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Abstract
Diabetes mellitus is a disease of dysregulated blood glucose homeostasis. The current pandemic of diabetes is a significant driver
of patient morbidity and mortality, as well as a major challenge to healthcare systems worldwide. The global increase in the
incidence of diabetes has prompted researchers to focus on the different pathogenic processes responsible for type 1 and type 2
diabetes. Similarly, increased morbidity due to diabetic complications has accelerated research to uncover pathological changes
causing these secondary complications. Albuminuria, or protein in the urine, is a well-recognised biomarker and risk factor for
renal and cardiovascular disease. Albuminuria is a mediator of pathological abnormalities in diabetes-associated conditions such
as nephropathy and atherosclerosis. Clinical screening and diagnosis of diabetic nephropathy is chiefly based on the presence of
albuminuria. Given the ease in measuring albuminuria, the potential of using albuminuria as a biomarker of cardiovascular
diseases is gaining widespread interest. To assess the benefits of albuminuria as a biomarker, it is important to understand the
association between albuminuria and cardiovascular disease. This review examines our current understanding of the pathophys-
iological mechanisms involved in both forms of diabetes, with specific focus on the link between albuminuria and specific
vascular complications of diabetes.
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Introduction

Diabetes mellitus (DM) has long been recognised as a serious
challenge to health, due to its ability to affect almost every
organ in the human body. Diabetes is broadly classified into
two subtypes: type 1 (T1DM) and type 2 (T2DM), with dif-
fering clinical phenotypes that require distinct therapeutic
management. Both forms of diabetes are associated with an
increased risk of cardiovascular complications that can have a
significant impact on patient morbidity and mortality.
Albuminuria is one of the most commonly assessed clinical

parameters in diabetic patients. A number of simple dipstick
testing methods are available in current practice to measure
protein levels in the urine. Albumin is a tightly regulated com-
ponent in the circulation, with the kidney playing an important
role inmaintaining albumin homeostasis. The role of albumin-
uria as a potential driver as well as a biomarker of diabetic
complications has been increasingly recognised. Given the
potential of albuminuria as a marker of diabetic vascular com-
plications, this review will first summarise T1DM and T2DM,
followed by the pathogenic processes linking albuminuria and
cardiovascular complications of diabetes.

Diabetes Mellitus

DM is a chronic endocrine condition that has reached pan-
demic levels worldwide. The disease is a growing public
health concern, with 1 in 11 people worldwide affected by
the condition [1]. Symptoms commonly associated with the
onset of diabetes include increased urination (polyuria), in-
creased thirst (polydipsia) and unintentional weight loss
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leading to increased appetite (polyphagia). Patients with diabe-
tes have also reported slower wound healing, increased risk of
acquiring infection, fatigue and blurred vision [2]. Clinically,
DM is diagnosed in symptomatic patients when blood or urine
sugar levels are elevated. A series of biochemical tests aid in
confirming the diagnosis of diabetes in patients presenting with
some of the symptoms listed above. In symptomatic patients, a
fasting glucose concentration of ≥ 7 mmol/L (126 mg/dL) on
two separate occasions is considered to be diagnostic for dia-
betes [3]. Haemoglobin (Hb) A1c has become widely used in
clinical practice because it reflects long-term (3 months)
glycaemic control [4–6]. A HbA1c reading of more than
48 mmol/mol (6.5%) supports the diagnosis of DM [3].
Based on clinical symptoms and age of onset, diabetes is broad-
ly classified into T1DM and T2DM which account for approx-
imately 10% and 90% of all diabetic cases respectively [2, 7].
Other forms of diabetes such as gestational diabetes and genetic
forms of diabetes such as mature onset of diabetes in the young
(MODY) also exist but will not be the focus of this review.

Type 1 Diabetes

T1DM is caused by an auto-immune-mediated destruction of
insulin-producing β-cells within the pancreatic islets of
Langerhans [2]. Early studies have described diverse aetiol-
ogies for T1DM including genetic predisposition, environmen-
tal influences and immunological responses [8–12]. Many
T1DMpatients develop auto-antibodies against insulin and oth-
er antigens that contribute to the immune-mediated destruction
of pancreaticβ-cells. A number of cellular death pathways such
as apoptosis and necrosis of pancreatic β-cells have been de-
scribed in T1DM pathophysiology [13, 14]. Rojas et al. (2018)
identified intrinsic and extrinsic apoptotic pathways which are
regulated by the B cell lymphoma (Bcl)-2 and tumour necrosis
factor (TNF) family of ligands respectively [15]. Experiments
conducted by Thomas et al. have, however, questioned the
significance of the TNF ligand, FAS, in mediating β-cell apo-
ptosis as very few FAS producing cells were detected in T1DM
mice models [16]. In contrast to apoptosis, necrotic and
necroptotic processes initiate a cascade of immunological reac-
tions in T1DM islets. Necroptosis or programmed necrosis is
also facilitated by TNF signalling, which results in the synthesis
of reactive oxygen species (ROS) [15]. In addition to this, cal-
cium has been identified as a potent signalling modulator in
necroptosis [17]. Genome-wide analysis has established inter-
feron and tyrosine kinase 2 genes play a key role in eliciting
apoptotic and necrotic pathways pancreatic β-cells [18].

Type 2 Diabetes

The International Diabetes Federation estimates that there are
currently 463 million people between the ages of 20 and
79 years living with diabetes [19]. Half of these patients

(232million) remain undiagnosed, and the number of diabetes
patients is predicted to increase to 700 million by 2045 [19].
There is a strong genetic predisposition in both T1DM and
T2DMpathogenesis. Mutations inHLA andHNF1B genes are
strongly associated with the pathogenesis of T1DM and
T2DM respectively [20, 21]. Currently, obesity is the stron-
gest environmental risk factor associated with T2DM [22–24].
In the majority of individuals, obesity leads to insulin resis-
tance and causes compensatory hyperplastic transformation of
β-cells leading to hyperinsulinaemia that strives to overcome
insulin resistance in peripheral tissues such as liver, muscle
and fat. However, in T2DM patients, these early hypertrophic
changes in pancreatic islets are overtaken by atrophic changes
and a gradual loss of β-cells and insulin production. It is
thought that obesity results in the de-differentiation of pancre-
atic α-cells into β-cells. Increased metabolic dysregulation
induced by diabetes suppresses the transcription factor
FOXO1. As a consequence, pancreatic β-cells undergo
trans-differentiation into other types of pancreatic endocrine
cells which leads to reduced pancreatic β-cell mass [24, 25].

Reduced insulin action in the liver, muscle and fat are key
drivers of insulin resistance leading to hyperglycaemia in
T2DM [26, 27]. Hyperglycaemia-induced metabolic dysregu-
lation causes glucotoxicity which triggers pathogenic changes
in T2DM [28]. Glucotoxicity increases reactive oxygen species
(ROS) production resulting in glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) inhibition which subsequently de-
creases the antioxidant capabilities of β-cells [29]. Lack of
glucose utilisation by adipose tissue promotes free fatty acid
production which has been shown to induce programmed cell
death of β-cells [30, 31]. Recently, the role of islet amyloid
protein in β-cell death has been described [32, 33]. This poly-
peptide is released along with insulin in response to increased
blood sugar levels. In diabetic conditions, there is increased
secretion of the amyloid protein as a result of enhanced insulin
secretion. Amyloid then accumulates within the endoplasmic
reticulum of β-cells dysregulating cell cycle mediating tran-
scription factors. As a result, apoptosis of β-cells is initiated
within the pancreas, thereby reducing pancreatic β-cell mass,
leading to insulin deficiency and hyperglycaemia [27–29].

Diabetic Vascular Complications

The pathogenic changes described above can lead to dysreg-
ulated glucose homeostasis which can damage endothelial and
other cell functions within the vasculature. These unregulated
glucose levels are a major cause of chronic diabetic compli-
cations, which significantly increases mortality associated
with DM [34–36]. Based on the organ and size of blood ves-
sels affected, complications of DM are classified as
macrovascular or microvascular. The heart, brain and periph-
eral vasculature are grouped as macrovascular complications
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of diabetes, which are major causes of death in people living
with diabetes. For example, women living with diabetes have
a 5-fold higher risk of myocardial infarction, an 8-fold higher
risk of stroke and a 40-fold higher risk of requiring a foot
amputation due to peripheral arterial disease (PAD) [37].
Cardiovascular conditions such as myocardial infarction
(MI), heart failure and cardiomyopathies have been reported
to be the major contributors of mortality in people living with
diabetes [38]. Atherosclerosis is an inflammatory vascular
condition which in the diabetic milieu accelerates cardiovas-
cular and neurovascular diseases associated with
macrovascular diabetic complications [39, 40].

The eye and the kidney are organs affected by diabetic
microvascular complications. Diabetic eye disease or retinop-
athy is the leading cause of blindness worldwide [41]. Diabetic
kidney disease, or nephropathy (DN), is the leading cause of
end-stage renal disease (ESRD) in the working-age population
[42]. Up to 50% of patients are diagnosed with diabetes with at
least one diabetic complication evident (usually some degree
of diabetic retinopathy). Both diabetic retinopathy and ne-
phropathy are classified according to a series of stages, indi-
cating the relative severity of the disease in each patient
(Tables 1 and 2). These microvascular complications signifi-
cantly impact the quality of life (e.g. visual loss) and reduce
survival (e.g. ESRD). Between 25 and 40% of individuals with
diabetes develop DN. Up to one-third of people with DN will
progress to ESRD and diabetic kidney disease is now the lead-
ing cause of ESRD globally [42]. DN is diagnosed clinically
when protein is detected in the urine and/or there is evidence of
chronic deterioration in kidney function [3]. Given the poor
prognosis for patients receiving chronic dialysis, together with
the shortage of available donor kidneys for transplanation, a
better understanding of the pathogenesis of DN and the role
that albumin plays in this process is needed.

Albuminuria

The concept of measuring albumin in urine was first suggested
by a German scientist, Hermann Senator, in the nineteenth cen-
tury [43]. Albuminuria has been identified as the most sensitive
marker for abnormal kidney function [44]. Stage I DN is
characterised by microalbuminuria levels of 30–300-mg/24 h
urine (Table 3). Measuring albumin levels from a 24-h urine
sample has been considered the gold standard [2]. In 2012, The
Kidney Disease: Improving Global Outcomes (KDIGO) organi-
sation classified albuminuria as normal (< 30 mg/24 h), moder-
ately increased/microalbuminuria (30–300 mg/24 h) and severe-
ly increased/macroalbuminuria (> 300 mg/24 h) (Table 3; [43]).
A urine dipstick is the easiest and quickest way of detecting
macroalbuminuria but it is a rather insensitive test for quantifying
urine protein concentration. The urinary albumin-to-creatinine
ratio (UACR) is convenient and equivalent to the gold standard

technique for calculating ACR, with ratios < 3, 3–30 and >
30 mg/mmol being classified as normal, moderate and severe
albuminuria respectively (Table 3; [2]). In addition to being a
predictive marker of DN, albuminuria has also been found to
be a useful prognostic marker for cardiovascular disease (CVD)
in diabetic patients [45, 46]. To understand the intricate relation-
ship between albuminuria and diabetic cardiovascular complica-
tions, it is first important to understand the function of albumin in
the physiological setting.

Albumin Homeostasis

Albumin is a small negatively charged protein synthesised
mainly by the liver, contributing to 10% of overall protein
production in the body. Albumin makes up ~ 75% of normal
plasma colloid oncotic pressure and 50% of plasma protein
content [47]. Albumin plays a key role in transporting

Table 1 Summary of clinical stages of diabetic nephropathy. Stages
from G1 to G5 are shown, with associated estimated glomerular
filtration rate (eGFR) and predicted renal function

Stage eGFR (mL/min/1.73 m2) Renal function

G1 ≥ 90 Normal or high

G2 60–89 Mild reduction

G3a 45–59 Mild to moderate reduction

G3b 30–44 Moderate to severe reduction

G4 15–29 Severe reduction

G5 < 15 Kidney failure

Table 2 Summary of clinical classification of diabetic retinopathy
(DR). Stages are classified in increasing order of severity from R0, R1
(background DR), R2 (Pre-proliferative) to R3 (Proliferative). The asso-
ciated ophthalmoscopic findings are also indicated

Stage Ophthalmoscopic findings

R0 No apparent lesions

R1 (background) Microaneurysms

Retinal haemorrhages

Venous loops

Exudate or cotton wool spots

R2 (pre-proliferative) Venous beading

Venous reduplication

Intraretinal microvascular abnormality

Blot haemorrhages

R3 (Proliferative) New vessels on disc

New vessels elsewhere

Pre-retinal or vitreous haemorrhage

Pre-retinal fibrosis

Retinal detachment
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molecules such as fatty acids, metals, bilirubin and hormones
such as glucocorticoids in the plasma to their target cells [47].
Many commonly used drugs such as benzodiazepines, warfarin
and cloxacillin bind to a number of different sites on albumin in
plasma [48]. Albumin production is a highly regulated process
modulated by various physiological and pathological condi-
tions [49, 50]. Under normal conditions, levels of urinary albu-
min should be very low, with < 30mg detectable in a 24-h urine
sample (Table 3). A number of hormones, including glucocor-
ticoids and insulin, are key regulators of albumin homeostasis
[51]. In diabetes, the levels of these hormones are dysregulated,
thereby leading to abnormal albumin metabolism. Breakdown
of albumin occurs in most organs of the body, but mainly the
muscle and skin [52]. The fractional catabolic rate of albumin is
another important regulatory factor of albumin concentration in
pathophysiologic states such as diabetes. In healthy individuals,
renal tubular epithelial cells re-absorb the majority of albumin
that is filtered by glomeruli and tubular cells can also degrade
albumin via lysosomal proteolysis [53, 54]. In contrast, other
authors report that albumin is protected from lysosomal degra-
dation in tubular epithelial cells and is recycled intact to the
circulation via tubular transcytosis [55].

Albumin and the Kidney

Under normal conditions, the glomerulus, an intricate vascular
structure in the kidney, limits the transport of albumin from
blood to urine [54]. The glomerular filtration barrier is made
up of glomerular endothelial cells on the blood vessel side, the
glomerular basement membrane and podocytes with interdig-
itating foot processes on the urine side of the barrier [56].
Studies by Ryan and Karnovsky have identified the endothe-
lial layer of the glomerular filtration apparatus to be the most
effective barrier to albumin filtration [57, 58]. Multiple hy-
potheses have been postulated how this is achieved [57–61].
One of the first theories explored the size of the endothelial
filtration pore as a preventative system for albumin filtration
[62]. Gagliardini et al. carried out imaging of glomerular ep-
ithelial filtration slit using scanning electron microscopy in
physiological and proteinuric conditions [63]. In this study,
larger glomerular barrier pores were observed in mice with
progressive renal fibrosis and diabetic nephropathy, thereby

suggesting a positive correlation between albuminuria and
dysregulation of glomerular pore size. Furthermore, Comper
et al. examined the potential role of electrical charge as a
barrier to albumin filtration [64]. Albumin and the glomerular
vascular membrane are both negatively charged, suggesting
that electrostatic repulsion of albumin molecules away from
the vessel wall is an important component of barrier function
[52]. This hypothesis was supported by a number of other
reports suggesting that electrostatic repulsion was a major
factor limiting the filtration of albumin from blood to urine
[65–67]. In diseases such as diabetic nephropathy, the integ-
rity of the glomerular filtration barrier is compromised by
chronic hyperglycaemia, leading to increased albumin filtra-
tion into the urine (and detectable albuminuria).

The other nephron structure involved in regulating albumin
excretion is the renal tubule (Fig. 1). In normal health, a small
amount of albumin is filtered by glomeruli, and the majority of
the filtered albumin is subsequently reabsorbed by the proximal
and distal tubules [56]. A number of cellular transport processes,
such as endocytosis and transcytosis, enable tubular epithelial
cells to retrieve albumin from the glomerular filtrate [68–70]. In
the proximal convoluted tubule, albumin binds to the megalin-
cubilin receptor, resulting in endocytosis of the protein into ves-
icles which is either stored or degraded within the cytoplasm
[69]. Many animal studies [69–73] have been carried out with
results supporting this theory. An experimental study measured
the levels of megalin and cubilin between diabetic and non-
diabetic mice and identified the downregulation of these recep-
tor proteins in diabetic mice [74]. Another study showed similar
results and went on to demonstrate increased endocytosis and
expression of renalmegalin with insulin treatment in the diabetic
group compared with the control group [75].

Albuminuria and Diabetic Vascular
Complications

Albuminuria and Diabetic Nephropathy

Glomerulosclerosis and tubulointerstitial fibrosis are two major
pathological hallmarks of DN [76]. Glomerulosclerosis is
thought to occur as the initial insult in DN, followed by a pro-
gressive, irreversible fibrosis or scarring of the kidney tubules

Table 3 Classification of albuminuria in patients. Albuminuria is
classified as A1 (normoalbuminuria), A2 (microalbuminuria) or A3
(macroalbuminuria). The relevant values for urinary albumin excretion

rate (UAER), urinary albumin creatinine ratio (UACR) and albumin cre-
atinine ratio (ACR), as well as the albuminuria severity banding, are
indicated

Category UAER (mg/24 h) UACR (mg/mmol) ACR (mg/g) Severity Classification

A1 < 30 < 3 < 30 Normal to mildly increased Normoalbuminuria

A2 30–300 3–30 30–300 Moderately increased Microalbuminuria

A3 > 300 > 30 > 300 Severely increased Macroalbuminuria
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that occurs in parallel with the slow decline in renal function [76].
A variety of pathological mechanisms which contribute to dia-
betic kidney damage have been identified [42]. Injury to the
glomerular filtration barrier leads to compromised filtration by
the glomerulus which has been linked to the onset of renal fibro-
sis, potentially due to increased levels of albumin in the urinary
filtrate [77]. Hyperglycaemia-induced haemodynamic dysregula-
tion promotes increased production of endogenous vasodilators
such as nitric oxide, insulin-like growth factor (IGF) and vascular
endothelial growth factor (VEGF) [78]. Hyperglycaemia also
promotes cellular oxidative stress resulting in the formation of
advanced glycation end products (AGEs) [79]. These metabolic
changes induce pathological changes in the glomerulus such as
mesangial expansion, formation of Kimmelstiel-Wilson nodules
and glomerular basement membrane (GBM) thickening [44, 76].
Damage to the glomerular basement membrane increases albu-
min excretion by increasing the pore size and disturbing the
electrical homeostasis of the GBM.

Chronic hyperglycaemia is also associated with irreversible
changes to renal tubular structure and function [75, 80, 81].
Transforming growth factor-beta (TGFβ) is an important cy-
tokine driving the pathogenic changes in both diabetic glo-
merulus and kidney tubules [82]. TGFβ causes the expansion

of glomerular mesangial cells, thickening of the GBM and
loss of filtration barrier integrity [83]. TGFβ is also implicated
in tubulointerstitial fibrosis, where activated myofibroblasts
generated from vascular pericytes, tubular epithelial cells
and resident fibroblasts secrete extracellular matrix proteins
such as collagen IV and fibronectin that contribute to scar
formation [84–86].

Recent experiments performed by Mori et al. analysed al-
bumin excretion in diabeticmegalin gene knockout mice [87].
A significant increase in albumin excretion was detected in
diabetic megalin knockout mice compared with diabetic wild
type [87], suggesting that lower megalin expression reduced
the capacity of the kidney tubular epithelial cells to sequester
albumin in the kidney filtrate. The potential role of megalin in
potentiating TGFβ-induced epithelial-mesenchymal transi-
tion (EMT) has also been studied. TGFβ was used to stimu-
late EMT in epithelial renal cells and reduced levels of
megalin were detected in these cells and these changes were
reversed when the cells were treated with a TGFβ inhibitor
[88, 89]. A meta-analysis of data from genome-wide associa-
tion studies (GWAS) has identified a mutation in the cubilin-
encoding geneCUBN that is associated with microalbuminuria
in European and African populations [90].

Fig. 1 Schematic diagram
showing how megalin and cubilin
may contribute to albumin
filtration from the blood vessels
into the urine via proximal tubule
epithelial cells. The key for each
of the indicated molecules is
shown at the base of the figure
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Additionally, a post hoc analysis of data from the Diabetes
Control and Complications Trial (DCCT) and Epidemiology
of Diabetes Interventions and Complications (EDIC) study
also confirmed an association between CUBN mutations and
an increased risk of developing microalbuminuria [91, 92].
Increased cubilin expression was also observed in T1DM
mice with cubilin mRNA levels negatively correlated with
albuminuria [93]. These and other reports highlight the signif-
icance of the megalin-cubilin receptor pathway in tubular cell
albumin uptake and the pathogenesis of diabetic kidney dis-
ease [72, 73, 78, 87, 94].

Albuminuria and Atherosclerosis

The causative link between albuminuria and CVD has been ex-
tensively studied, yet the pathophysiological mechanism has not
been clearly identified [95–98]. The most commonly accepted
theory is the STENO hypothesis, which states that glomerular
dysfunction is reflective of extensive vascular damage through-
out the body [99]. In diabetes, processes such as endothelial
dysfunction and chronic inflammation lead to the development
of angiopathies in many organs. Microalbuminuria has been as-
sociated with an increased risk of developing subclinical athero-
sclerosis in theMexican population, with another study reporting
the same in elderly patients living with diabetes [100, 101]. The
intimal-media thickness (IMT) is an early indicator of developing
carotid atherosclerosis [102]. Zhang et al. assessed IMT using
high-frequency ultrasonography and reported a strong correlation
betweenmicroalbuminuria and IMT [103].Multiple studies have
examined the link between inflammatory cytokines and athero-
sclerosis accelerated by diabetes [104–106]. Cytokines such as
interleukin-6 (IL-6) and tumour necrosis factor alpha (TNFα),
along with acute-phase proteins like C-reactive protein (CRP),
were shown to promote inflammatory processes within the vas-
culature leading to endothelial damage and dysfunction
[107–110]. Despite strong evidence supporting the link between
microalbuminuria and diabetes-induced atherosclerosis, recent
evidence has identified microalbuminuria to be an independent
risk factor for atherosclerosis even in the absence of diabetes
[111, 112]. A cross-sectional study performed by Kimura et al.
studied 1756 non-diabetic men with normal estimated glomeru-
lar filtration rate (eGFR), and the results indicated that patients
with high-normal albuminuria had a significantly higher risk of
IMT and developing atherosclerotic plaques [113]. A recent gene
analysis study has identified mutations in the APOL1 gene to be
associated with this outcome, but further studies are needed to
validate this finding [114].

Albuminuria and Myocardial Infarction

Myocardial infarction (MI) is a cardiovascular condition
which is commonly associated with microalbuminuria.
Multiple clinical trials targeting different population groups

have concluded that increased albumin excretion is associated
with an increased risk of MI [106, 115–118]. Secondary anal-
ysis of data from the TRACER study has reported
microalbuminuria was associated with an increased risk of
MI and cardiovascular mortality [118]. Another study of
Mexican patients with diabetes also identified a higher num-
ber of major adverse cardiovascular events associated with
increased albuminuria levels [117]. These findings were fur-
ther supported by the REGARDS study which examined per-
sons with diabetes with and without coronary heart disease
(CHD). The results concluded that higher urinary albumin-
to-creatinine ratio was associated with greater risk of incident
of heart disease in black versus white patients > 45 years in the
USA [119]. These conclusions suggest that albuminuria is a
strong biomarker for CHD development and mortality. The
underlying pathogenic mechanisms are similar to those de-
scribed for atherosclerosis, with aberrant endothelial signal-
ling and low-grade vascular inflammation within coronary
arteries being key drivers of MI in people with diabetes.
Therefore, control of albuminuria clearly has the potential to
improve the outcomes of patients at risk from MI and other
cardiovascular diseases.

Albuminuria and Heart Failure

Clinical studies have identified increased urinary albumin
excretion among heart failure patients [118, 120–123]. A
prospective study carried out in a cohort of patients with
well-characterised heart failure and preserved ejection
fraction showed increased urinary albumin excretion
was associated with enhanced remodelling of the right
and left ventricles [124]. During follow-up of this cohort,
raised urinary albumin excretion was also associated with
systolic dysfunction (assessed by echocardiography)
[125]. Post hoc analysis of the SAVOR-TIMI 53 trial
cohort also identified increased hospitalisation for heart
failure among patients with microalbuminuria [126].
Another study recruited 100 asymptomatic people living
with diabetes and compared their cardiac extracellular
volume fraction with urinary microalbumin levels. A
strong positive association was observed between these
two measurements, suggesting diffuse cardiac fibrosis is
the underlying pathogenic mechanism involved in heart
failure development among patients with persistent
microalbuminuria. The glomerulus is one of the first vas-
cular structures to be affected by diabetes resulting in
microalbuminuria. As stated previously, glomerular dam-
age is considered to be indicative of a more widespread
vascular injury including the heart.

Though a direct correlation between albuminuria and cardiac
fibrosis has not been established, a number of clinical trials have
identified existing diabetic medications which may reduce al-
buminuria and potentially attenuate fibrosis [127–131].

460 Cardiovasc Drugs Ther (2021) 35:455–466



Sodium-glucose transport protein 2 (SGLT2) inhibitors are
widely used medications for diabetes management which also
has been shown to reverse microalbuminuria. Early studies
concluded that this class of drugs are beneficial in the treatment
of heart failure [132]. Dapagliflozin is a SGLT2 inhibitor drug
with cardioprotective properties [129, 133]. Data from the
DApagliflozin on renal outcomes and cardiovascular mortality
in PAtients with Chronic Kidney Disease (DAPA-CKD) study
suggested that dapagliflozin may be an efficient therapy for
heart failure, though more complete analysis of data from this
trial is required before any substantive conclusions can be made
[129]. Additionally, the potential role of renin-angiotensin-
aldosterone system blockade in halting heart failure develop-
ment among diabetic patients has also been highlighted [120].
Angiotensin-converting enzyme inhibitors (ACE-I) are current-
ly the first-line treatment for heart failure [134]. The
BENEDICT (BErgamo NEphrologic DIabetes Complications
Trial) and ADVANCE (Action in Diabetes and Vascular
Disease-preterAx and diamicroN Controlled Evaluation) trial
concluded that ACE-I help in delaying microalbuminuria onset
in persons with T2DM, leading researchers to postulate that this
may be an additional mechanism underlying the effectiveness
of ACE-I in heart failure treatment, in addition to its
vasodilatory action [135, 136].

Albuminuria and Peripheral Arterial Disease

Peripheral arterial disease (PAD) is caused by large and small
blood vessel damage resulting in ischaemia and necrosis of the
extremities (typically the legs and feet). Diabetes and athero-
sclerosis are major causes of PAD, and the loss of circulation
can lead to critical limb ischaemia and may require lower limb

amputation. The potential link between albuminuria and PAD
in patients living with diabetes has been investigated, with
different studies providing conflicting evidence. A cross-
sectional study performed among 1197 patients with T2DM
showed that PADwas associated with albuminuria [137]. This
was supported by the Multi-Ethnic Study of Atherosclerosis
(MESA) study which showed that the risk of developing PAD
was almost doubled in patients presenting with albuminuria
[138]. Despite the positive correlation between albuminuria
and PAD among diabetic subjects, the results from the
National Health and Nutrition Examination Survey 1999–
2004 showed that this association was also observed among
non-diabetic subjects. Non-invasivemethods to identify PAD,
such as the use of Doppler ankle-brachial pressure index, are
more practical for general population studies of the prevalence
of PAD than gold standard angiography [139]. A number of
pathological mechanisms have been suggested to contribute to
the development of PAD among patients with albuminuria. In
the diabetic milieu, endothelial dysfunction produces an ex-
cess of reactive oxygen species (ROS) which subsequently
leads to an increase in platelet activity and vascular smooth
muscle proliferation. This phenomenon is believed to play a
significant role in the development and progression of PAD
[140].

Conclusion

Diabetes-associated complications are major contributors to
patient morbidity and mortality, as well as to the global
healthcare burden. Current and emerging treatments for dia-
betic vascular complications target a range of processes aimed

Fig. 2 Summary of mechanisms leading to diabetic kidney disease and albuminuria
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at preserving vascular function and maintaining tissue homeo-
stasis. Albuminuria has been identified to be a useful diagnos-
tic marker of DN, indicative of damage to the glomerular
filtration barrier. The hyperglycaemic state observed in diabe-
tes results in aberrant cellular signalling causing damage to the
kidneys, eyes, heart and other organs. The kidneys can be
severely affected in diabetes, with vascular and tubular struc-
tures undergoing detrimental pathological changes as a result
of hyperglycaemia which in due course leads to albuminuria.
The damage to the glomerular capillaries can be considered to
be representative of the widespread vascular damage evoked
in the diabetic milieu.

The increased CVD risk conferred by albuminuria
has been well established in the literature. The patho-
genic changes induced by albuminuria can accelerate the
development of many cardiovascular conditions such as
atherosclerosis, MI and heart failure. A summary of po-
tential mechanisms of albuminuria as a result of micro-
and macrovascular diabetic complications is shown in
Fig. 2. Despite substantial evidence, the significance of
albuminuria in diabetic complications has yet to be in-
cluded in many clinical trials. The complex pathological
processes involved have given researchers a wealth of
biochemical pathways to study further. Continued and
future support for pre-clinical and clinical studies into
the significance of albuminuria will be fundamental in
successfully translating animal studies into improved
vascular outcomes for patients living with diabetes.
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