
NeuroML: A Language for Describing Data Driven Models
of Neurons and Networks with a High Degree of
Biological Detail
Padraig Gleeson1, Sharon Crook2, Robert C. Cannon3, Michael L. Hines4, Guy O. Billings1, Matteo

Farinella1, Thomas M. Morse5, Andrew P. Davison6, Subhasis Ray7, Upinder S. Bhalla7, Simon R. Barnes1,

Yoana D. Dimitrova1, R. Angus Silver1*

1 Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, 2 School of Mathematical and Statistical Sciences,

School of Life Sciences, and Center for Adaptive Neural Systems, Arizona State University, Tempe, Arizona, United States of America, 3 Textensor Limited, Edinburgh,

United Kingdom, 4 Department of Computer Science, Yale University, New Haven, Connecticut, United States of America, 5 Department of Neurobiology, Yale University

School of Medicine, New Haven, Connecticut, United States of America, 6 Unité de Neurosciences, Information et Complexité, CNRS, Gif sur Yvette, France, 7 National

Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore, India

Abstract

Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and
anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON,
GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized
languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model
components and cross-simulator validation. To overcome these problems we have used an Open Source software approach
to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables
these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple
simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by
converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical
coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual
neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model.
NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently
developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits
to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal
discretisation, when the computational overhead is high. Our development of NeuroML as a common description language
for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments,
thereby improving model transparency, accessibility and reuse in computational neuroscience.

Citation: Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, et al. (2010) NeuroML: A Language for Describing Data Driven Models of Neurons and Networks
with a High Degree of Biological Detail. PLoS Comput Biol 6(6): e1000815. doi:10.1371/journal.pcbi.1000815

Editor: Karl J. Friston, University College London, United Kingdom

Received February 25, 2010; Accepted May 13, 2010; Published June 17, 2010

Copyright: � 2010 Gleeson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Support for the UK team from the MRC (Program grant G0400598 to RAS and a Special Research Training Fellowship to PG), the BBSRC (005490), the EU
(EUSynapse, LSHM-CT-2005-019055) and the Wellcome Trust (086699 to RAS). RAS is in receipt of a Wellcome Senior Research Fellowship (064413). YDD was
funded by a studentship from UCL and the CoMPLEX PhD program. SC was supported by R01 MH081905 from the National Institute of Mental Health. NEURON
extensions for reading/writing NeuroML files were supported by NIH grant R01 NS11613 and the relevant ModelDB curation was supported by NIH grant P01
DC04732. Work on the compatibility of NeuroML and PyNN was carried out in the EU FACETS project (FP6-2004-IST-FETPI-015879). Development of the MOOSE
simulator was supported by grants SBCNY/NIGMS and DAE-SRC. We thank the Wellcome Trust (086699), INCF and NSF (IIS-0912814) for contributing to a
workshop on the future of NeuroML. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: a.silver@ucl.ac.uk

Introduction

Understanding how high level brain function arises from low

level mechanisms such as ion channels, synaptic transmission,

neuronal integration and complex three dimensional (3D) network

connectivity requires detailed computational models with biolog-

ically realistic features that are able to link different levels of

description and measurement. Models with detailed neuronal

morphologies, Hodgkin-Huxley type voltage-gated membrane

conductances, and phenomenological synaptic inputs have been

used to explore the determinates of action potential firing patterns

and information processing in single neurons [1–10]. This

compartmental neuronal modeling approach [11], which arose

from the pioneering work of Rall [12], has also been used to

investigate the cellular basis of network behavior in various brain

regions in both health and disease. This includes investigation of

synchronous activity [13,14], oscillations [15–17], sensory repre-

sentation [18,19], locomotion [20] and memory [21] together with

the causes of epileptiform activity [15,22,23]. Unfortunately, the

diverse software that has been used to construct these models

together with their specialized nature has restricted the wider use

of such models within neuroscience.

PLoS Computational Biology | www.ploscompbiol.org 1 June 2010 | Volume 6 | Issue 6 | e1000815



A number of dedicated software packages are available for

creating and simulating neuronal and network models [24]

including NEURON [25], GENESIS [26], MOOSE [27], NEST

[28] and PSICS (http://www.psics.org). While dedicated simula-

tors aid the creation of complex models, the multitude of simulator

specific programming languages restricts accessibility. Moreover,

reproducing a model based on the detailed description in the

associated paper is often difficult. This splintering of the available

technology has also hindered the sharing and reuse of model

components and the development of new tools for detailed

computational modeling. This situation contrasts with the field of

systems biology [29] which has benefited from the emergence of

Extensible Markup Language (XML) based standards for

describing biochemical network interactions (e.g. SBML [30],

CellML [31]) and curated databases of models [32], allowing

greater interoperability and validation of model behavior across

multiple simulators. For this reason, model sharing together with

greater accessibility and interoperability of neuronal models have

been identified as key areas of focus by several recent reports on

neuroinformatics [33–35]. However, the task of developing

simulator-independent standards for describing the myriad of

mechanisms and anatomical structures in the brain is considerably

more complex than formalizing reaction schemes in systems

biology.

The concept of a Neural Open Markup Language (NeuroML,

http://www.neuroml.org) for neuronal model description was first

proposed by Goddard et al. [36], who extended previous work by

Gardner et al. [37]. Building on the ideas in this initial work, we

have designed, developed and implemented a structure for

NeuroML that can describe models of neuronal systems at various

scales in a simulator independent manner. Models of neuronal

systems can vary greatly in the amount of biological detail

incorporated [6]. The latest version of NeuroML (v1.8.1) focuses

on expressing detailed neuronal models which can include

complex neuronal morphologies [38], descriptions of voltage-

and ligand-gated conductances, synaptic mechanisms and the

positions of cells and synaptic connections in a 3D network

structure. Here we provide an overview of the structure of the

language, illustrate its functionality by expressing a number of

complex cell and network models in NeuroML and demonstrate

the interoperability and model portability it enables by reproduc-

ing model behavior on multiple independently developed

simulators.

Results

Structure of NeuroML language and technologies used
The three Level structure of NeuroML partitions model

descriptions into the anatomical structure and the various

physiological mechanisms that underlie the electrical behavior of

neurons and networks and reflects the manner in which they are

commonly implemented in neuronal simulators (Figure 1). Level 1

of NeuroML allows description of the neuronal morphology (in

MorphML [38]) and relevant background data (metadata)

associated with the model. Level 2 of NeuroML builds on this in

two ways: it can be used to extend Level 1 cell descriptions to

include passive and active electrical properties and it includes

ChannelML, which describes voltage-gated membrane conduc-

tances together with static and plastic synaptic conductance

processes. Descriptions of neural networks are specified in Level 3.

This Level includes NetworkML, which specifies the 3D locations

of neurons, connections between populations, and external

electrical inputs. This modular structure, together with the use

of distinct schemas (i.e. MorphML, ChannelML and NetworkML)

is designed to enable the exchange and reuse of the individual

components between a wide variety of software applications.

Descriptions in higher Levels of NeuroML can build on

components from lower Levels (Figure 1, Materials and Methods).

A full description of the model elements and the files used to

specify them is provided in Supporting Text S1.

To achieve a high degree of biological detail, data-driven

compartmental models utilize data from neuronal reconstructions,

measured properties of membrane and synaptic conductances,

single and multiple cell electrophysiological recordings and density

and connectivity data. The relationship between each of these data

types and the various Levels and modular components of

NeuroML is illustrated in Figure 2. Models in NeuroML format

can be directly imported into applications or automatically

mapped onto them using a metasimulator (e.g. neuroConstruct

[39]) and simulation results can be used to make predictions that

can be tested experimentally.

NeuroML is an Open Source project (http://sourceforge.net/

projects/neuroml) and the specifications are based on XML [40],

a widely used language for exchanging structured information

between computer applications, which has been used previously in

other standardization initiatives e.g. SBML [30], CellML [31],

BrainML [41] and MathML [42]. Figure 3 shows an example of a

ChannelML file with the set of parameters required to fully

describe an instance of a voltage-gated K+ channel in the

Hodgkin-Huxley formalism (See Supporting Text S1 for a

description of the current and conductance which would result

from this type of channel model). This XML document is a text

file containing structured data (Figure 3A), which can be parsed

with freely available software libraries (i.e. with minimal effort for

application developers) and can be easily transformed into a

human-readable form (Figure 3B, Materials and Methods).

Moreover, the properties of the specified model can be readily

visualized in graphical form (Figure 3C).

Rather than requiring the restructuring of neuronal simulators

to a common internal model based on NeuroML, our approach to

enhance interoperability and transparency identifies the useful

elements that can be exchanged between computational neuro-

Author Summary

Computer modeling is becoming an increasingly valuable
tool in the study of the complex interactions underlying
the behavior of the brain. Software applications have been
developed which make it easier to create models of neural
networks as well as detailed models which replicate the
electrical activity of individual neurons. The code formats
used by each of these applications are generally incom-
patible however, making it difficult to exchange models
and ideas between researchers. Here we present the
structure of a neuronal model description language,
NeuroML. This provides a way to express these complex
models in a common format based on the underlying
physiology, allowing them to be mapped to multiple
applications. We have tested this language by converting
published neuronal models to NeuroML format and
comparing their behavior on a number of commonly used
simulators. Creating a common, accessible model descrip-
tion format will expose more of the model details to the
wider neuroscience community, thus increasing their
quality and reliability, as for other Open Source software.
NeuroML will also allow a greater ‘‘ecosystem’’ of tools to
be developed for building, simulating and analyzing these
complex neuronal systems.

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 2 June 2010 | Volume 6 | Issue 6 | e1000815



science tools (morphologies, channels, synapses, network structure

etc.) and develops the means to import and export these in a

standardized format. This approach allows researchers to develop

new neuronal and network models using the application of their

choice for maximum flexibility, and then convert these models to

NeuroML format for cross simulator validation, increased

accessibility and storage. This also means that the models are

run using a simulator’s own internal data structures, so there is no

loss of execution performance compared to creating the models

from scratch in the simulator’s own script.

NeuroML differs from the model description approaches taken

by SBML and CellML, which can describe a variety of models of

dynamical systems in biology using low level concepts such as

compartments, variables and reaction rates. In contrast NeuroML

incorporates many higher level concepts such as Hodgkin-Huxley

models of ion channels, synaptic conductance waveforms, synaptic

plasticity models, 3D dendritic and axonal structures and 3D

network connectivity, because the neuronal models it describes

cover many levels of description from ion channels to whole

networks. Indeed it is intended for describing models containing

the established neurophysiological entities most commonly used

when modeling biologically detailed neural systems. While this

limits the scope of biological models that can be expressed in this

format, it ensures that a wide range of detailed neuronal models in

use today can be specified in a dedicated language and facilitates

mapping of the models to widely used simulation tools.

The modular nature of the NeuroML language allows modelers

to use only the components relevant for their system. This is

enabled by using a number of XML Schema (XSD) files (see

Materials and Methods) for each part of the language. The

structure of the elements used to specify each component of the

language is depicted in Figures 4–6. In the following sections we

discuss each of the 3 Levels in more detail.

NeuroML Level 1
The first Level of the NeuroML language has two main purposes:

to define neuronal morphologies (MorphML) and metadata, which

provides additional information about model components at this

and subsequent levels. Cells are described by lists of segment elements,

with each element containing the 3D location and shape of each

segment. Details of the mapping between elements in MorphML

and the data structures of other applications that use morphology

formats such as Neurolucida, NEURON and GENESIS have

previously been described [38], and the elements permitted for a cell

description at this and subsequent Levels is shown in Figure 4 (a

detailed description of each of these elements is given in Supporting

Text S1). Manual reconstruction of complex neuronal morpholo-

gies is a difficult and time consuming task and human errors can be

difficult to detect. Once converted to MorphML, the morphology

files can be automatically checked for discontinuities and isolated

elements. MorphML also allows description of other anatomical

information, which may have been recorded during cell recon-

struction, such as histological features, reference points, and outlines

of perceived boundaries [38].

NeuroML Level 1 also allows metadata, which is important for

tracking the provenance of the model components and for

providing background information on the model. A number of

elements are included to provide structured information on the

original authors of the model, translators of the model to

NeuroML format, publications, and references to entries in

Figure 1. Relationship between the three Levels of NeuroML and MorphML, ChannelML and NetworkML. Level 1 incorporates
MorphML, which allows descriptions of cell structure ranging from single compartment cells to detailed cells based on morphological
reconstructions. Metadata describing the provenance of the data (authors, citations, etc.) can be used at this and subsequent Levels. Level 2 builds on
Level 1 to specify the passive properties and the location and densities of active conductances on the cell, and includes ChannelML, for description of
the membrane processes that generate the electrophysiological behavior of cells. Level 3 contains NetworkML, allowing networks of these neuronal
models and their synaptic connections to be described. MorphML, ChannelML and NetworkML can be used in isolation to describe model
components, while a Level X file can include any elements from that and any lower Level.
doi:10.1371/journal.pcbi.1000815.g001

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 3 June 2010 | Volume 6 | Issue 6 | e1000815



databases such as ModelDB [43] and NeuroMorpho.org [44], as

well as text based comments. The concept of model stability (the

status element) is also included to allow a record of any known

limitations of the model. Two types of unit system are allowed in

NeuroML, SI Units and Physiological Units (ms, mV, cm, etc.),

and only one of these must be used consistently in relevant

elements of a NeuroML file. This facilitates the correct conversion

of physical quantities to the unit system of each supported

application.

NeuroML Level 2
The second Level of the NeuroML language describes the

electrical properties of the membrane that underlie rapid signaling

in the brain. The two main parts of this Level are: an extension of

the morphological descriptions from Level 1 that includes details

of the passive electrical properties and channel densities on various

parts of the cell (Level 2 cell in Figure 4); and ChannelML, which

allows descriptions of the individual conductance mechanisms

(Figure 5). ChannelML supports two main types of conductances:

those that arise from channels distributed over the plasma

membrane (channel_type element), such as voltage-gated conduc-

tances or conductances gated by intracellular ions (e.g. [Ca2+]

dependent potassium conductances); and conductances arising at

synaptic contacts (synapse_type). Distributed conductances are

normally specified by describing the transition rates between

channel states and their voltage dependence (Figure 3; Supporting

Text S1). This allows specification of channel gating models with

the traditional Hodgkin-Huxley formalism (with multiple instances

Figure 2. Relationship between experimental data and model components expressed in NeuroML. Experimental neuroscience data is
measured at different scales describing subcellular, cellular and network properties and NeuroML provides a framework to describe models
developed using this data at all of these levels. Once models are defined in NeuroML they can either be directly imported into a simulator or
translated via a metasimulator like neuroConstruct. Optimization of such data-driven models involves an iterative process of experimentation,
creation of models, comparison with data and refinement of models, and suggestions for new experiments based on modeling results.
doi:10.1371/journal.pcbi.1000815.g002

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 4 June 2010 | Volume 6 | Issue 6 | e1000815



of identical gates; e.g. Figure 3A) or with more detailed state-based

kinetic (Markov) models (of which the HH model is a special case).

A wide range of examples of voltage-gated conductances are

supported by ChannelML including those underlying fast and

persistent Na+ currents, delayed rectifier, A- and M-type K+

currents, H-currents and L- and T-type Ca2+ currents. [Ca2+]

dependent BK and SK type channels can also be expressed. The

commonly used Q10 function for temperature dependence of

transition rates can be added. While the focus of NeuroML to date

has been on more detailed conductance based models, Chan-

nelML also supports a basic integrate-and-fire neuron model.

However, more advanced types of reduced model such as

exponential integrate and fire or Izhikevich spiking neurons are

not yet supported (see Discussion for future plans for support of

more abstract neuronal representations).

Both neurotransmitter gated conductances at chemical synapses

and gap junction conductances at electrical synapses are supported

in ChannelML (Figure 5). Conductance changes at chemical

synapses are defined by a time course which can have a number of

forms including an exponential rise and up to three decay

components. These conductances include both the simple linear

ohmic type (for modeling most AMPA and GABAA receptor

mediated synapses) and non-linear voltage-dependent components

(for modeling the Mg2+ block of the NMDA receptor mediated

synaptic component). Activity dependent synaptic plasticity is

implemented with two mechanisms in ChannelML: a short-term

plasticity (STP) mechanism based on a widely used STP model

[45] incorporating both depression and facilitation components

and a spike timing dependent plasticity (STDP) mechanism based

on the model of Song and Abbott [46], but simulator support for

STDP is presently limited. NeuroML provides representations of

phenomenological models of synaptic plasticity that can reproduce

a wide range of behavior including short-term facilitation and

depression and Hebbian and anti-Hebbian learning, thus

accommodating synaptic plasticity over a wide range of time

scales where adequate simulator support exists.

Figure 3. XML structure of a ChannelML file and mappings to text and graphs. (A) A ChannelML file containing a Hodgkin-Huxley type K+

conductance model, with four instances of a gating mechanism with open and closed states, and the rates of transitions between them. Supporting
Text S1 contains a description of each of the elements contained in this file, and section 10.2 of that document outlines in more detail the equations
behind a channel model expressed in ChannelML. (B) A section of a HTML page automatically generated from the ChannelML using an XML
Stylesheet (XSL) file. (C) Top: plots of the forward (alpha, black) and reverse (beta, red) transition rates. Bottom: the time constant (tau) of the
transition (black) and steady state of the gating variable (inf, red). These views of the contents of the ChannelML file can be generated automatically
(e.g. by neuroConstruct) for any valid file.
doi:10.1371/journal.pcbi.1000815.g003

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 5 June 2010 | Volume 6 | Issue 6 | e1000815



Figure 4. Elements for representing cells in NeuroML Levels 1-3. The main element for expressing a branching neuronal structure in
NeuroML is cell which is used for all Levels in NeuroML. The core of the cell description is a set of segment elements which describe the 3D shape of
the cell. These can be grouped into cables which represent unbranched neurites of the cell. Metadata present in the cell description can contain
details of the creators of the cell model, or the data on which it was based (e.g. a neuronal reconstruction from NeuroMorpho.org). Addition of the
biophysics element allows a Level 2 conductance based spiking cell model to be described, and the connectivity element can be used for the allowed

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 6 June 2010 | Volume 6 | Issue 6 | e1000815



Level 2 also allows the location and density of membrane

conductances described in ChannelML to be specified on regions

of the cell (e.g. soma, axon, apical dendrites). The passive electrical

properties of the cell (e.g. specific axial resistance and specific

membrane capacitance) can be defined in a similar manner (using

the biophysics element; see Figure 4). Moreover, non-uniform

channel densities can be implemented using a metric, such as the

path distance from soma, and expressing the density in terms of

this metric (using the variable_parameter element). Although

NeuroML Level 2 is required for defining a full spiking neuron

model, elements of the models can be defined as standalone

descriptions in MorphML and ChannelML, thereby facilitating

the exchange and reuse of individual model components.

NeuroML Level 3
The third Level of NeuroML allows specification of the 3D

anatomical structure and synaptic connectivity of a network of

neurons, together with the properties of the external input used to

drive the network. NeuroML Level 3 has two main purposes: to

define NetworkML (Figure 6) and to allow extension of Level 2

cells with specification of regions of the cell membrane (e.g. apical

dendrites) to which specific synaptic connections are limited

(connectivity element; Figure 4). Thus complex networks with

different types of excitatory and inhibitory neurons can be defined,

including dendritic sub-region specific synaptic connections. There

are two possible ways to describe networks in NetworkML: an

explicit list of instances of cell positions and synaptic connections

(instance based representation); or as an algorithmic template for

describing how instances of the network should be generated, for

example to place 300 cells randomly in a certain 3D region

(template based representation). The instance based representation

is quite compact, even for large scale simulations, because a

network with 10,000 identical neurons will only have one instance

of the cell description and a list of 10,000 locations. To date, this

has proven a more useful and portable format. Only a limited

range of network templates is currently supported, though these

are in the process of being updated for the next version of

NeuroML (see Discussion). The instance based representation can

also include information on the computational node a cell should

be run on (node_id attribute) to facilitate execution of large scale

networks on parallel computing hardware (Supporting Text S1).

There are three core elements for describing networks in

NetworkML: population specifies the numbers of cells of a specific

type, together with their locations in 3D space; projection defines the

set of synaptic connections between two populations or within a

single population, by identifying the precise location of the synapse

on the pre- and postsynaptic neuronal morphology and specifying

the type of synapse(s) present; and input describes an external

electrical input into the network. Inputs can take the form of a

current pulse delivered by model electrodes or random synaptic

stimulation.

Simulator support and conversion of NeuroML to textual
and graphical formats

The key goals of the NeuroML initiative are to make models

and their components exchangeable, simulator independent and

accessible to a wide range of researchers. To this end several

software applications for compartmental modeling have been

extended to support NeuroML. The most extensive support for

NeuroML at present is provided by neuroConstruct which is an

application for building, visualizing and analyzing networks of

compartmental neurons in 3D space [39]. It uses an internal

representation for cells that is closely related to NeuroML and can

import and export model components in MorphML, ChannelML

and NetworkML (in XML or a more compact HDF5-based binary

format) or a complete description of a network model in a single

Level 3 file. There is support for plotting channel properties (e.g.

voltage dependence of rates; Figure 3C) and analyzing properties

of neuronal morphologies and networks. Simulator specific scripts

for NEURON, GENESIS, MOOSE, PSICS and PyNN can also

be automatically generated from NeuroML files and executed, and

simulation results can be reloaded for visualization and analysis

(Figure 2).

NEURON allows native import and export of cells in both

Level 1 and 2 NeuroML formats [47]. This allows cell models

created in NEURON native scripts to be exported in a

standardized format. All channel types currently in ChannelML

can be converted to NEURON due to the flexible nature of the

NMODL language [48]. GENESIS 2 [26] does not natively

support NeuroML, but a mapping to this format is provided via

neuroConstruct. MOOSE (Multiscale Object-Oriented Simula-

tion Environment) [27] has been developed as part of the

GENESIS 3 initiative, but is based on a complete reimplemen-

tation of the core of GENESIS. Scripts specifically for MOOSE

can be generated by neuroConstruct and are for the most part

identical to GENESIS 2 scripts, and native support for

NeuroML in MOOSE is in development. NeuroML mappings

have also been created for the recently developed PSICS

simulator, and scripts for running single cell models on this

simulator can be generated through neuroConstruct. There is

also some native support in PSICS for importing MorphML and

ChannelML. PyNN [49] is a Python package for creating

network models for multiple simulators (including NEST [28]

and NEURON), and support for mappings to and from

NeuroML has recently been added. Table 1 summarizes the

current support in each of the aforementioned tools for various

types of models which can be expressed in NeuroML. In

addition to the applications mentioned here, native support for

various parts of NeuroML is currently in development in

software applications not associated with the authors of this

paper, including CX3D [50] and PCSIM [51]. NeuroML

support is in development for Neurospaces [52], also being

developed as part of the GENESIS 3 initiative. The latest details

of software support for NeuroML can be found at http://www.

neuroml.org/tool_support.

To help researchers convert their existing models to NeuroML,

we have generated a number of sample documents on the

NeuroML website (http://www.neuroml.org/examples), which

can be viewed in the original XML or converted to more readable

formats (e.g. Figure 3B). There is also a software application for

validating NeuroML files to check that they are compliant.

MorphML cells and NetworkML files can be converted for

visualizing in 3D in a web browser using an X3D compatible plug-

in. Moreover, MorphML and ChannelML files can be converted

online to a number of simulator formats including NEURON,

GENESIS/MOOSE and PSICS, using the XML Stylesheet (XSL)

based mapping files which have been developed for each simulator

synaptic connectivity of a Level 3 cell (e.g. to be used when connecting the cell in a network). A detailed description of each of these elements can be
found in Supporting Text S1. Only the elements in Level 1 which are normally used in compartmental cell modeling are shown in the figure. Other
elements such as freePoints, features etc. could be present in a Level 1 file from a camera lucida reconstruction [38].
doi:10.1371/journal.pcbi.1000815.g004

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 7 June 2010 | Volume 6 | Issue 6 | e1000815



(Materials and Methods). In order to test the mappings from

NeuroML to these simulators and other tools, we have converted a

number of existing, published models to NeuroML.

Validation of NeuroML
To test that NeuroML descriptions of cell morphology and

conductances can produce similar results across supported simulators,

Figure 5. Elements in ChannelML. ChannelML allows expression of models of voltage (and ligand) gated conductances which are dispersed
across the cell membrane (in channel_type element), conductances which are concentrated at synaptic contacts (in synapse_type element) and basic
models of time varying internal ion concentrations (in ion_concentration element). Distributed conductance descriptions contain a number of gate
elements, which describe the transitions between conducting and non conducting states of the channels underlying the conductances. A number of
synaptic conductance models are allowed including simple double exponential waveforms, AMPA and NMDA receptor mediated synapses, Short
Term Plasticity (STP) models, Spike Timing Dependent Plasticity (STDP) models, and electrical synapses. The ion_concentration element can be used
for the simple models of exponentially decaying Ca2+ pools often used in detailed cell models. A detailed description of each of these elements can
be found in Supporting Text S1.
doi:10.1371/journal.pcbi.1000815.g005

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 8 June 2010 | Volume 6 | Issue 6 | e1000815



The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 9 June 2010 | Volume 6 | Issue 6 | e1000815



we converted a morphologically detailed model of a CA1 pyramidal

cell [2] with 6 active conductances from the original NEURON

format into NeuroML and compared the model behavior on

NEURON, GENESIS, MOOSE and PSICS. This model was

chosen because it contains three conductances that are non-uniformly

distributed over the dendritic tree. The behavior of the ChannelML

representation of the 6 conductances was first verified using a single

compartment cell (Supporting Figure S1). The detailed 3D cell and its

response to a brief current injection in the soma are shown in Figure 7.

The time courses of the membrane potential at various points along

the cell was directly compared for the four simulators (Figure 7A).

Despite important differences in the way each simulator handles the

simulation of the cell anatomy and channels (e.g. the morphology was

mapped to a reduced number of compartments on GENESIS/

MOOSE, and the numbers of ion channels and their individual

positions were explicitly calculated in PSICS; Materials and

Methods), the physiologically measurable output of the cell was very

similar across all simulators tested (Figure 7B–D) confirming the

simulator-independence of the NeuroML model description on short

timescales and for a realistic neuronal morphology.

To test the synaptic models defined in NeuroML, we compared

the behavior of a number of supported models between simulators.

The ChannelML implementation of an electrical synapse was

tested by comparing simulations run on GENESIS, MOOSE and

NEURON. The voltage responses in a pair of passive model

neurons connected by a gap junction to a step current injected into

one of the cells gave rise to identical results in these simulators

(Figure 8A). Neurotransmission at excitatory chemical synapses is

mediated predominantly by glutamate in the mammalian brain.

Glutamate typically activates AMPA receptors (Figure 8B), which

have a simple ohmic conductance and NMDA receptors, which

exhibit a nonlinear voltage dependent conductance due to Mg2+

block (Figure 8C). In all cases the results from NEURON,

GENESIS and MOOSE match for simulations derived from the

ChannelML description. The ChannelML implementation of a

synaptic Short Term Plasticity (STP) model [45] was also

compared using NEST and NEURON. Altering the model

parameters to favor short-term depression or facilitation gave

identical results (Figure 8D) using both simulators.

To test the support for network representations in NeuroML, we

converted the elements of the thalamocortical column network

model developed by Traub et al. [15] to NeuroML, as this is one of

the most advanced multi-cellular network models published to date.

The electrical behavior of the model arises from 22 voltage- and

ligand-gated Na+, K+ and Ca2+ conductances together with both

electrical and chemical synapses, which were all converted to

ChannelML and tested (Figure 9A, Materials and Methods). Each

of the 14 cell types present was converted to NeuroML, using the

Level 2 cell export function of NEURON and import function of

neuroConstruct (Supporting Figure S2). Supporting Tables S1 and

S2 list the cell and channel types respectively. The different

complements of the channels and different morphologies gave rise

to a variety of behaviors including regular spiking, fast spiking and

bursting behavior (Figure 9B–E). The NeuroML implementation

produced qualitatively similar spiking behavior for simulations run

in NEURON, GENESIS and MOOSE in the 10 electrophysio-

logically distinct cells during sustained firing over hundreds of

milliseconds to seconds (Supporting Figure S3). However, differ-

ences in the timing of spikes was evident in some of the cells, unless

the spatial and temporal discretisation of the cell was increased

substantially. Two observations confirmed that the main cause of

divergence in spike times arose from the use of symmetrical

compartments (where axial resistance is split and numerical

integration takes place at the center of the compartment) and

asymmetrical compartments (axial resistance is located at one end of

the compartment). Firstly, the spike times of a single compartment

cell with all the channel conductances included were indistinguish-

able on NEURON, GENESIS and MOOSE (Figure 9A), confirm-

ing the ChannelML implementations allowed equivalent behavior

on all 3 simulators. Secondly, when the spatial discretisation of the

cell models was increased, all simulators tended toward the same

spike times (Supporting Figure S4), with GENESIS (for which

asymmetrical compartments had to be used, see Materials and

Methods) generally requiring a finer discretisation. These results

Figure 6. Elements in NetworkML. The core elements for expressing networks are population for homogenous groups of cells positioned in 3D,
projections for synaptic contacts between (or within) populations and inputs for electrical stimulation to the network. The networks can either be
expressed as lists of precise positions, connections and input locations (instance based representation) or as templates for generating these lists
(template based representation). A detailed description of each of these elements can be found in Supporting Text S1.
doi:10.1371/journal.pcbi.1000815.g006

Table 1. Summary of supported NeuroML features in applications.

NEURON GENESIS MOOSE PSICS neuroConstruct PyNN*

Single compartment cells X X X X X X

Multi compartment cells X X X X X

Integrate & fire mechanisms X X X

HH channels X X X X X

Kinetic scheme channels X X X

Voltage & ligand gated channel, e.g. BK, SK X X X X

Networks X X X X X

Static synapses X X X X X

Plastic synapses X X X

Gap junctions X X X X

The latest support for NeuroML in these and other computational neuroscience tools can be found at http://www.neuroml.org/tool_support.
*Simulator mappings of PyNN which have been tested to date: NEURON, NEST.
doi:10.1371/journal.pcbi.1000815.t001

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 10 June 2010 | Volume 6 | Issue 6 | e1000815



show that the way models are implemented on different simulators

can have a significant impact on their behavior. Moreover, true

interoperability, as measured through model convergence, may only

occur at the limits of spatial and temporal discretisation.

Once all the channel, synaptic and cellular components of the

model were converted to NeuroML and tested, we used

neuroConstruct [39] to build a 56 cell Layer 2/3 network that

matched as closely as possible a previous larger scale model which

uses these cells [16]. This consisted of regular spiking and fast

rhythmic bursting pyramidal cells and low threshold spiking, axo-

axonic and basket type interneurons (Figure 10A, Materials and

Methods). As specified in the original model, excitatory and

inhibitory synaptic conductances were located on specific dendritic

and somatic segments and electrical synapses were included within

cell populations. This network model was not tuned against any

new experimental data and is primarily intended as a test case for

comparison of network behavior across simulators. The spike

times of the neuronal populations were similar across the 3

simulators over the first 200 ms of the simulation, when a small

simulation timestep and fine spatial discretisation was used

(Figure 10B). At longer times, some spikes became shifted and

others appeared or disappeared depending on the simulator. This

divergence in model behavior occurred earlier in the simulation

run and was much more pronounced when a more typical time

step and coarser discretisation was used (Supporting Figure S5),

suggesting that in practice, the precise spike times, and even the

occurrence of some spikes produced by complex network models,

will depend on the simulator implementation. A complete

description of this network model including cell structure,

channels, synapses, and lists of cell locations and connections

can be represented in a single Level 3 NeuroML file.

Discussion

Summary
We have developed, implemented and tested NeuroML, a

simulator-independent neuronal model description language for

defining data-driven models of neurons and networks with a high

Figure 7. CA1 pyramidal cell model with non-uniform active conductances (based on Migliore et al. [2]). (A) Top: cell morphology
visualized in neuroConstruct with color scale showing the density of h-type (HCN) channels (yellow lower, red higher). Bottom: voltage traces (in
response to a current pulse input at the soma) at 5 different locations in the cell after execution on NEURON (gray), GENESIS (red), MOOSE (blue) and
PSICS (green). (B) Voltage map of same cell executed on the NEURON simulator (top) and membrane potential traces (bottom) for the axon (black),
soma (yellow) and 3 locations (green, blue, red) at increasing distances along the dendritic tree. (C) Recompartmentalized morphology visualized and
run in GENESIS (top) with membrane potential traces (bottom, colors as for panel (B)). (D) Cell morphology visualized in PSICS using the ICING
application (http://psics.org/icing, top). Inset shows a small section of dendrite and the locations of the individual ion channels. Membrane potential
traces obtained with PSICS below, with colors as for panel (B). MOOSE does not have a native graphical interface at present. The simulation time step
in all cases was 0.002 ms, and spatial discretisation is described in Materials and Methods.
doi:10.1371/journal.pcbi.1000815.g007

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 11 June 2010 | Volume 6 | Issue 6 | e1000815



degree of biological detail. This XML based language has a

modular structure and the current version is sufficiently advanced

to allow the description of the complex branching structures of

dendritic trees and axonal projections, their biophysical properties,

voltage- and calcium-gated ion channels, chemical synapses with

short-term synaptic plasticity, electrical synapses, and both large

and small scale network structure. The implementation and

interoperability of models expressed in NeuroML were tested and

the functionality illustrated by expressing existing single neuron

and network models of different brain regions in this format and

by demonstrating equivalent model behavior on different

simulators.

Model interoperability, validation and reuse
Providing a structured, declarative framework for describing

detailed neuronal models that is independent of any particular

simulator implementation has a number of important benefits.

Firstly, the behavioral properties of a model specified in NeuroML

can be compared across simulators. This is important for testing

the validity of results from a model, since all conclusions should be

simulator-independent. Model comparison also aids bug identifi-

cation, tests the robustness of a particular model implementation,

highlights performance bottlenecks and promotes collaboration

between different simulator communities. Secondly, describing

model components with structured schemas written in XML

facilitates machine automated validation of particular components

(e.g. the integrity of a complex neuronal morphology defined in

MorphML). Thirdly, the modular structure of NeuroML, and the

standalone nature of many of the mechanisms, facilitates reuse of

model components. This speeds up the construction of models and

allows models with increasing biological detail to be built from

previously developed components. This is important because

detailed conductance-based neuronal models are labor intensive to

develop, often taking years to go from initial experiments to

published model. Enabling interoperability will accelerate the rate

of progress by allowing investigators to use and extend previous

work, rather than ‘reinventing the wheel’ each time they want to

build a new model. Such models will also provide a ready-made

resource for developing and testing new software tools in this area.

Model components defined in NeuroML can be automatically

transformed into textual and graphical formats familiar to neuro-

physiologists (Figure 3B, C). This allows access to the mechanisms

and parameters underlying the model for researchers unfamiliar with

simulator scripting languages. Moreover, NeuroML compliant tools

with user friendly graphical user interfaces, such as neuroConstruct,

allow neuronal and network models to be visualized, modified and

run without the need to write code. This increased accessibility and

transparency also allows critical evaluation by a wider range of

neuroscientists including both theoreticians and experimentalists.

Publicly exposing the details of a model implementation will

Figure 8. Models of electrical and chemical synapses implemented in NeuroML. (A) Voltage traces from a pair of gap junction coupled
model cells (300 pS) during 0.19 nA current pulse injected into one of the cells. Blue indicates cell receiving current pulse and red shows gap junction
coupled cell simulated in GENESIS. White overlapping dashes indicate the same model in NEURON. Black overlapping dashes indicate the same
model in MOOSE. (B) Simulated EPSCs for a single compartment cell receiving synaptic input through an AMPA receptor only synapse at a membrane
potential of 280 mV (red) and 220 mV (blue) in GENESIS. Again, the dashed lines indicate the equivalent NEURON (white) and MOOSE (black)
simulations. (C) As B but for a single compartment cell receiving synaptic input through an NMDA receptor only synapse. (D) Short–term plasticity
(STP) model [45]: membrane potential of a postsynaptic cell receiving a regular presynaptic spike train for a synaptic connection exhibiting no STP
(green, left), facilitation (red, middle) and depression (blue, right) implemented on the NEST (colored) and NEURON (white overlap) simulators.
doi:10.1371/journal.pcbi.1000815.g008

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 12 June 2010 | Volume 6 | Issue 6 | e1000815



discourage poor practices, improving the quality and robustness of

models. By providing a common language for simulators and tools to

interact, NeuroML can help reduce the barriers between computa-

tional and experimental neuroscience, thereby encouraging wider use

of such detailed models.

Practical aspects of using NeuroML and limits to
interoperability

Translation of an existing model to NeuroML can be achieved

using the export function of one of the supporting applications, but

this normally requires a detailed knowledge of the scripting

language of at least one simulator. As tool support for the language

increases, the goal is that the handling of XML will happen

‘‘behind the scenes’’, as is the case in many SBML compliant

applications. At the moment however some manual editing is

usually required, especially for ChannelML files. Import and

export of NeuroML for supporting simulators is currently ‘‘lossy’’

because not all simulators use all of the information available (e.g.

information that a group of cables represents ‘‘the axon’’ is not

retained on import into most simulators). For these reasons,

Figure 9. Comparison of the behavior of NeuroML-based cortical and thalamic cell models run on NEURON, GENESIS and MOOSE
simulators. (A) Single compartment cell model containing all 22 active conductances present in the detailed cell models (Supporting Table S2),
together with a passive conductance and a decaying calcium pool. Left plot shows the membrane potential response to a 80 pA current injection on
NEURON (black), GENESIS (red) and MOOSE (green). Right plot shows the behavior on NEURON of the activation variables for the anomalous rectifier
(thick black line), L-type Ca2+ (red) and persistent Na+ conductances (green) and the inactivation variable of the fast Na+ conductance (blue). White
curve overlays show the corresponding GENESIS traces, and dashed lines show MOOSE traces. (B–E) 3D representations of four cell models from
Traub et al. [15] implemented in NeuroML, color indicates the density of fast sodium conductances on the cell membrane (red: high - yellow: low).
Graphs show somatic membrane potential during current injections for: (B) regular spiking (RS) Layer 2/3 pyramidal cell; (C) superficial low threshold
spiking (LTS) interneuron; (D) intrinsically bursting (IB) Layer 5 pyramidal cell; (E) nucleus reticularis thalami (nRT) cell (trace colors as for left panel of
A). See Supporting Figure S3 for further details of these and the 6 other electrically distinct thalamic and cortical cell models converted to NeuroML.
doi:10.1371/journal.pcbi.1000815.g009

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 13 June 2010 | Volume 6 | Issue 6 | e1000815



NeuroML should currently be considered less a format for creating

a new cell model from scratch and more as a format for the storage

of stable models and components that are being made available for

wider usage.

Ultimately there are limits to model interoperability. At the

coarsest level, not all simulators can run all models because they

are often designed for a particular application. For example,

NEST has mainly focused on integrate-and-fire neuronal models

and PSICS can presently only run single cell models. At a finer

level of detail, the way in which a simulator represents a feature of

the model may also be fundamentally different. In PSICS the

location of individual ion channels is defined explicitly, whereas

Figure 10. Comparison of the behavior of a NeuroML-based Layer 2/3 network model with 5 cell types connected with both
electrical and chemical synaptic connections run on NEURON, GENESIS and MOOSE simulators. The network is based on the larger
network described in Cunningham et al. [16], and uses five of the cortical cell models converted to NeuroML from Traub et al. [15]. (A) 20 regular
spiking pyramidal cells (RS, blue), 6 fast rhythmic bursting pyramidal cells (FRB, black), 10 low threshold spiking interneurons (LTS, red), 10 axo-axonic
interneurons (yellow) and 10 basket cells (brown) placed at random in a cylindrical region. The network contained electrical connections between the
cells within each population, along with 4300 excitatory connections of 10 types within and between populations and 3800 inhibitory connections of
12 types (Supporting Table S4), but these are not shown. (B) Somatic membrane potential traces from 2 each of RS, FRB and LTS cells (with colors as
in (A)) for simulations run on NEURON (top), GENESIS (middle) and MOOSE (bottom). Simulation time step was 0.001 ms.
doi:10.1371/journal.pcbi.1000815.g010

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 14 June 2010 | Volume 6 | Issue 6 | e1000815



other simulators simply define conductance densities associated

with each electrical compartment. Our results show that a key

reason why the spike times of some multicompartmental cell

models can diverge between simulators is the different way they

treat neuronal morphology and the different locations at which the

voltage is computed within each compartment. While increasing

spatial discretisation and decreasing time step lead to model

convergence (Supporting Figure S4, Figure 10), for some cells this

only occurred in computationally inefficient regimes. Such direct

comparison of the performance of different simulators will allow

the most efficient solution to be identified, potentially improving

overall simulator implementations. We have used basic measures

of model performance such as spike times to assay convergence of

model behavior. However, more sophisticated measures will need

to be developed to ensure that the accuracy of the interoperability

achieved is sufficient for modeling a particular biological system.

NeuroML has reached a state of maturity where it can be used

to specify a wide range of published single neuron and network

models. However, there are a number of features of the nervous

system that have not been covered in current schemas because our

initial priority was to focus on ensuring that NeuroML was

backwards compatible with most types of compartmental models

developed to date. Also, support for the wide array of simplified

abstract neuron models currently in use is limited. Moreover, since

a major requirement for NeuroML was interoperability between

existing conductance based simulators, functions that only operate

on a specific simulator or that would have to be developed de

novo, were not the primary concern. Nevertheless, the horizontal,

modular design of NeuroML makes it easier to add extensions for

new mechanisms that cannot be described by current schemas.

While there is sufficient flexibility within the current language

for creating detailed neuronal models of different brain regions

with a wide diversity of custom channel types, morphological

features and network connectivity, some researchers may wish to

build on the basic NeuroML elements to encode features of their

models not present in the core language. Options currently

available for this include adding application specific information in

metadata elements (e.g. annotating models with visualization

information or adding a proprietary subclass of an element, such

as a voltage dependent gap junction), creating hybrid models

partially described in NeuroML and partially in native simulator

script (e.g. channels in both ChannelML and NMODL format),

and creating a domain specific XML Schema, which includes

NeuroML for neuronal elements (e.g. a language for describing

brain regions including vasculature which reuses the NeuroML

schemas). These options are discussed in more detail at http://

www.neuroml.org/NeuroMLValidator/Extending.jsp. These ex-

tension mechanisms enable greater flexibility than the current

version of NeuroML affords and provides a bridge to new

functionality before it can be formally incorporated into a new

version of the language.

Relationship of NeuroML to other standardization
initiatives and databases

There are a number of initiatives to standardize model

descriptions and data formats in biology. One of the most

successful of these is the development of XML-based structured

formats for describing models in systems biology [30,31]. The

acceptance of these formats as standards has been promoted by

several journals (e.g. Nature Molecular Systems Biology), which

encourage that model scripts be made available in SBML or

CellML. NeuroML differs from these low level model description

languages in that it implicitly contains high level concepts such as

neuronal morphologies, synapses and network connections. This is

necessary because NeuroML covers models that span many levels

of description of the nervous system. While this is ultimately less

flexible than CellML and SBML which describe models explicitly

in terms of the mathematical expressions for its interacting

components, it still allows a wide range of new models to be

described including kinetic models of ion channels, synaptic

models with distinct kinetic behavior, neuronal models with

different ion channel complements and morphologies and

networks with different anatomical connectivity.

In neuroscience, where models and data formats are highly

diverse, there are a number of initiatives to improve interopera-

bility and accessibility. BrainML (http://www.brainml.org) is also

a structured XML-based language, but BrainML is principally

designed for exchanging neuroscience data rather than defining

neuronal and network models. The recent addition of Python

based scripting interfaces to a number of simulators such as NEST

[53], NEURON [47], MOOSE [27], and Brian [54] is a

promising step towards greater model interoperability and has

lead to the development of PyNN [49], a Python package for

simulator-independent specification of neuronal network models.

Instead of developing a declarative language for describing models

as in NeuroML, this approach defines a Python application

programming interface (API) to build models in a procedural

manner. Scripts in this format can be used on multiple existing

simulators. NeuroML is complementary to PyNN and cooperation

between these initiatives aims to allow the creation of networks of

NeuroML Level 2 cells by PyNN scripts and to extend the

template based NetworkML descriptions so that they are

compatible with PyNN.

The future of NeuroML
The future success of NeuroML depends on its adoption by the

community and the willingness of simulator developers to make

their software NeuroML compliant. NeuroML development is

Open Source, allowing all interested parties to contribute to the

language. We are presently gathering requirements and specifica-

tions from experimentalists, software developers and theoreticians

for future developments of NeuroML, which will increase the scope

of the language, and permit more complex neuronal models to be

specified, and we are actively engaged with standardization

initiatives of the International Neuroinformatics Coordinating

Facility (INCF). It is envisaged that NeuroML will evolve gradually

from the present structure, which reflects a pragmatic functional

solution to the interoperability problem, into a more generic flexible

format, that links into other standards (e.g. SBML, CellML and

MathML) and that is less homologous to implementations in

existing simulators. For example, greater support for model

components in SBML/CellML would enable more sophisticated

synaptic transmission and plasticity models, pharmacological

perturbation of cell behavior or creation of more abstract cell

models. Backward compatibility of any future changes to NeuroML

will be ensured through automated file conversion. We plan to

increase the existing set of NeuroML based cell and network models

for different brain regions, together with further development of a

range of compliant applications for searching for, building,

visualizing, simulating and analyzing the models, thereby providing

theoreticians and experimentalists with a powerful toolbox for

addressing fundamental questions about brain function.

Materials and Methods

XML
XML [40] is commonly used for data exchange between

software applications and a number of generic tools and

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 15 June 2010 | Volume 6 | Issue 6 | e1000815



technologies have been developed to handle these types of files.

The structure of the data an application can expect in an XML file

can be defined using an XML Schema (XSD) file, and XML files

can be automatically checked for validity against this schema

before use. A number of such files are used to define the structure

of NeuroML, and the modular nature of the language is enabled

by having separate schema files for MorphML, ChannelML, etc.

and importing as appropriate for each Level description. A

detailed description of the contents of the NeuroML schemas is in

Supporting Text S1.

There are a number of methods for transforming XML

documents into formats suitable for different applications. One

way is to create an XML Stylesheet (XSL) file, which allows

transformation of the data in the XML file into another text file

format. XSL files have been created for transformation of

NeuroML files to HTML (e.g. Figure 3B) and a number of

simulator specific formats (as are used to convert example files at

http:/www.neuroml.org). This approach has the advantage that

scripts in the native language of the simulator can be generated,

which doesn’t require changing the code of the simulator. Another

method is to parse the XML files directly using the Document

Object Model (DOM) approach where a treelike structure is built

up in application memory of the contents of the file (suitable for

smaller files, e.g. ChannelML descriptions) or the Simple API for

XML (SAX) approach where the contents of a larger file (e.g. a

NetworkML instance based description) is parsed sequentially

from start to finish.

CA1 pyramidal cell
The CA1 Pyramidal cell model (Figure 7) is based on a model

used in (Migliore et al., 2005), and the NEURON scripts for this

were obtained from the ModelDB repository (accession number

55035). The model was executed in NEURON and the Model-

View tool was used to export the cell in NeuroML Level 2. Full

export of the cell model including information on all channel

densities was not possible, as the densities of a number of channels

(those underlying the H current (hd) and proximal (kap) and distal

(kad) A-type potassium currents) were adjusted with custom

functions in file fig2A.hoc (densities varied as linear functions of

distance from the soma). The information on the function to create

these densities is lost once the cells are created in NEURON. The

values of channel densities of hd, kap and kad at the centre of

sections were included in the exported NeuroML file giving an

approximation to the linear function. The cell also contained a

passive conductance (pas), a delayed rectifier K+ (kdr) conductance

and Na+ conductances on the axon (nax) and soma/dendrites

(na3).

Once the Level 2 file was imported to neuroConstruct (cell

CA1_imported in the project mentioned below) a copy of the cell

was created (cell CA1), the exported channel densities for hd, kap

and kad were removed, and Variable Mechanisms added for these

channels specifying the changes in densities in terms of the

distance from the soma. These Variable Mechanisms and the

Parameterized Groups (e.g. PathLengthOverDendrites) have

corresponding elements in NeuroML, so the cells can be imported

and exported in NeuroML without loss of information. Also,

NeuroML files from other sources can use non-uniform expres-

sions for channel densities that will be preserved on import to

neuroConstruct. The channel mechanisms were manually con-

verted to ChannelML using neuroConstruct (see http://www.

neuroconstruct.org/docs/importneuron.html). Using a single

compartment cell with a passive conductance and each of the

channels in turn and comparing the membrane potential and the

state variables of the channels allowed validation of the

representation of the channels in ChannelML (see Simulation

Configuration OneChannelCells for an example). The default

simulation configuration generates a single segment cell with all 6

channels and was used to validate the behavior of the channels, as

illustrated in Figure S1.

The mappings of cell morphologies between MorphML,

neuroConstruct, NEURON and GENESIS formats are discussed

in detail in (Crook et al., 2007). In brief, a cell consists of cables

(termed sections in neuroConstruct) containing one or more

segments which provide the 3D points/diameters as obtained in

the cell reconstruction. The CA1 cell in this example had 173

cables containing a total of 2243 segments. The NEURON

mapping of the cell is straightforward, the cables/sections are

mapped to NEURON sections, with segments providing the pt3d

points along the sections. Associated with each section in

neuroConstruct there is a number indicating the internal divisions

to be used for spatial discretisation, which is mapped to

NEURON’s nseg variable.

In GENESIS and MOOSE, the basic entities from which cells

are composed are cylindrical/spherical compartments with no

internal divisions. As opposed to making a one to one mapping

from each segment to a compartment, there is a function in

neuroConstruct which maps sections (e.g. containing 20 segments

with number internal divisions/nseg = 4) on to a set of compart-

ments with an equivalent length, surface area and total axial

resistance, based on this spatial discretisation (the example above

would be mapped to 4 compartments with the radii chosen

appropriately). More details on this conversion process can be

found at: http://www.neuroconstruct.org/docs/Glossary_gen.

html#Compartmentalisation. The script files for which are

generated for MOOSE are almost identical to those for

GENESIS, with some minor alterations to cater for differences

in message handling, the different use of symmetric/asymmetric

compartments between the simulators and the lack of native

graphical interface support in MOOSE.

The representation of morphologies in PSICS is based on a list

of points defining the cell structure, and there is no inbuilt concept

of a cable. A PSICS file containing these points is generated by

neuroConstruct from the cell’s segment information. Points can

have labels associated with them and these are used to associate

the points with the groups present in the cell (soma_group,

apical_dendrite, etc.), and these can be then used in the

distribution of channels to various areas of the cell. While PSICS

was designed to be able to investigate effects of the stochastic

nature of channels, in this case the channels were modeled

deterministically, to allow direct comparison with the noise free

simulations of NEURON & GENESIS/MOOSE.

The Simulation Configuration in the neuroConstruct project to

reproduce the traces in Figure 7 is called CA1Cell. The cell

required a finer spatial discretisation than present in the original

model (the sections in neuroConstruct had a total of 3008 internal

divisions; these were mapped to NEURON sections with a total

nseg of 3008, and mapped to 3090 GENESIS/MOOSE

compartments). PSICS decides itself on the cell’s compartmental-

ization based on a maximum value given to it for structural

discretisation (in this case 1.3 mm) which resulted in 7821

compartments.

A zipped file containing all of the NeuroML elements used in

this model and or a full neuroConstruct project (CA1Pyramidal-

Cell.ncx) which can be used to run the cell model on NEURON,

GENESIS, MOOSE or PSICS are available at: http://www.

neuroml.org/models. The simulations were carried out with

NEURON version 6.2, GENESIS v2.3, MOOSE SVN revision

1473, PSICS v1.0.6, and neuroConstruct v1.3.4.

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 16 June 2010 | Volume 6 | Issue 6 | e1000815



Synaptic mechanisms
The NeuroML specification for the electrical synapse model was

used to generate simulation scripts for NEURON, GENESIS and

MOOSE through neuroConstruct. The neuroConstruct project

(Ex9_Synapses.ncx, included with the standard download of

neuroConstruct, or available here: http://www.neuroConstruct.

org/samples) can be used to generate this example and a number

of others including networks of multiple spiking neurons connected by

gap junctions, for execution on the different simulators. All generated

networks can also be exported to valid NeuroML Level 3 files.

The ChannelML implementations of AMPA and NMDA

receptors were tested in NEURON, GENESIS and MOOSE

using voltage clamp to simulate EPSCs (Figure 8B & C). In both

cases a passive compartment having leak conductance of

3.061029 mS mm22 and capacitance 161028 mF mm22 received

synaptic inputs whose strength and relative weight had been

adjusted so as to match experimental voltage clamp data [8].

Synaptic input was then applied to the clamped cell at holding

potentials of 220mV and 280mV and the clamp current was

recorded. NeuroML representations of these synapse models are

contained in the neuroConstruct project mentioned above.

To test STP (Short Term Plasticity) (Figure 8D) a spontaneously

active presynaptic cell (integrate and fire neuron with leak

conductance having a reversal potential just above spiking

threshold) was connected to a postsynaptic integrate and fire cell

by a conductance based STP synapse. The subthreshold response of

the postsynaptic cell was then monitored as it received regular spikes

from the pre-synaptic cell. To examine synaptic depression, the

facilitation time constant tau_fac was set to 0 while the recovery

time constant tau_rec was set to 120ms. To examine synaptic

facilitation, tau_rec was set to 0 while tau_fac was set to 300ms. STP

was turned off in the control case by setting the facilitation and

recovery parameters both to 0. See Supporting Text S1 for a

detailed description of the STP mechanism. The NeuroML

specification of the model was converted into simulation scripts

for PyNN using neuroConstruct. PyNN was then used to run the

simulation in both NEURON and NEST, producing the similar

traces as shown in Figure 8D. In the neuroConstruct project

Ex8_PyNNDemo.ncx (available from http://www.neuroConstruct.

org/samples; simulation configuration STPDemo), there are three

postsynaptic cells all connected to the presynaptic cell. Each

postsynaptic cell connects with one of: control synapse, facilitating

synapse, depressing synapse. This allows all examples to executed

simultaneously.

These examples were generated with NEURON v6.2, GEN-

ESIS v2.3, MOOSE SVN revision 1473, NEST v1.9.8017,

neuroConstruct v1.3.4 and PyNN v0.5.0.

Thalamocortical cell models
The full network model from [15] was originally developed in

Fortran for execution in parallel on 14 CPUs. The cell models were

converted from this to NEURON format together with the network

connectivity. Both the original Fortran and NEURON scripts are

available on ModelDB (accession number 45539). A discussion on

the conversion of the model from Fortran to NEURON format is

available at: http://senselab.med.yale.edu/ModelDB/ShowModel.

asp?model = 82894&file = \nrntraub\README.

The cells in NEURON format were taken as a starting point for

the conversion to NeuroML. Supporting Table S1 lists the cell

types present. Each of the cells has a set of voltage and ligand

gated ion channels on its membrane, along with a passive

conductance and an exponentially decaying pool of calcium. The

full list of conductance types are given in Table S2. These channels

were manually converted from NMODL format to ChannelML

using neuroConstruct. The channels were individually tested to

ensure that the ChannelML reproduced the behavior of the

original mod file implementation and that the mappings to

NEURON, GENESIS and MOOSE matched. To validate the

simulator independence of a cell with multiple channels in this

format, we tested a single compartment cell with all 22 of these of

these active conductances the passive conductance and internal

pool of calcium. Figure 9A shows the behavior of the membrane

potential and a number of internal channel variables of the cell on

NEURON, GENESIS and MOOSE. The timestep for the

simulation was 0.005 ms. Note that neither this simple cell, nor

any of the more detailed cells, can be run on PSICS as that

simulator does not currently support ligand gated channels (e.g. kc,

kahp).

The cells were exported from NEURON in NeuroML Level 2

format via ModelView and imported into neuroConstruct. The

correct channel densities were included with the Level 2 file but

the morphologies were generally of the format as seen in Figure

S2A. This is due to there being no 3D positions information

associated with the sections when they were created in NEURON

(the original cortical column network model was 1D), and the

representation below shows the points (in a 2D plane) NEURON

automatically generated for the sections based on the connectivity

and section lengths. In neuroConstruct a more representative 3D

structure for each cell was created by rotating the sections of the

imported cells, preserving the length and section groupings, and so

keeping the electrical behavior of the cells the same (Figure S2B).

All 14 cell types were converted in this way and each can be

visualized using the neuroConstruct project (Thalamocortical.ncx)

mentioned below. Each cell has a number of Simulation

Configurations associated with it showing the behavior of the cell,

usually with a brief hyperpolarizing pulse followed by a

depolarizing pulse, generally based on the traces of individual cell

behavior in Appendix A of [15]. Traces of each of the electrically

distinct cells are shown in Supporting Figure S3. The closeness of

the traces between NEURON, GENESIS and MOOSE varied

with simulation time step and spatial discretisation. We used a

criterion that the same number of spikes should be present in each

trace, and that the differences in spike timing should be no more

than 0.5% of the simulation run time (e.g. spikes at 200 ms should

not differ in timing by more than 1 ms). A smaller than normal

timestep was required in all cases for convergence of cell behavior

between NEURON, GENESIS and MOOSE. In general this

meant a 0.005 ms or lower timestep, whereas 0.02 ms is often used

for published models with these simulators. This lower than

normal timestep has also been required with simpler cell models

(e.g. single compartment granule cell model, Figure 4 in [39]).

A finer spatial discretisation was needed in all cells to minimize

the inherent differences in the way the simulators handle

morphological representations (NEURON uses cables/sections

divided into nseg points for numerical integration, GENESIS can

use symmetrical or asymmetrical cylindrical compartments,

MOOSE uses symmetrical cylindrical compartments, see below).

The spatial discretisation used in the simulations can be changed in

neuroConstruct (by visualizing the cell, clicking on any segment,

clicking the button Edit, and selecting Remesh in the drop down

box, to choose a discretisation of each section which is constrained

by a maximum electrotonic length, see http://www.neuroconstruct.

org/docs/Glossary_gen.html#Electrotonic%20length). This value

for the number of internal divisions for spatial discretisation in

neuroConstruct is mapped to nseg in NEURON sections, and, as

mentioned in the section above on the CA1 cell, a number of

compartments are generated in GENESIS for these sections based

on this value, thus setting the spatial discretisation in that simulator.

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 17 June 2010 | Volume 6 | Issue 6 | e1000815



In GENESIS, there are two options for simulating compart-

ments: symmetric compartments where the axial resistance is

divided in two at each end of the compartment and the voltage is

effectively calculated at the centre of the compartment, and

asymmetrical compartments, where all of the axial resistance is at

one side and which are slightly more efficient to use in simulations.

Ideally for matching the behavior of NEURON and GENESIS,

symmetrical compartments should be used, as NEURON also

calculates the voltage at the centers of nseg regions of the section.

However, in GENESIS v2.3 there is a known bug which doesn’t

allow use of the hsolve numerical integration method with

symmetrical compartments when there are compartments with

more than 2 child compartments (e.g. soma of pyramidal cell in

Figure 9B). Use of hsolve is required for simulations as this is much

faster than the basic Exponential Euler method. That method

would require a much smaller dt (,0.00001 ms) for convergence of

the simulation. Therefore, in the simulations in Supporting Figure

S3 (and in the network simulations in Figure 10), asymmetric

compartments, together with hsolve are used. This necessitated a

much finer spatial discretisation of the cells (leading to a longer run

time for simulations). Plots showing the convergence of spike times

for 3 different cells are shown in Figure S4, where it is clear that the

symmetrical compartment simulations of NEURON and MOOSE

converge with coarser discretisation than GENESIS simulations

with asymmetric compartments.

The network used to illustrate a full Level 3 model in NeuroML

is a scaled down version of the network model in [16]. Whereas

that network contained 1440 cells, this version contained 56 cells.

This was mainly due to the need for much finer spatial

discretisation in the cells, a smaller timestep and the requirement

that the simulator will run on a single processor in all three

simulators. This network can be generated using simulation

configuration CunninghamEtAl04_small in the associated neuro-

Construct project (Thalamocortical.ncx). The names of the cell

groups/populations are listed in Supporting Table S3. Synaptic

mechanisms were added to the project based on the data in the

supplementary information in [16]. Network connections were

created through the neuroConstruct GUI based on the numbers of

connections per cell in the original model. The total number of

connections between each pair of cell groups in the model are

listed in Supporting Table S4. The magnitude of the gap junction

conductance was reduced by a factor of 0.7 (to 2.1 nS) to reduce

the tendency of the scaled down network to become over

synchronized. Input was added to the network in the form of

continuous current injection of random amplitude to the FRB cells

(0.15–0.25 nA), the LTS interneurons (0–0.2 nA), and the basket

and Axoaxonic cells (0–0.02 nA). RS cells also received random

pulse inputs of 0.4 ms duration and 0.4 nS amplitude on their

axon at a mean rate of 1 Hz. However, for the 250 ms simulation

run shown in Figures 10 and S5 no external pulses occurred.

The simulations were carried out with NEURON version 6.2

and GENESIS v2.3, MOOSE SVN revision 1473 and neuro-

Construct v1.3.4. A zipped file containing the NeuroML elements

used in this model and a neuroConstruct project (Thalamocorti-

cal.ncx) which can be used to generate and run the scripts for

NEURON, GENESIS and MOOSE are available at: http://

www.neuroml.org/models.

Supporting Information

Text S1 Detailed description of all NeuroML elements

Found at: doi:10.1371/journal.pcbi.1000815.s001 (0.55 MB PDF)

Figure S1 Single compartment cell with 6 channels from CA1

pyramidal cell on NEURON, GENESIS, MOOSE and PSICS

Found at: doi:10.1371/journal.pcbi.1000815.s002 (0.08 MB PDF)

Figure S2 Layer 2/3 Fast Rhythmic Bursting Pyramidal cell as

exported from NEURON and converted to 3D in neuroConstruct

Found at: doi:10.1371/journal.pcbi.1000815.s003 (0.10 MB PDF)

Figure S3 Behavior of 10 cell models from Traub et al., 2005 on

NEURON, GENESIS and MOOSE

Found at: doi:10.1371/journal.pcbi.1000815.s004 (0.55 MB PDF)

Figure S4 Convergence of model behavior for fine spatial

discretisation

Found at: doi:10.1371/journal.pcbi.1000815.s005 (1.56 MB PDF)

Figure S5 Network model behavior with longer timestep and

coarser spatial discretisation

Found at: doi:10.1371/journal.pcbi.1000815.s006 (3.51 MB PDF)

Table S1 List of thalamocortical cell models from Traub et al.,

2005

Found at: doi:10.1371/journal.pcbi.1000815.s007 (0.01 MB PDF)

Table S2 List of conductances used in thalamocortical cell

models from Traub et al., 2005

Found at: doi:10.1371/journal.pcbi.1000815.s008 (0.01 MB PDF)

Table S3 List of cell populations in reduced Layer 2/3 network

Found at: doi:10.1371/journal.pcbi.1000815.s009 (0.01 MB PDF)

Table S4 List of network connections in reduced Layer 2/3

network

Found at: doi:10.1371/journal.pcbi.1000815.s010 (0.01 MB PDF)

Acknowledgments

We thank Volker Steuber, Hugo Cornelis, Dave Beeman, Fred Howell,

Simon O’Connor for their contributions to the development of NeuroML,

and Arnd Roth for comments on the manuscript. We also thank the

attendees of the recent NeuroML Development Workshops for fruitful

discussions on the future directions of the language. The authors

acknowledge the use of the UCL Legion High Performance Computing

Facility, and associated support services, in the completion of this work.

Author Contributions

Wrote the paper: PG RAS. Conceived and managed the project: PG SC

RAS. Developed current structure of NeuroML: PG SC RCC MLH GOB

RAS. Developed NEURON support: PG MLH TMM. Developed PSICS

support: PG RCC. Developed PyNN support: PG GOB APD. Developed

MOOSE support: PG SR USB. Ported models from Traub et al., 2005 to

NeuroML and solved interoperability issues: PG MF SRB YDD RAS.

References

1. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing

pattern in model neocortical neurons. Nature 382: 363–366.

2. Migliore M, Ferrante M, Ascoli GA (2005) Signal propagation in

oblique dendrites of CA1 pyramidal cells. J Neurophysiol 94: 4145–
4155.

3. Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, et al. (2008)

Action potential generation requires a high sodium channel density in the axon

initial segment. Nat Neurosci 11: 178–186.

4. Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike

propagation following distal synaptic activation of hippocampal CA1 pyramidal

neurons. Nat Neurosci 8: 1667–1676.

5. Solinas SM, Forti L, Cesana E, Mapelli J, Schutter ED, et al. (2007)
Computational reconstruction of pacemaking and intrinsic electroresponsiveness

in cerebellar golgi cells. Front Cell Neurosci 2.

6. Herz AV, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron

dynamics and computations: a balance of detail and abstraction. Science 314: 80–85.

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 18 June 2010 | Volume 6 | Issue 6 | e1000815



7. De Schutter E, Bower JM (1994) An active membrane model of the cerebellar

Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:
375–400.

8. Rothman JS, Cathala L, Steuber V, Silver RA (2009) Synaptic depression

enables neuronal gain control. Nature.
9. Gabbiani F, Midtgaard J, Knopfel T (1994) Synaptic integration in a model of

cerebellar granule cells. J Neurophysiol 72: 999–1009.
10. Poirazi P, Brannon T, Mel BW (2003) Arithmetic of subthreshold synaptic

summation in a model CA1 pyramidal cell. Neuron 37: 977–987.

11. Koch C, Segev I (1998) Methods in neuronal modeling: from ions to networks.
Cambridge, Mass.: MIT Press. xiii,: 671 p.

12. Rall W (1964) Theoretical significance of dendritic trees for neuronal input-
output relations. In: Reiss RF, ed. Neural Theory and Modeling. Palo Alto, CA:

Stanford Univ. Press. pp 73–97.
13. Davison AP, Feng J, Brown D (2003) Dendrodendritic inhibition and simulated

odor responses in a detailed olfactory bulb network model. J Neurophysiol 90:

1921–1935.
14. Maex R, De Schutter ED (1998) Synchronization of golgi and granule cell firing

in a detailed network model of the cerebellar granule cell layer. J Neurophysiol
80: 2521–2537.

15. Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FE, et al.

(2005) Single-column thalamocortical network model exhibiting gamma
oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93:

2194–2232.
16. Cunningham MO, Whittington MA, Bibbig A, Roopun A, LeBeau FE, et al.

(2004) A role for fast rhythmic bursting neurons in cortical gamma oscillations in
vitro. Proc Natl Acad Sci U S A 101: 7152–7157.

17. Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, et al. (2002) Fast synaptic

inhibition promotes synchronized gamma oscillations in hippocampal interneu-
ron networks. Proc Natl Acad Sci U S A 99: 13222–13227.

18. Buonomano DV (2000) Decoding temporal information: A model based on
short-term synaptic plasticity. J Neurosci 20: 1129–1141.

19. Bazhenov M, Stopfer M, Rabinovich M, Abarbanel HD, Sejnowski TJ, et al.

(2001) Model of cellular and network mechanisms for odor-evoked temporal
patterning in the locust antennal lobe. Neuron 30: 569–581.

20. Grillner S (2006) Biological pattern generation: the cellular and computational
logic of networks in motion. Neuron 52: 751–766.

21. Kunec S, Hasselmo ME, Kopell N (2005) Encoding and retrieval in the CA3
region of the hippocampus: a model of theta-phase separation. J Neurophysiol

94: 70–82.

22. Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and
mossy cell loss in hyperexcitability: a network model of the dentate gyrus

incorporating cell types and axonal topography. J Neurophysiol 93: 437–453.
23. Bush PC, Prince DA, Miller KD (1999) Increased pyramidal excitability and

NMDA conductance can explain posttraumatic epileptogenesis without

disinhibition: a model. J Neurophysiol 82: 1748–1758.
24. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, et al. (2007)

Simulation of networks of spiking neurons: a review of tools and strategies.
J Comput Neurosci 23: 349–398.

25. Carnevale NT, Hines ML (2006) The NEURON Book: Cambridge University
Press .

26. Bower JM, Beeman D (1997) The Book of GENESIS: Exploring Realistic

Neural Models with the GEneral NEural SImulation System: Springer, New
York .

27. Ray S, Bhalla US (2008) PyMOOSE: Interoperable Scripting in Python for
MOOSE. Front Neuroinformatics 2: 6.

28. Gewaltig M-O, Diesmann M (2007) NEST (Neural Simulation Tool).

Scholarpedia 2: 1430.
29. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664.

30. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, et al. (2003) The systems
biology markup language (SBML): a medium for representation and exchange of

biochemical network models. Bioinformatics 19: 524–531.

31. Lloyd CM, Halstead MD, Nielsen PF (2004) CellML: its future, present and

past. Prog Biophys Mol Biol 85: 433–450.

32. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, et al. (2006)

BioModels Database: a free, centralized database of curated, published,

quantitative kinetic models of biochemical and cellular systems. Nucleic Acids

Res 34: D689–691.

33. Cannon R, Gewaltig M-O, Gleeson P, Bhalla U, Cornelis H, et al. (2007)

Interoperability of Neuroscience Modeling Software: Current Status and Future

Directions. Neuroinformatics 5: 127–138.

34. Djurfeldt M, Lansner A (2007) Workshop report: 1st INCF Workshop on Large-

scale Modeling of the Nervous System. Nature Precedings (http://dx.doi.org/

10.1038/npre.2007.262.1).

35. De Schutter E (2008) Why are computational neuroscience and systems biology

so separate? PLoS Comput Biol 4: e1000078.

36. Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, et al. (2001)

Towards NeuroML: model description methods for collaborative modelling in

neuroscience. Philos Trans R Soc Lond B Biol Sci 356: 1209–1228.

37. Gardner D, Knuth KH, Abato M, Erde SM, White T, et al. (2001) Common

data model for neuroscience data and data model exchange. J Am Med Inform

Assoc 8: 17–33.

38. Crook S, Gleeson P, Howell F, Svitak J, Silver RA (2007) MorphML: Level 1 of

the NeuroML standards for neuronal morphology data and model specification.

Neuroinformatics 5: 96–104.

39. Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: A Tool for Modeling

Networks of Neurons in 3D Space. Neuron 54: 219–235.

40. Bray T, Paoli J, Sperberg-McQueen CM (1998) Extensible Markup Language

(XML) 1.0. http://www.w3.org/TR/REC-xml W3C Recommendation.

41. Gardner D, Goldberg DH, Grafstein B, Robert A, Gardner EP (2008)

Terminology for neuroscience data discovery: multi-tree syntax and investiga-

tor-derived semantics. Neuroinformatics 6: 161–174.

42. Ausbrooks R, Buswell S, Dalmas S, Devitt S, Diaz A, et al. (2001) Mathematical

Markup Language (MathML) Version 2.0. W3C Recommendation.

43. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004)

ModelDB: A Database to Support Computational Neuroscience. J Comput

Neurosci 17: 7–11.

44. Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central

resource for neuronal morphologies. J Neurosci 27: 9247–9251.

45. Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent

networks with frequency-dependent synapses. J Neurosci 20: RC50.

46. Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through

spike-timing-dependent synaptic plasticity. Nat Neurosci 3: 919–926.

47. Hines ML, Davison AP, Muller E (2009) NEURON and Python. Front

Neuroinformatics 3: 1.

48. Hines ML, Carnevale NT (2000) Expanding NEURON’s repertoire of

mechanisms with NMODL. Neural Comput 12: 995–1007.

49. Davison AP, Bruderle D, Eppler J, Kremkow J, Muller E, et al. (2008) PyNN: A

Common Interface for Neuronal Network Simulators. Front Neuroinformatics

2: 11.

50. Zubler F, Douglas R (2009) A framework for modeling the growth and

development of neurons and networks. Front Comput Neurosci 3: 25.

51. Pecevski D, Natschlager T, Schuch K (2009) PCSIM: A Parallel Simulation

Environment for Neural Circuits Fully Integrated with Python. Front

Neuroinformatics 3: 11.

52. Cornelis H, De Schutter E (2003) NeuroSpaces: separating modeling and

simulation. Neurocomputing 52–4: 227–231.

53. Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2008) PyNEST: A

Convenient Interface to the NEST Simulator. Front Neuroinformatics 2: 12.

54. Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in

python. Front Neuroinformatics 2: 5.

The NeuroML Model Description Language

PLoS Computational Biology | www.ploscompbiol.org 19 June 2010 | Volume 6 | Issue 6 | e1000815


