiment is that MM10 (2 mg/kg, used as a single modality without
irradiation) did not affect the tumor growth in the prostate cancer model. In contrast, a
significant decrease in tumor size was obtained in a pancreatic model [12]. Of note, the
administration of MM10 was interrupted after the irradiation in our study while it was
prolonged over a longer period in the pancreatic model [12].

Finally, as this paper is submitted for the special issue of Molecules on “Application
of EPR Spectroscopy in Biophysics and Biochemistry”, we believe that the present study
well illustrates the potential role of EPR in trying to identify new pharmacological treat-
ments that may help in fighting cancer. While the final results obtained here are rather
disappointing in terms of the potentiation of radiation sensitivity, there are many other
examples for which EPR has been instrumental in characterizing the effect of potential
treatments [47–51].

4. Materials and Methods
4.1. Reagents

MM10 was synthetized as described previously [12]. L-Buthionine-sulfoximine (L-
BSO) (CAS number 83730-53-4) was from Sigma-Aldrich (Hoeilaert, Belgium). 15N-PDT (4-
oxo-2,2,6,6-tetramethylpiperidine-d16-15N-1-oxyl) (CAS 80404-14-4) originated from CDN
Isotopes. Mito-TEMPO-H (1-hydroxy-4-[2-triphenylphosphosphonio)-acetamido]-2,2,6,6-
tetramethylpiperidine) was from Enzo Lifescience (Brussels, Belgium). Superoxide dis-
mutase conjugated with polyethylene glycol (PEGSOD2), dimethyl sulfoxide (DMSO),
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diethylenetriaminepentaacetic acid (DTPA) and dextran from leuconostoc mesenteroides
(average MW 60,000–76,000) were purchased from Sigma-Aldrich (Hoeilaert, Belgium).

4.2. Cell Lines and Culture

The PC-3 and DU-145 cell lines were purchased from the American Type Culture
Collection (ATCC) (Manassas, VA, USA) and maintained at 37 ◦C in a humified atmosphere
with 5% CO2. PC-3 and DU-145 cells were cultured in Ham’s F12-K (Kaighn’s) and MEM-α
without nucleosides media, respectively, with 10% heat-inactivated fetal bovine serum
(Thermo Fisher Scientific, Merelbeke, Belgium).

4.3. OCR Measurements by EPR Spectroscopy

OCR measurements by EPR spectroscopy were done by using oxygen sensing probe,
15N-PDT (4-oxo-2,2,6,6-tetramethylpiperidine-d16-15N-1-oxyl), to measure variations of
oxygen levels in samples, and subsequently cells’ OCR in a sealed capillary [52]. A Bruker
EMX-Plus spectrometer (Rheinstetten, Germany) operating in X-band (9.85 GHz) and
equipped with a PremiumX ultra low noise microwave bridge and a SHQ high sensitivity
resonator was used and the EPR cavity was heated at 310 K with continuous nitrogen flow
during all experiments. Into a hematocrit capillary is put a solution containing 60 µL of
previously harvested cells (stock solution of 5 × 106 cells/mL of the appropriate culture
medium), 40 µL of a 20% dextran solution and 4 µL of 15N-PDT at 2 mM (final concentra-
tion: 77 µM). The capillary was sealed with gum. EPR parameters set in Bruker Xenon
Spin fit program were: microwave power, 2.518 mW; modulation amplitude, 0.005 mT;
modulation frequency, 100 kHz; center field, 335 mT; sweep time, 15 s; sweep width, 1.5 mT.
An automated “2D-field-Delay” measurement was launched 3 min after probe mixing,
counting 15 points with a time delay of 60 s. Data were analyzed by switching to processing
mode and using “peak picking” on selected regions of the 15N-PDT-peaks. The final file
was saved as an ASCII file to extract linewidth data at each point. 15N-PDT linewidth was
correlated with the % of oxygen with a calibration curve (linewidth under oxygen-free
condition: 0.180 mT; sensitivity to oxygen: 0.692 µT/mmHg). OCR corresponded to the
slope of evolution of oxygen level as a function of time.

4.4. Mitochondrial Superoxide Assessment by EPR Spectroscopy

To assess the mitochondrial superoxide by EPR, Mito-TEMPO-H, a cyclic hydroxy-
lamine which can detect superoxide in complex biological samples using PEG-SOD as
control [26–28]. We used a Bruker EMX-Plus spectrometer operating in X-band (9.85 GHz)
and equipped with a PremiumX ultra low noise microwave bridge and a SHQ high sen-
sitivity resonator. The EPR cavity was kept at 310 K with continuous air flow during
all experiments. We prepared a mixture containing 37 µL of cell suspension previously
harvested (stock solution of 1.5 × 107 cells/mL of the appropriate culture medium), 0.5 µL
of DTPA (100 mM), 7.5 µL of Mito-TEMPO-H (1 mM) (the solution was flushed with argon
before and during pipetting to avoid the probe oxidation). PBS ((1×)-pH 7.4) was added
up to a total volume of 50 µL. To isolate the contribution of superoxide to the oxidation
of the hydroxylamine into the nitroxide, other measurements were made using the same
conditions but adding 2.5 µL of PEG-SOD2 (4000 U/mL) prior Mito-TEMPO-H and letting
the mixture incubate 15 min. The final mixture was transferred using a needle in a 12 cm
long PTFA tube (inside diameter 0.025 in, wall thickness 0.002 in). The tube was folded
6 times and inserted into an open quartz tube. The EPR parameters set in Bruker Xenon
Spin fit program were: microwave power, 20 mW; modulation frequency, 100 kHz; modu-
lation amplitude, 0.1 mT; center field, 336.5 mT; sweep width, 1.5 mT; sweep time, 30.48 s.
Measurements were started 3 min after probe mixing with the cells and repeated over time.
Data were analyzed by performing a double integration (DI) on selected regions of peaks.
Superoxide contribution was measured by subtracting mean PEGSOD2 DI to mean control
DI. Full details of the procedure have been published elsewhere [53].
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4.5. Intracellular Reduced and Oxidized Glutathione Quantification

To measure the glutathione levels, a colorimetric detection kit (catalog num. EIAGSHC)
was used (Invitrogen, Thermo Fisher Scientific, Merelbeke, Belgium). PC-3 and DU-145
were seeded 24 h prior treatment at a density of 5 × 105 cells in a 100 mm2 petri dish with the
appropriate medium. Cells were treated either with DMSO 1 µM (negative control), MM10
1 µM or L-BSO 25 µM (positive control) for 24 h. The levels of total glutathione (GSHtot)
and oxidized glutathione (GSSG) were assessed following the manufacturer instructions.
The levels of reduced glutathione (GSH) were deduced from the data collected for GSHtot
and GSSG. For each condition, protein quantification was performed using the BCA Protein
Assay Kit (PierceTM, Thermo Fisher). The spectrophotometer used for detection was a
SpectraMax M2e plate reader (Molecular Devices).

4.6. Tumor Models In Vivo and Treatments

All experiments involving animals were performed in accordance with the Belgian law
concerning the protection and welfare of the animals and were approved by the UCLouvain
ethics committee (Agreement reference: 2018/UCL/MD/021).

Male 6–8-week-old NMRI nude mice (Charles Rivers Laboratories, Beerse, Belgium)
were housed under standardized conditions of light and temperature (12-hour daylight
cycle, 22 ± 2 ◦C) before and during the experiments. They had ad libitum access to chow
pellets and water. After 1 week of acclimatization, 106 PC-3 cells (100 µL cell suspension in
HBSS + 100 µL Matrigel (Corning, Glendale, AZ, USA) were inoculated intramuscularly
(IM) in the right leg. Tumor size was monitored three times per week using an electronic
caliper, and two distances were measured, X and Y (X < Y). Tumor shape was assumed to
be ellipsoidal; hence, the volume was considered π/6 × X2 × Y2. Mice were then randomly
allocated to groups when xenograft exceeded a tumor volume of >350 mm3 (3–4 weeks
following tumor inoculation) and experiments performed.

4.7. In Vivo EPR Oximetry

The application of EPR in vivo requires the use of low-frequency EPR spectrometers.
Spectrometers operating at 1 GHz (Figure 8) allow the measurement in tissues with 1 cm
depth penetration. To measure the partial pressure of oxygen (pO2) in vivo, paramagnetic
particles of charcoals were inserted in the tissue of interest one day before the first pO2
measurement [30]. Inhalation of isoflurane mixed with air (21% of oxygen) was used
to anesthetize animals with a continuous flow (2 L/h). Induction was performed with
3% of isoflurane and anesthesia was maintained with 1.5% for at least 15 min before
measurement. It was previously demonstrated that this anesthesia regimen does not
disturb hemodynamics in rodents [54]. The body temperature was kept at 37 ◦C by a
warm water blanket. Tumor oxygenation was measured by using a charcoal CX 0670-1; EM
Sciences, Gibbstown, NJ, USA) as oxygen sensor [55] to dynamically evaluate changes in
tumor oxygenation during mito-metformin treatment. EPR spectra were recorded with an
EPR spectrometer (electromagnet from Magnettech, Berlin, Germany; electronic console
from Clin-EPR, Lyme, NH, USA) with a low frequency microwave bridge operating at
1.1 GHz. The EPR spectrum was recorded noninvasively using a loop surface coil [56]
placed over the tumor of an anesthetized mouse (Figure 8). Hence, 50 µL of a suspension
of charcoal (100 mg/mL, particle size of 1–25 µm) was injected into the center of the tumor.
Four mice were allocated in each group (treatment or control). Mice were anesthetized
and baseline values were recorded to obtain the oxygen status of tumors before treatment.
Levels of oxygen were obtained thanks to a calibration curve to transform EPR linewidths
into pO2 values [55]. The effect of MM10 (2 mg/kg) on tumor oxygenation was measured
daily, 5 min after the mito-metformin IP injection.
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4.8. Tumor Growth-Delay

Briefly, 36 male NMRI PC3-tumor bearing mice were randomly allocated into 4 groups
(control, RX (irradiation of 6 Gy, MM10, MM10 + Rx) of 9 mice with the same mean tumor
volume (421 ± 53 mm3, mean ± standard deviation). A single irradiation dose of 6 Gy was
delivered at the time of maximal reoxygenation (24 h after 2mg/kg IP injection). Tumor
volume was measured 3 times a week using a caliper to assess tumor growth-delay.

4.9. Statistics

Data are represented as means ± SEM. All experiments were performed in triplicates
or more. Statistical tests were performed using GraphPad Prism software version 9.1 (San
Diego, CA, USA) and are noted under each figure.
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