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Simple Summary: This is a novel description of (Pro)renin receptor (PRR) protein and its prognostic
role in invasive urothelial cancer of the bladder. Using a tissue microarray, we investigated PRR
expression and other immunohistochemical markers including p53, immune-checkpoint inhibition,
and basal and luminal phenotypes in a series of patients with invasive urothelial carcinoma of the
bladder treated with radical cystectomy. PRR expression is an independent prognostic marker and
could be a potential target in urothelial carcinoma that should be further investigated.

Abstract: (Pro)renin receptor (PRR) is being investigated in several malignancies as it activates
pathogenic pathways that contribute to cell proliferation, immunosuppressive microenvironments,
and acquisition of aggressive neoplastic phenotypes. Its implication in urothelial cancer (UC) has not
been evaluated so far. We retrospectively evaluate the prognostic role of PRR expression in a series of
patients with invasive UC treated with radical cystectomy and other clinical and histopathological
parameters including p53, markers of immune-checkpoint inhibition, and basal and luminal pheno-
types evaluated by tissue microarray. Cox regression analyses using stepwise selection evaluated
candidate prognostic factors and disease-specific survival. PRR was expressed in 77.3% of the pri-
mary tumors and in 70% of positive lymph nodes. PRR expression correlated with age (p = 0.006)
and was associated with lower preoperatively hemoglobin levels. No other statistical association
was evidenced with clinical and pathological variables (gender, ASA score, Charlson comorbidity
index, grade, pT, pN) or immunohistochemical expressions evaluated (CK20, GA-TA3, CK5/6, CD44,
PD-L1, PD-1, B7-H3, VISTA, and p53). PRR expression in primary tumors was associated with worse
survival (log-rank, p = 0.008). Cox regression revealed that PRR expression (HR 1.85, 95% CI 1.22–2.8),
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pT (HR 7.02, 95% CI 2.68–18.39), pN (HR 2.3, 95% CI 1.27–4.19), and p53 expression (HR 1.95, 95% CI
1.1–3.45) were independent prognostic factors in this series. In conclusion, we describe PRR protein
and its prognostic role in invasive UC for the first time. Likely mechanisms involved are MAPK/ERK
activation, Wnt/β-catenin signaling, and v-ATPAse function.

Keywords: (pro)renin receptor; urothelial carcinoma; prognosis; biomarker

1. Introduction

Urinary bladder cancer is the most prevalent genitourinary malignancy in indus-
trialized countries, with more than half a million new diagnoses and approximately
200,000 deaths worldwide per year [1]. Age-standardized incidence rate exceeds 16 new
cases per 100,000 males in Europe, the United States, and Canada [2]. Despite the het-
erogeneity of urothelial carcinoma (UC) of the bladder, a vast majority of the cases are
transitional cell carcinoma, and the most important clinico-pathological parameter to define
prognosis, depth of tumor invasion within the bladder wall, has been established decades
ago [3]. Definitely, there is a need for novel biomarkers to improve the utility of prediction
tools for bladder cancer in an era in which novel immunotherapy is developing [4].

Research, investments, and advances in bladder cancer have been limited compared
to other cancers. Immunotherapies with immune checkpoint inhibitors targeting the pro-
grammed death-1 (PD-1) receptor or its ligand (PD-L1) and cytotoxic T-lymphocyte antigen
4 (CTLA-4) have demonstrated a role after failure of cisplatin-based chemotherapy, but
the majority of the patients do not respond to this strategy [5], and biomarkers to predict
patients who could benefit from checkpoint targeting therapy are presently lacking [6]. Ad-
ditionally, the role of chemokines as modulators of tumor angiogenesis and their potential
as therapeutic targets is currently under investigation [7,8].

Another major recent advance in UC is the definition of molecular subtypes based on
genomic expression patters (neural-like, HER2-like, papillary-like, luminal-like,
mesenchymal-like, and squamous-cell carcinoma-like). Different risk of progression was
confirmed and, more interestingly, distinct pathways and likely targets are involved for each
subtype [9]. We are far from being able to define the therapeutic implications of these find-
ings yet, but a more simplified approach based on the distinction of basal (CK5/6, CD44)
and luminal (GATA3, CK20) phenotypes is more practical for diagnostic and prognostic
purposes as it can be identified by signature immunohistochemical (IHC) markers [10,11].

The search for new and better markers is far from being closed. A recently pro-
posed novel biomarker and candidate therapeutic target for several malignancies is the
(pro)renin receptor (PRR). As far as we know, its potential has not been investigated in UC.
PRR is a single transmembrane protein encoded by the ATP6AP2 gene located on the X
chromo-some [12]. It participates in a range of normal and disease processes including
vacuolar ATPase (V-ATPase) function and the Wnt/β-catenin signaling pathway [13]. PRR
was initially investigated as part of the renin–angiotensin system (RAS) for its role in the
activation of the MAPK/ERK pathway through the binding of RAS to its ligands renin
and/or prorenin [14]. Very recently, the prognostic role of PRR immunohistochemical
expression has been confirmed in colorectal, breast, prostate, pancreatic, and renal can-
cers [13,15–20]. Additionally, PRR has been used as a molecular target for cancer diagnosis
using single-photon emission computed tomography [21], and a new therapeutic strategy
based on monoclonal antibodies against PRR is currently being investigated in pancreatic
neo-plasia [22].

We aim to evaluate the role of PRR expression in a sample of patients with invasive
UC treated with radical cystectomy and investigate its potential role as prognostic marker.
The association between PRR expression and other clinical, histopathological, and immuno-
histochemical markers (p53, PD-1, PD-L1, B7-H3, VISTA, CK5/6, CD44, CK20, and GAT3)
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has been investigated with the intention to evaluate the interrelationship between PRR and
these variables and better assess whether PRR behaves as an independent prognosticator.

2. Materials and Methods
2.1. Patients and Samples

This is a retrospective study carried out on a series of 119 patients with non-metastatic
UC of the bladder. All cases were high-grade transitional cell carcinoma treated with
radical cystectomy including lymph node dissection between 2000 and 2015. All the reg-
isters were included in a database with the approval of the Institutional Review Board
(IRB, A06/16). Patients with positive lymph nodes and locally advanced disease were
offered cisplatinum-based adjuvant chemotherapy (gemcitabine plus cisplatin or mito-
mycin, vincristine, adriamycin plus cisplatin). Neoadjuvant chemotherapy was not used
during the period investigated. All patients were followed up until death or until the
data were censored. At that time, 47 patients were alive, 55 were dead of disease, and
17 died of other causes. All living subjects were informed about the potential use for
research of their surgically resected tissues and accepted this eventuality by signing a
specific IRB-approved document.

The primary endpoint of the study was the evaluation of cancer-specific mortality.
Clinical parameters before cystectomy (age, ASA score, Charlson comorbidity index, pre-
operative hemoglobin, and transfusion) were also evaluated. Two pathologists collected
representative formalin-fixed and paraffin embedded (FFPE) tissue blocks for both primary
tumor (n = 119) and lymph nodes (n = 30) and a third pathologist (JIL) reviewed all the
specimens; confirmed histological type, histological grade, and tumor stage (AJCC/TNM
2017); and performed immunohistochemical evaluation.

2.2. Tissue Microarray Construction and Immunohistochemical Staining

Tissue microarrays (TMA) were performed selecting tissue samples with abundant
tumor tissue without artifact, when possible. For each case, two tumor samples (2.5 mm
in diameter) were transferred from the original paraffin block to the recipient TMA block.
Whenever allowed by the size of the tumor seed within lymph nodes, two additional
samples were obtained from lymph node metastases and transferred following the same
process. Consecutive 4 µm sections were performed from TMA blocks, and the first one
was stained with hematoxylin-eosin to verify the proper construction of the blocks and
that representative material was present in all cases.

An extensive immunohistochemical (IHC) study was carried out with PRR, GATA3,
CK20, CK5/6, CD44, PD-L1, PD-1, B7-H3, VISTA, and p53 antibodies. PRR antibody
(HPA003156; Sigma-Aldrich at 1/50 dilution, cytoplasmic staining) was evaluated in tu-
mor cells. Cytoplasmic staining was evaluated as negative, weak, or intense following
previously described scores [18,20]. GATA3 (Ventana, ref. L50–823, ready-to-use, nuclear
staining), CK20 (Ventana ref. SP-33, ready-to-use, cytoplasmic staining), CK5/6 (Ventana
ref. D5/16B4, ready-to-use, cytoplasmic staining), CD44 (Ventana ref. SP-37, ready-to-use,
cytoplasmic staining), p53 (Ventana, ref. DO-7, ready-to-use, nuclear staining), B7-H3
(R&D, ref. AF1027, dilu-tion 1:2000), and VISTA (Cell Signaling, ref. 64953, dilution 1:100)
antibodies were also evaluated in tumor cells. PD-1 (Ventana, ref. NAT105, ready-to-use)
was evaluated in intratumor inflammatory cells. These antibodies were evaluated as
positive or negative, as usually performed in the clinical practice. Finally, PD-L1 (Ventana
ref. SP-142, ready-to-use, cytoplasmic staining) was considered positive with a staining of
≥5% of cells, as recommended by the manufacturer. Automated immunostaining (EnVision
FLEX, Dako Au-tostainer Plus; Dako, Glostrup, Denmark and BenchMark Ultra, Ventana
Medical Sys-tems, Tucson, AZ, USA) followed routine methods. Tris-EDTA was used for
antigen retrieval. Negative controls were slides not exposed to the primary antibody, and
these were incubated in PBS and then processed under the same conditions as the test
slides. The analysis was performed using a Nikon Eclipse 80i Microscope (Tokyo, Japan).
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2.3. Statistical Analysis

SPSS® 24.0 Software was used for the statistical analysis. A Kolmogorov–Smirnov
test was applied to determine whether the numbers followed or not a normal distribution.
Based on this information, data were analyzed with non-parametric tests. We performed a
Spearman Rho test to evaluate the correlation between PRR expression and patient age. The
Chi-square (χ2) test was used to analyze the categorical PRR expression (negative, weak,
or moderate/strong) in UC tissues (primary tumors and node metastases), the association
between PRR expression and patients’ gender, the association with pathological variables of
cancer aggressiveness, and the association between this protein and biomarkers of luminal
and basal phenotypes of UC, immune checkpoints, and p53.

Kaplan–Meier curves and log-rank test were performed to evaluate the association
between the expression of PRR and cancer-specific survival of UC patients. Groups were
created by cut-off points based on categorical PRR expression in tumor tissue (negative,
weak, or moderate/strong). Finally, to evaluate the independent effects of PRR expression
and clinical and pathological variables on cancer-specific survival, univariate and multi-
variate analyses was performed using Cox proportional hazards regression model with a
threshold entry p = 0.1 and a threshold stay p = 0.05.

3. Results

The main clinical and histopathological characteristics of the series analyzed are
shown in Table 1. The mean follow-up since cystectomy was 53.1 ± 48.8 (range 3–193)
months. The mean age of the patients at the time of radical cystectomy was 68.1 ± 9.25
(range 44–89) years. Globally, 24.4% of the patients received adjuvant systemic chemother-
apy. Histopathological staging revealed locally advanced disease, including perivesical
infiltration (pT3) or invasion of neighboring organs (pT4), in 39.7% of the patients and
positive nodal disease (pN1–3) in 40.5%. Median preoperative hemoglobin was 13.2 ± 2.1
(range 7.8–17.3) g/dl, and transfusion rate, including intra and postoperative transfusion,
was 32.2%

PRR was expressed in 77.3% of the primary tumors and in 70% of invaded lymph
nodes, always restricted to epithelial tumor cells (Figure 1). In terms of immunostaining
intensity, 54.6% of primary tumors showed weak expression and 22.7% showed intense
staining. There was not any significant difference with PRR expression in UC infiltrating
lymph nodes, which was weak in 50% of cases and intense in 20% (Chi-square, p = 0.703).
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Figure 1. High-grade urothelial carcinomas with their respective prorenin immunostaining (lower
row) quantified as absent (left), weak (middle), and intense (right) (original magnification in all
cases × 250).
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Table 1. Characteristics of the series (n = 119); * Mean ± SD.

n (%)

Sex
Male 116 (97.5)

Female 3 (2.5)

Age, years * 68.1 ± 9.25

pT category
pT1 13 (10.9)
pT2 27 (22.7)
pT3 51 (42.9)
pT4 28 (13.5)

pN category
pN0 72 (60.5)
pN1 21 (17.6)
pN2 25 (21)
pN3 1 (0.8)

Histological grade (WHO)
G2 4 (3.4)
G3 115 (96.6)

Associated carcinoma in situ
Yes 41 (34.5)
No 78 (65.5)

Preoperative Hb, g/dL * 13.2 ± 2.1

Adjuvant chemotherapy
Yes 29 (24.4)
No 90 (75.6)

Bladder cancer mortality
Yes 55 (46.2)
No 64 (53.8)

WHO, world Health Organization; Hb, hemoglobin.

PRR expression in UC tissues positively correlated with patient age (r = 0.251, p = 0.006)
but not with gender (Chi-square test, p = 0.167). Table 2 describes the association between
PRR expression in primary UCs and clinical and pathological variables.

This protein was similarly expressed in high-grade UC with different levels of bladder
wall invasion (pT) and in tumors with or without nodal invasion (pN). That is, patients with
extravesical disease or lymph node metastasis did not have a different pattern of PRR im-
munostaining. Additionally, associated carcinoma in situ did not follow a different pattern.

From a clinical perspective, ASA physical status classification system and Charlson
comorbidity index were neither associated with different expression of PRR in UC tissues.
However, lower preoperative hemoglobin levels (<13 mg/dL) were significantly associated
with PRR expression. Patients who received cisplatinum-based adjuvant chemotherapy
did not express higher PRR than patients treated with cystectomy alone.

We also analyzed the association between PRR and several biomarkers with prognos-
tic and therapeutic implications, including luminal (CK20 or GATA3) and basal (CK5/6 or
CD44) UC phenotypes, immune checkpoints (PD-L1, PD-1, B7-H3, and VISTA) and p53.
PRR was not significantly associated with any of the mentioned immunohistochemical
markers, which confirms the independent mechanism and effect of PRR (Table 3). Ad-
ditionally, the combination of both luminal markers (CK20 and GATA3) and both basal
phenotype markers investigated (CK5/6 and CD44) is not associated with PRR expression
(Chi-square test, p = 0.896 and p = 0.905; respectively).

The Kaplan–Meier curves and log-rank test showed that PRR expression in primary
tumors significantly predicts cancer-specific survival of UC patients (log-rank, p = 0.008).
Intense IHC positivity follows the worst prognosis while weak IHC staining follows an
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intermediate course between intense and absent IHC staining (Figure 2). On the other hand,
evaluation of disease-specific survival according to the immunohistochemical expression
of other likely individual tumor markers evaluated in this series with likely influence on
prognosis is presented in Figure S1, Supplementary Data. Markers of basal or luminal
phenotypes did not predict prognosis when assessed individually. Similarly, markers of
immune checkpoint inhibition could not be elected as prognostic markers in this series
(Figure S1(A1–A9)).

Table 2. Association between PRR expression and clinico-pathological characteristics.

PRR Immunostaining

Variables Negative (%) Weak (%) Intense (%) p Value

Histopathological features
Grade (WHO)

G2 (n = 4) 25 75 0 0.532
G3 (n = 115) 22.6 53.9 23.5

Local invasion (pT)
pT1–pT2 (n = 40) 15 65 20 0.229
pT3–pT4 (n = 79) 26.6 49.4 24.1

pTis
No (n = 78) 28.2 50 21.8 0.135
Yes (n = 47) 12.2 63.4 24.4

Node invasion (pN)
No (n = 72) 25 56.9 18.1 0.311
Yes (n = 47) 19.1 51.1 29.8

Clinical variables
ASA score

I–II (n = 85) 25.9 52.9 21.2 0.408
>III (n = 34) 14.7 58.8 26.5

Charlson comorbidity index
1–2 (n = 44) 27.3 52.3 20.5 0.647
>3 (n = 75) 20 56 24

Preoperative serum Hb
<13 mg/dl 11.8 66.7 21.6 0.029
≥13 mg/dl 30.9 45.6 23.5

Adjuvant chemotherapy
No (n = 90) 23.3 56.7 20 0.466
Yes (n = 29) 20.7 48.3 31

WHO, World Health Organization; ASA, American Society of Anesthesiologists; Hb, hemoglobin.

Table 3. Association between PRR expression and other immunohistochemical markers.

PRR Immunostaining

Variables Negative (%) Weak (%) Intense (%) p Value

Luminal phenotype
CK20

Negative (n = 73) 24.7 53.4 21.9 0.807
Positive (n = 41) 19.5 58.5 22

GATA3
Negative (n = 32) 28.1 56.3 15.6 0.41
Positive (n = 84) 20.2 53.6 26.2

Basal Phenotype
CK5/6

Negative (n = 68) 20.6 58.8 20.6 0.782
Positive (n = 44) 25 52.3 22.7

CD44
Negative (n = 54) 24.1 50 25.9 0.672
Positive (n = 60) 20 58.3 21.7
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Table 3. Cont.

PRR Immunostaining

Variables Negative (%) Weak (%) Intense (%) p Value

Immune checkpoints
PD-L1

Negative (n = 74) 20.3 58.1 21.6 0.807
Positive (n = 39) 25.6 53.8 20.5

PD-1
Negative (n = 46) 19.6 60.9 19.6 0.609
Positive (n = 68) 25 51.5 23.5

B7-H3
Negative (n = 46) 21.7 52.2 26.1 0.833
Positive (n = 66) 22.7 56.1 21.2

VISTA
Negative (n = 32) 18.8 56.3 25 0.858
Positive (n = 82) 23.2 54.9 22

Cell-cycle regulation
p53

Negative (n = 51) 33.3 47.1 19.6 0.054
Positive (n = 63) 14.3 61.9 23.8

WHO, World Health Organization; ASA, American Society of Anesthesiologists; Hb, hemoglobin.
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Before evaluating the independent effects of PRR expression on patients’ survival
by a multivariate Cox regression, we performed univariate analyses with the variables
evaluated. Since a significant positive correlation between PRR and age was observed,
we first tested the effect of age in survival. The median value of the age of patients was
selected as a cut-off value, and it was observed that it was significantly associated with
cancer-specific survival. We also included other clinical variables (ASA score, Charlson
comorbidity index, preoperative hemoglobin, and the need of adjuvant chemotherapy),
pathological variables (pT, pTIS, and pN), and the mentioned biomarkers of UC phenotypes,
immune checkpoints, and cell cycle.

In the univariate analysis, patient age was the only statistically significant clinical
variable. Among the IHC markers, only PRR appeared overtly significant, and p53 ex-
pression almost reached it, when considered individually. Among the classical histopatho-
logical variables, both pT (local invasion level) and pN (status of lymph nodes) were
statistically significant.

The multivariate analysis demonstrated that PRR expression in primary UC, together
with pT, pN, and p53 protein, is an independent prognostic factor. The final step of the
Wald method of the multivariate analysis also selected CK5/6 expression, although it did
not reach statistical significance (Table 4).

Table 4. Cox regression model for cancer-specific survival prediction stepwise model with p = 0.1 in
this series; statistically significant values highlighted in bold.

Variables p Value Exp (B) Lower C.I. Upper C.I.

Univariate
Age > 68 vs. ≤68 years 0.021 1.832 1.094 3.066

Local invasion pT3–4 vs. pT1–2 0.2 × 106 7.918 3.391 18.489
Lymph Node invasion yes vs. no 0.2 × 107 4.062 2.383 6.925
Tumor grade (WHO) G3 vs. G2 0.272 21.758 1.094 5.29 × 103

Carcinoma in situ present vs. absent 0.310 1.311 0.777 2.213
Preoperative Hb > 13 vs. ≤13 g/dL 0.135 0.677 0.406 1.13

ASA score ≥ III vs. I–II 0.146 1.492 0.87 2.561
Charlson > 2 vs. ≤2 0.136 1.536 0.874 2.701

Adjuvant chemotherapy yes vs. no 0.283 1.362 0.775 2.392
CK20 positive vs. negative 0.798 0.931 0.537 1.613

GATA3 positive vs. negative 0.258 0.724 0.414 1.267
CK5/6 positive vs. negative 0.123 1.513 0.894 2.562
CD44 positive vs. negative 0.443 1.228 0.727 2.072
PD-L1 positive vs. negative 0.993 0.998 0.568 1.753
PD-1 positive vs. negative 0.384 0.79 0.465 1.343

B7-H3 positive vs. negative 0.879 0.96 0.569 1.622
VISTA positive vs. negative 0.873 0.954 0.539 1.692

p53 positive vs. negative 0.061 1.692 0.976 2.933
PRR intense vs. weak vs. negative 0.005 1.808 1.195 2.734

Multivariate
Local invasion pT3–4 vs. pT1–2 0.000 7.016 2.676 18.395
Lymh node invasion yes vs. no 0.006 2.297 1.27 4.187

p53 positive vs. negative 0.022 1.947 1.099 3.448
PRR intense vs. weak vs. negative 0.004 1.851 1.222 2.802

WHO, World Health Organization; ASA, American Society of Anesthesiologists.

4. Discussion

(Pro)renin receptor (PRR), also known as ATP6AP2, is a relatively new discovered
component of the renin angiotensin system (RAS) that activates prorenin enzyme and
enhances the activity of renin enzyme [14]. This multifunctional protein is involved in
many RAS-dependent and independent pathways and has been very recently suggested to
play an important role in neoplasia [13]. RAS itself has been widely associated with the
progression of different types of cancer [23]. Epidemiological and translational data [24,25]
strongly suggest an important role of RAS in the main hallmarks of cancer [13]. Addition-
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ally, it has been suggested that targeting the RAS system using RAS inhibitors may have
beneficial effects in a broad range of malignancies, as it could reduce the side effects of im-
munotherapy and also improve response to treatment with immune checkpoint inhibitors
and prognosis of certain tumors [26,27].

It has been recently determined that PRR has an essential role for Wnt signaling
pathway activation through the Frizzled (Fz) receptor [28]. The Wnt pathway is involved
in bladder cancer progression by triggering processes such as proliferation or cell motil-
ity [29]. Additionally, the Wnt/β-catenin signaling pathway is very important to enhance
epithelial–mesenchymal transition in human bladder cancer [30]. Based on this evidence,
the potential tumorigenic action of PRR observed in our immunohistochemical analysis
could be explained by the fact that the overexpression of PRR may trigger an over-activation
of the Wnt signaling pathway and, hence, lead to urothelial cancer stem cell self-renewal
and progression of UC and chemoresistance [29].

The truncated form of PRR is an accessory protein of the v-ATPase and has a role in
the acidification of intracellular compartments and the regulation of autophagy, a process
required to maintain cellular environmental homeostasis through the degradation and
recycling of damaged cytoplasmic components and organelles [31]. Autophagy contributes
to the maintenance of UC cell survival [32], and this could be another mechanism involved
in the diminished survival of patients revealing intense IHC expression of PRR in this
series of non-metastatic UC. However, as far as we know, there is no information regarding
a potential consequence of the over-expression of PRR on the functions related to v-ATPase.
Hence, additional investigation is required to investigate the potential effects of PRR
over-expression in the framework of v-ATPAse.

One of the most interesting aspects of the evaluation of PRR is that IHC evaluation can
be defined in a simple model as negative, weak, and intense. Of course, our interpretation
should be evaluated in future studies with other tumor samples, and also desirably in
a prospective setting. However, PRR IHC evaluation is likely to be reproducible both
from the laboratory process and pathologist interpretation, taking into account that similar
findings have been reported by our group for different tumors [18,20].

Other simple IHC markers have been validated in our array sample, mainly CK5/6
and p53. In fact, CK5/6 expression in UC without squamous differentiation has been
recently defined as an independent prognostic biomarker [33]. Although extensively tested,
results regarding p53 expression are conflicting as surrogate marker for p53 mutation. Most
studies report that this molecule is valuable to determine prognosis, although problems
related to antibody selection, lack of standardization, and different cut-off values used have
yielded equivocal results [34]. Although it has been investigated for decades, there is not
sufficient evidence to conclude whether changes in p53 can be used as a precise marker of
prognosis in UC [35]. In our study, IHC expression of p53 and PRR behave as independent
predictors of UC specific survival. Interestingly and in order to approach an independent
value in Cox regression, IHC expression of CK5/6 is a marker of marginal importance
compared to PRR. The prognostic value of basal-type markers could be enhanced when
the co-expression of stromal marker fibroblast activation protein (FAP) is evaluated [11,36].
Other phenotype markers of UC and markers of immune checkpoint inhibition evaluated
did not predict prognosis in this series, and that can be a consequence of the difficulties
involved in the interpretation of immune-checkpoint inhibition based only on PD-1 and
PD-L1 IHC results, as has also been revealed in renal cell carcinoma [37]

Noticeably, the value of PRR as a new tissular prognostic factor in UC does not
de-pend on classical histopathological parameters, such as tumor grade, parietal depth
of tumor invasion, or lymph node infiltration, and this is an observation of utmost im-
portance. Additionally, we demonstrate that PRR expression is not associated with the
expression of basal (CK 5/6, CD44) or luminal phenotype markers (CK20, GATA3) or to
p53. Additionally, immune checkpoint inhibition markers (PD-L1, PD-1, B7H3, or VISTA)
appear completely unrelated to PRR expression. These data sustain the independent
prognostic value of PRR expression in patients with invasive UC of the bladder. Only the
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association between PRR and p53 immunostaining approaches statistical significance. This
is very interesting because, in the Cox proportional-hazards model regression, both PRR
and p53 staining are independent predictors, together with tumor depth of invasion (pT cat-
egory) and lymph node invasion (pN category). The prognostic value of CK5/6 expression
and also other clinical variables such as patient age and preoperative hemoglobin are in the
limit of statistical significance in univariate analysis but lose their prognostic value in the
multivariate regression model. Regarding the association we observed between negative
PRR expression and higher Hb levels (Table 2), it has already been suggested that PRR is
expressed in erythroblastic cells and also that it may contribute to the homeostatic control
of erythropoiesis [38].

The main limitations of our investigation stand in its retrospective nature and also in
a relative limited number of patients. However, under the light of our analysis, PRR is a
strong independent predictor of diminished bladder-cancer-specific survival, and this is
the first study describing this protein and its role in invasive UC. Functional studies should
also be performed to understand the basic role of PRR in bladder cancer biology and how
this novel marker influences cancer progression and aggressiveness in UC. According
to investigation performed in other tumor models, likely mechanisms are MAPK/ERK
activation, Wnt/β-catenin signaling, and v-ATPAse function [39]. The role of PRR in cancer
development and progression can also be supported by big data analysis from The Cancer
Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data-bases in several
malignancies [13], although further specific investigation is needed in UC. This clinical
study opens the perspective to investigate development of novel therapies for UC based
on neutralizing anti-PRR molecular antibodies to suppress Wnt/β-catenin signaling [22].

5. Conclusions

Despite the plethora of UC prognostic markers identified in the last decades, there is
still a role for definition of new tumor markers in this prevalent and serious malignancy.
The prognostic role of PRR protein in different neoplasia is being currently investigated.
We confirm this novel tumor marker could be of primary importance in UC, as different
patterns of IHC expression of PRR define disease-specific survival in UC treated with
radical cystectomy. What is remarkable is that this prognostic role seems to be independent
of classical histopathological features including the depth of bladder wall invasion and
presence of lymph node metastases. Additionally, immunohistochemical expression of
PRR seems to predict disease-specific prognosis in UC of the bladder much better than
other markers, including luminal (CK20 and GATA3) and basal (CK5/6 and CD44) UC
phenotypes, immune checkpoints (PD-L1, PD-1, B7-H3, and VISTA) and p53. In summary,
evidence is provided that PRR IHC expression has a prognostic role in patients with
muscle-invasive bladder cancer treated with radical cystectomy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13225642/s1, Figure S1: Kaplan–Meier curve of disease-specific survival according
to the immunohistochemical expression of markers of including luminal CK20 (log-rank, p = 0.795;
A1), GATA3 (log-rank, p = 0.25; A2), CK5/6 (log-rank, p = 0.115; A3), CD44 (log-rank, p = 0.436; A4),
PD-L1 (log-rank, p = 0.993; A5), PD-1 (log-rank, p = 0.377; A6), B7-H3 (log-rank, p = 0.877; A7), VISTA
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